--- license: other library_name: peft tags: - trl - sft - generated_from_trainer base_model: google/gemma-7b model-index: - name: outputs results: [] --- ## Model description GOOGLEGEMMA modelini UZB datasetga fine-tuned qilindi PEFT bilan. natijasi yaxshi deyishish qiyin. Shuning uchun PEFT siz qilishni tafsiya qilaman . **Agarda siz PEFT bilan fine-tuned qilingan modellarni ishlatishni bilmasangiz, exmaple codega qarang** ``` import torch from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig, AutoTokenizer model_name = "google/gemma-7b" bnb_config = BitsAndBytesConfig( load_in_4bit=True, bnb_4bit_quant_type="nf4", bnb_4bit_compute_dtype=torch.float16, ) model = AutoModelForCausalLM.from_pretrained( model_name, quantization_config=bnb_config, trust_remote_code=True ) model.config.use_cache = False ##### yuqoridagi code hamma PEFT bilan qilingan modellarni reduced par qilish orqali free GPU Notebooklarda foydalanish imkoni beradi. from peft import PeftModel, PeftConfig from transformers import AutoModelForCausalLM,AutoTokenizer config = PeftConfig.from_pretrained("ai-nightcoder/outputs") tokenizer = AutoTokenizer.from_pretrained('ai-nightcoder/outputs') inputs = tokenizer("Xorijiy mamlakatlar", return_tensors="pt") outputs = model(**inputs, labels=inputs["input_ids"]) predicted_token_class_ids = outputs.logits.argmax(-1) generated_text = tokenizer.batch_decode(predicted_token_class_ids, skip_special_tokens=True) print(generated_text) ``` ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 1 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 4 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 2 - training_steps: 10 - mixed_precision_training: Native AMP ### Training results ### Framework versions - PEFT 0.9.0 - Transformers 4.38.2 - Pytorch 2.1.2 - Datasets 2.18.0 - Tokenizers 0.15.2