--- tags: - generated_from_trainer metrics: - accuracy model-index: - name: distilbert-base-uncased results: [] --- # distilbert-base-uncased This model was trained from scratch on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.3188 - Accuracy: 0.9224 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 4 - eval_batch_size: 4 - seed: 1010 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:--------:| | 0.104 | 1.0 | 2370 | 0.1172 | 0.9724 | | 0.143 | 2.0 | 4740 | 0.1707 | 0.9608 | | 0.2895 | 3.0 | 7110 | 0.3216 | 0.9224 | | 0.3122 | 4.0 | 9480 | 0.3178 | 0.9224 | | 0.3177 | 5.0 | 11850 | 0.3223 | 0.9224 | | 0.318 | 6.0 | 14220 | 0.3182 | 0.9224 | | 0.3174 | 7.0 | 16590 | 0.3194 | 0.9224 | | 0.317 | 8.0 | 18960 | 0.3183 | 0.9224 | | 0.3176 | 9.0 | 21330 | 0.3179 | 0.9224 | | 0.3178 | 10.0 | 23700 | 0.3188 | 0.9224 | ### Framework versions - Transformers 4.44.0 - Pytorch 2.4.0 - Datasets 2.21.0 - Tokenizers 0.19.1