--- license: apache-2.0 base_model: google/vit-base-patch16-224 tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy model-index: - name: emotion_recognition_results results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: train[80%:] args: default metrics: - name: Accuracy type: accuracy value: 0.025 --- # emotion_recognition_results This model is a fine-tuned version of [google/vit-base-patch16-224](https://huggingface.co/google/vit-base-patch16-224) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 4.0824 - Accuracy: 0.025 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 1.5476 | 1.0 | 80 | 4.2262 | 0.0063 | | 0.7471 | 2.0 | 160 | 4.0593 | 0.0375 | | 0.3293 | 3.0 | 240 | 4.0824 | 0.025 | ### Framework versions - Transformers 4.41.2 - Pytorch 2.3.0+cu121 - Datasets 2.19.2 - Tokenizers 0.19.1