{ "cells": [ { "cell_type": "code", "execution_count": null, "metadata": { "colab": { "base_uri": "https://localhost:8080/" }, "id": "wWSzEAjavzrb", "outputId": "2043f30b-da16-4873-9028-b271b8b0ff7a" }, "outputs": [ { "output_type": "stream", "name": "stdout", "text": [ "Looking in indexes: https://pypi.org/simple, https://us-python.pkg.dev/colab-wheels/public/simple/\n", "Collecting bunch\n", " Downloading bunch-1.0.1.zip (11 kB)\n", " Preparing metadata (setup.py) ... \u001b[?25l\u001b[?25hdone\n", "Building wheels for collected packages: bunch\n", " Building wheel for bunch (setup.py) ... \u001b[?25l\u001b[?25hdone\n", " Created wheel for bunch: filename=bunch-1.0.1-py3-none-any.whl size=7095 sha256=6510189bb315235f23b782a137190eb162c11472fa824d1b1e16da0924fd98fc\n", " Stored in directory: /root/.cache/pip/wheels/81/03/84/acbaef8b5bc2ecc1bf944c572037d0fb232a19b19a96579f97\n", "Successfully built bunch\n", "Installing collected packages: bunch\n", "Successfully installed bunch-1.0.1\n" ] } ], "source": [ "pip install bunch" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "colab": { "base_uri": "https://localhost:8080/" }, "id": "18SHOfYBFogL", "outputId": "0ca9022f-4483-47fa-b554-41d080577123" }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Mounted at /content/drive\n" ] } ], "source": [ "|from google.colab import drive\n", "drive.mount('/content/drive')" ] }, { "cell_type": "code", "source": [ "selfies" ], "metadata": { "id": "eDFOuc8BZEr9" }, "execution_count": null, "outputs": [] }, { "cell_type": "code", "execution_count": null, "metadata": { "id": "8tqzd6vNFucI" }, "outputs": [], "source": [] }, { "cell_type": "markdown", "metadata": { "id": "7mgq8uVbyW4d" }, "source": [ "## Utility Codes" ] }, { "cell_type": "markdown", "metadata": { "id": "oyGzbJOiyau5" }, "source": [ "### Parameter Setting" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "id": "FSYvCcgkvxtK" }, "outputs": [], "source": [ "import os\n", "import time\n", "import json\n", "from bunch import Bunch\n", "\n", "import pandas as pd\n", "\n", "df= pd.read_csv('vocab.csv')\n", "vocab = df['Smiles'].tolist()\n", "\n", "def get_config_from_json(json_file):\n", " with open(json_file, 'r') as config_file:\n", " config_dict = json.load(config_file)\n", " config = Bunch(config_dict)\n", " return config\n", "\n", "\n", "def process_config(json_file):\n", " config = get_config_from_json(json_file)\n", " config.config_file = json_file\n", " config.exp_dir = os.path.join(\n", " 'experiments', time.strftime('%Y-%m-%d/', time.localtime()),\n", " config.exp_name)\n", " config.tensorboard_log_dir = os.path.join(\n", " 'experiments', time.strftime('%Y-%m-%d/', time.localtime()),\n", " config.exp_name, 'logs/')\n", " config.checkpoint_dir = os.path.join(\n", " 'experiments', time.strftime('%Y-%m-%d/', time.localtime()),\n", " config.exp_name, 'checkpoints/')\n", " return config" ] }, { "cell_type": "markdown", "metadata": { "id": "tJp7vxoyyhej" }, "source": [ "### Creating Directory" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "id": "Bx9GeQ9qwEXy" }, "outputs": [], "source": [ "import os\n", "import sys\n", "\n", "\n", "def create_dirs(dirs):\n", " try:\n", " for dir_ in dirs:\n", " if not os.path.exists(dir_):\n", " os.makedirs(dir_)\n", " except Exception as err:\n", " print(f'Creating directories error: {err}')\n", " sys.exit()" ] }, { "cell_type": "markdown", "metadata": { "id": "82goiSvmynck" }, "source": [ "## SMILES TOKENIZER" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "id": "CCJOzUKwuydA" }, "outputs": [], "source": [ "import numpy as np\n", "\n", "\n", "class SmilesTokenizer(object):\n", "\n", " def __init__(self):\n", " atoms = [\n", " 'Al', 'As', 'B', 'Br', 'C', 'Cl', 'F', 'H', 'I', 'K', 'Li', 'N',\n", " 'Na', 'O', 'P', 'S', 'Se', 'Si', 'Te'\n", " ]\n", " special = [\n", " '(', ')', '[', ']', '=', '#', '%', '0', '1', '2', '3', '4', '5',\n", " '6', '7', '8', '9', '+', '-', 'se', 'te', 'c', 'n', 'o', 's'\n", " ]\n", "\n", " function = vocab\n", "\n", " padding = ['G', 'A', 'E']\n", "\n", " self.table = sorted(atoms, key=len, reverse=True) + special + padding\n", " table_len = len(self.table)\n", "\n", " self.table_2_chars = list(filter(lambda x: len(x) == 2, self.table))\n", " self.table_1_chars = list(filter(lambda x: len(x) == 1, self.table))\n", "\n", " self.one_hot_dict = {}\n", " for i, symbol in enumerate(self.table):\n", " vec = np.zeros(table_len, dtype=np.float32)\n", " vec[i] = 1\n", " self.one_hot_dict[symbol] = vec\n", "\n", " def tokenize(self, smiles):\n", " smiles = smiles + ' '\n", " N = len(smiles)\n", " token = []\n", " i = 0\n", " while (i < N):\n", " c1 = smiles[i]\n", " c2 = smiles[i:i + 2]\n", "\n", " if c2 in self.table_2_chars:\n", " token.append(c2)\n", " i += 2\n", " continue\n", "\n", " if c1 in self.table_1_chars:\n", " token.append(c1)\n", " i += 1\n", " continue\n", "\n", " i += 1\n", "\n", " return token\n", "\n", " def one_hot_encode(self, tokenized_smiles):\n", " result = np.array(\n", " [self.one_hot_dict[symbol] for symbol in tokenized_smiles],\n", " dtype=np.float32)\n", " result = result.reshape(1, result.shape[0], result.shape[1])\n", " print(result)\n", " return result" ] }, { "cell_type": "markdown", "metadata": { "id": "9D0FvvsmywFk" }, "source": [ "## Data Loader" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "id": "N0m-AmjPufqR" }, "outputs": [], "source": [ "import json\n", "import os\n", "import numpy as np\n", "from tqdm import tqdm\n", "from tensorflow.keras.utils import Sequence\n", "#from lstm_chem.utils.smiles_tokenizer2 import SmilesTokenizer\n", "\n", "\n", "class DataLoader(Sequence):\n", " def __init__(self, config, data_type='train'):\n", " self.config = config\n", " self.data_type = data_type\n", " assert self.data_type in ['train', 'valid', 'finetune']\n", "\n", " self.max_len = 0\n", "\n", " if self.data_type == 'train':\n", " self.smiles = self._load(self.config.data_filename)\n", " elif self.data_type == 'finetune':\n", " self.smiles = self._load(self.config.finetune_data_filename)\n", " else:\n", " pass\n", "\n", " self.st = SmilesTokenizer()\n", " self.one_hot_dict = self.st.one_hot_dict\n", "\n", " self.tokenized_smiles = self._tokenize(self.smiles)\n", "\n", " if self.data_type in ['train', 'valid']:\n", " self.idx = np.arange(len(self.tokenized_smiles))\n", " self.valid_size = int(\n", " np.ceil(\n", " len(self.tokenized_smiles) * self.config.validation_split))\n", " np.random.seed(self.config.seed)\n", " np.random.shuffle(self.idx)\n", "\n", " def _set_data(self):\n", " if self.data_type == 'train':\n", " ret = [\n", " self.tokenized_smiles[self.idx[i]]\n", " for i in self.idx[self.valid_size:]\n", " ]\n", " elif self.data_type == 'valid':\n", " ret = [\n", " self.tokenized_smiles[self.idx[i]]\n", " for i in self.idx[:self.valid_size]\n", " ]\n", " else:\n", " ret = self.tokenized_smiles\n", " return ret\n", "\n", " def _load(self, data_filename):\n", " length = self.config.data_length\n", " print('loading SMILES...')\n", " with open(data_filename) as f:\n", " smiles = [s.rstrip() for s in f]\n", " if length != 0:\n", " smiles = smiles[:length]\n", " print('done.')\n", " return smiles\n", "\n", " def _tokenize(self, smiles):\n", " assert isinstance(smiles, list)\n", " print('tokenizing SMILES...')\n", " tokenized_smiles = [self.st.tokenize(smi) for smi in tqdm(smiles)]\n", "\n", " if self.data_type == 'train':\n", " for tokenized_smi in tokenized_smiles:\n", " length = len(tokenized_smi)\n", " if self.max_len < length:\n", " self.max_len = length\n", " self.config.train_smi_max_len = self.max_len\n", " print('done.')\n", " return tokenized_smiles\n", "\n", " def __len__(self):\n", " target_tokenized_smiles = self._set_data()\n", " if self.data_type in ['train', 'valid']:\n", " ret = int(\n", " np.ceil(\n", " len(target_tokenized_smiles) /\n", " float(self.config.batch_size)))\n", " else:\n", " ret = int(\n", " np.ceil(\n", " len(target_tokenized_smiles) /\n", " float(self.config.finetune_batch_size)))\n", " return ret\n", "\n", " def __getitem__(self, idx):\n", " target_tokenized_smiles = self._set_data()\n", " if self.data_type in ['train', 'valid']:\n", " data = target_tokenized_smiles[idx *\n", " self.config.batch_size:(idx + 1) *\n", " self.config.batch_size]\n", " else:\n", " data = target_tokenized_smiles[idx *\n", " self.config.finetune_batch_size:\n", " (idx + 1) *\n", " self.config.finetune_batch_size]\n", " data = self._padding(data)\n", "\n", " self.X, self.y = [], []\n", " for tp_smi in data:\n", " X = [self.one_hot_dict[symbol] for symbol in tp_smi[:-1]]\n", " self.X.append(X)\n", " y = [self.one_hot_dict[symbol] for symbol in tp_smi[1:]]\n", " self.y.append(y)\n", "\n", " self.X = np.array(self.X, dtype=np.float32)\n", " self.y = np.array(self.y, dtype=np.float32)\n", "\n", "# return self.X, self.y, [None]\n", " return self.X, self.y\n", "\n", " def _pad(self, tokenized_smi):\n", " return ['G'] + tokenized_smi + ['E'] + [\n", " 'A' for _ in range(self.max_len - len(tokenized_smi))\n", " ]\n", "\n", " def _padding(self, data):\n", " padded_smiles = [self._pad(t_smi) for t_smi in data]\n", " return padded_smiles" ] }, { "cell_type": "markdown", "metadata": { "id": "NbUu9dy63XKJ" }, "source": [ "## LSTM Model" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "id": "IymzAnUUvG1v" }, "outputs": [], "source": [ "import os\n", "import time\n", "from tensorflow.keras import Sequential\n", "from tensorflow.keras.models import model_from_json\n", "from tensorflow.keras.layers import LSTM, Dense\n", "from tensorflow.keras.initializers import RandomNormal\n", "\n", "\n", "\n", "class LSTMChem(object):\n", " def __init__(self, config, session='train'):\n", " assert session in ['train', 'generate', 'finetune'], \\\n", " 'one of {train, generate, finetune}'\n", "\n", " self.config = config\n", " self.session = session\n", " self.model = None\n", "\n", " if self.session == 'train':\n", " self.build_model()\n", " else:\n", " self.model = self.load(self.config.model_arch_filename,\n", " self.config.model_weight_filename)\n", "\n", " def build_model(self):\n", " st = SmilesTokenizer()\n", " n_table = len(st.table)\n", " weight_init = RandomNormal(mean=0.0,\n", " stddev=0.05,\n", " seed=self.config.seed)\n", "\n", " self.model = Sequential()\n", " self.model.add(\n", " LSTM(units=self.config.units,\n", " input_shape=(None, n_table),\n", " return_sequences=True,\n", " kernel_initializer=weight_init,\n", " dropout=0.3))\n", " self.model.add(\n", " LSTM(units=self.config.units,\n", " input_shape=(None, n_table),\n", " return_sequences=True,\n", " kernel_initializer=weight_init,\n", " dropout=0.5))\n", " self.model.add(\n", " Dense(units=n_table,\n", " activation='softmax',\n", " kernel_initializer=weight_init))\n", "\n", " arch = self.model.to_json(indent=2)\n", " self.config.model_arch_filename = os.path.join(self.config.exp_dir,\n", " 'model_arch.json')\n", " with open(self.config.model_arch_filename, 'w') as f:\n", " f.write(arch)\n", "\n", " self.model.compile(optimizer=self.config.optimizer,\n", " loss='categorical_crossentropy')\n", "\n", " def save(self, checkpoint_path):\n", " assert self.model, 'You have to build the model first.'\n", "\n", " print('Saving model ...')\n", " self.model.save_weights(checkpoint_path)\n", " print('model saved.')\n", "\n", " def load(self, model_arch_file, checkpoint_file):\n", " print(f'Loading model architecture from {model_arch_file} ...')\n", " with open(model_arch_file) as f:\n", " model = model_from_json(f.read())\n", " print(f'Loading model checkpoint from {checkpoint_file} ...')\n", " model.load_weights(checkpoint_file)\n", " print('Loaded the Model.')\n", " return model" ] }, { "cell_type": "markdown", "metadata": { "id": "GMH8I9iB3uSu" }, "source": [ "## Generator" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "id": "bltRLOMevG9D" }, "outputs": [], "source": [ "from tqdm import tqdm\n", "import numpy as np\n", "#from lstm_chem.utils.smiles_tokenizer2 import SmilesTokenizer\n", "\n", "\n", "class LSTMChemGenerator(object):\n", " def __init__(self, modeler):\n", " self.session = modeler.session\n", " self.model = modeler.model\n", " self.config = modeler.config\n", " self.st = SmilesTokenizer()\n", "\n", " def _generate(self, sequence):\n", " while (sequence[-1] != 'E') and (len(self.st.tokenize(sequence)) <=\n", " self.config.smiles_max_length):\n", " x = self.st.one_hot_encode(self.st.tokenize(sequence))\n", " preds = self.model.predict_on_batch(x)[0][-1]\n", " next_idx = self.sample_with_temp(preds)\n", " sequence += self.st.table[next_idx]\n", "\n", " sequence = sequence[1:].rstrip('E')\n", " return sequence\n", "\n", " def sample_with_temp(self, preds):\n", " streched = np.log(preds) / self.config.sampling_temp\n", " streched_probs = np.exp(streched) / np.sum(np.exp(streched))\n", " return np.random.choice(range(len(streched)), p=streched_probs)\n", "\n", " def sample(self, num=1, start='G'):\n", " sampled = []\n", " if self.session == 'generate':\n", " for _ in tqdm(range(num)):\n", " sampled.append(self._generate(start))\n", " return sampled\n", " else:\n", " from rdkit import Chem, RDLogger\n", " RDLogger.DisableLog('rdApp.*')\n", " while len(sampled) < num:\n", " sequence = self._generate(start)\n", " mol = Chem.MolFromSmiles(sequence)\n", " if mol is not None:\n", " canon_smiles = Chem.MolToSmiles(mol)\n", " sampled.append(canon_smiles)\n", " return sampled" ] }, { "cell_type": "markdown", "metadata": { "id": "PQuZ2lj-2y7g" }, "source": [ "## Fine Tuner" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "id": "XIL7Gx05vG55" }, "outputs": [], "source": [ "\n", "\n", "\n", "class LSTMChemFinetuner(LSTMChemGenerator):\n", " def __init__(self, modeler, finetune_data_loader):\n", " self.session = modeler.session\n", " self.model = modeler.model\n", " self.config = modeler.config\n", " self.finetune_data_loader = finetune_data_loader\n", " self.st = SmilesTokenizer()\n", "\n", " def finetune(self):\n", " self.model.compile(optimizer=self.config.optimizer,\n", " loss='categorical_crossentropy')\n", "\n", "# history = self.model.fit_generator(\n", " history = self.model.fit(\n", " self.finetune_data_loader,\n", " steps_per_epoch=self.finetune_data_loader.__len__(),\n", " epochs=self.config.finetune_epochs,\n", " verbose=self.config.verbose_training,\n", " use_multiprocessing=True,\n", " shuffle=True)\n", " return history\n" ] }, { "cell_type": "markdown", "metadata": { "id": "rPI7-OzS3bWd" }, "source": [ "## Trainer" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "id": "bpmPDt1yvGqT" }, "outputs": [], "source": [ "from glob import glob\n", "import os\n", "from tensorflow.keras.callbacks import ModelCheckpoint, TensorBoard\n", "\n", "\n", "class LSTMChemTrainer(object):\n", " def __init__(self, modeler, train_data_loader, valid_data_loader):\n", " self.model = modeler.model\n", " self.config = modeler.config\n", " self.train_data_loader = train_data_loader\n", " self.valid_data_loader = valid_data_loader\n", " self.callbacks = []\n", " self.init_callbacks()\n", "\n", " def init_callbacks(self):\n", " self.callbacks.append(\n", " ModelCheckpoint(\n", " filepath=os.path.join(\n", " self.config.checkpoint_dir,\n", " '%s-{epoch:02d}-{val_loss:.2f}.hdf5' %\n", " self.config.exp_name),\n", " monitor=self.config.checkpoint_monitor,\n", " mode=self.config.checkpoint_mode,\n", " save_best_only=self.config.checkpoint_save_best_only,\n", " save_weights_only=self.config.checkpoint_save_weights_only,\n", " verbose=self.config.checkpoint_verbose,\n", " ))\n", " self.callbacks.append(\n", " TensorBoard(\n", " log_dir=self.config.tensorboard_log_dir,\n", " write_graph=self.config.tensorboard_write_graph,\n", " ))\n", "\n", " def train(self):\n", "# history = self.model.fit_generator(\n", " history = self.model.fit(\n", " self.train_data_loader,\n", " steps_per_epoch=self.train_data_loader.__len__(),\n", " epochs=self.config.num_epochs,\n", " verbose=self.config.verbose_training,\n", " validation_data=self.valid_data_loader,\n", " validation_steps=self.valid_data_loader.__len__(),\n", " use_multiprocessing=True,\n", " shuffle=True,\n", " callbacks=self.callbacks)\n", "\n", " last_weight_file = glob(\n", " os.path.join(\n", " f'{self.config.checkpoint_dir}',\n", " f'{self.config.exp_name}-{self.config.num_epochs:02}*.hdf5')\n", " )[0]\n", "\n", " assert os.path.exists(last_weight_file)\n", " self.config.model_weight_filename = last_weight_file\n", "\n", " with open(os.path.join(self.config.exp_dir, 'config.json'), 'w') as f:\n", " f.write(self.config.toJSON(indent=2))" ] }, { "cell_type": "markdown", "metadata": { "id": "oUg2HPWy3n8K" }, "source": [ "## Training" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "colab": { "base_uri": "https://localhost:8080/", "height": 380 }, "id": "NVQQ-UBUvpZf", "outputId": "6bfd4d30-7e63-4a69-cdb2-ac962d992ca7" }, "outputs": [ { "output_type": "stream", "name": "stdout", "text": [ "Create the data generator.\n", "loading SMILES...\n" ] }, { "output_type": "error", "ename": "FileNotFoundError", "evalue": "ignored", "traceback": [ "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", "\u001b[0;31mFileNotFoundError\u001b[0m Traceback (most recent call last)", "\u001b[0;32m\u001b[0m in \u001b[0;36m\u001b[0;34m\u001b[0m\n\u001b[1;32m 32\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 33\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0m__name__\u001b[0m \u001b[0;34m==\u001b[0m \u001b[0;34m'__main__'\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m---> 34\u001b[0;31m \u001b[0mmain\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m", "\u001b[0;32m\u001b[0m in \u001b[0;36mmain\u001b[0;34m()\u001b[0m\n\u001b[1;32m 17\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 18\u001b[0m \u001b[0mprint\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m'Create the data generator.'\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m---> 19\u001b[0;31m \u001b[0mtrain_dl\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mDataLoader\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mconfig\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mdata_type\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;34m'train'\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 20\u001b[0m \u001b[0mvalid_dl\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mcopy\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mtrain_dl\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 21\u001b[0m \u001b[0mvalid_dl\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mdata_type\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;34m'valid'\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", "\u001b[0;32m\u001b[0m in \u001b[0;36m__init__\u001b[0;34m(self, config, data_type)\u001b[0m\n\u001b[1;32m 16\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 17\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mdata_type\u001b[0m \u001b[0;34m==\u001b[0m \u001b[0;34m'train'\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m---> 18\u001b[0;31m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0msmiles\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_load\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mconfig\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mdata_filename\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 19\u001b[0m \u001b[0;32melif\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mdata_type\u001b[0m \u001b[0;34m==\u001b[0m \u001b[0;34m'finetune'\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 20\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0msmiles\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_load\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mconfig\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mfinetune_data_filename\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", "\u001b[0;32m\u001b[0m in \u001b[0;36m_load\u001b[0;34m(self, data_filename)\u001b[0m\n\u001b[1;32m 53\u001b[0m \u001b[0mlength\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mconfig\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mdata_length\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 54\u001b[0m \u001b[0mprint\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m'loading SMILES...'\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m---> 55\u001b[0;31m \u001b[0;32mwith\u001b[0m \u001b[0mopen\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mdata_filename\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;32mas\u001b[0m \u001b[0mf\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 56\u001b[0m \u001b[0msmiles\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;34m[\u001b[0m\u001b[0ms\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mrstrip\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;32mfor\u001b[0m \u001b[0ms\u001b[0m \u001b[0;32min\u001b[0m \u001b[0mf\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 57\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mlength\u001b[0m \u001b[0;34m!=\u001b[0m \u001b[0;36m0\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", "\u001b[0;31mFileNotFoundError\u001b[0m: [Errno 2] No such file or directory: '/content/medium.txt'" ] } ], "source": [ "from copy import copy\n", "#from lstm_chem.utils.config import process_config\n", "#from lstm_chem.utils.dirs import create_dirs\n", "#from lstm_chem.data_loader import DataLoader\n", "#from lstm_chem.model import LSTMChem\n", "#from lstm_chem.trainer import LSTMChemTrainer\n", "\n", "CONFIG_FILE = '/content/base_config.json'\n", "\n", "\n", "def main():\n", " config = process_config(CONFIG_FILE)\n", "\n", " # create the experiments dirs\n", " create_dirs(\n", " [config.exp_dir, config.tensorboard_log_dir, config.checkpoint_dir])\n", "\n", " print('Create the data generator.')\n", " train_dl = DataLoader(config, data_type='train')\n", " valid_dl = copy(train_dl)\n", " valid_dl.data_type = 'valid'\n", "\n", " print('Create the model.')\n", " modeler = LSTMChem(config, session='train')\n", "\n", " print('Create the trainer')\n", " trainer = LSTMChemTrainer(modeler, train_dl, valid_dl)\n", "\n", " print('Start training the model.')\n", " trainer.train()\n", "\n", "\n", "if __name__ == '__main__':\n", " main()" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "id": "WYogVr1SYqIH" }, "outputs": [], "source": [ "\n", "!zip -r exp.zip experiments/" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "id": "AD3Sb9cUaW4K" }, "outputs": [], "source": [ "from google.colab import files\n", "files.download(\"/content/exp.zip\")" ] }, { "cell_type": "markdown", "metadata": { "id": "u9o6Sxw14iN1" }, "source": [ "## Fine Tuning" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "colab": { "base_uri": "https://localhost:8080/" }, "id": "jiYkhYlk4wuc", "outputId": "66e4cfa3-3770-4eff-99fe-7f38444e1ee5" }, "outputs": [ { "output_type": "stream", "name": "stdout", "text": [ "Looking in indexes: https://pypi.org/simple, https://us-python.pkg.dev/colab-wheels/public/simple/\n", "Collecting rdkit\n", " Downloading rdkit-2022.9.5-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (29.4 MB)\n", "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m29.4/29.4 MB\u001b[0m \u001b[31m38.3 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", "\u001b[?25hRequirement already satisfied: numpy in /usr/local/lib/python3.8/dist-packages (from rdkit) (1.22.4)\n", "Requirement already satisfied: Pillow in /usr/local/lib/python3.8/dist-packages (from rdkit) (8.4.0)\n", "Installing collected packages: rdkit\n", "Successfully installed rdkit-2022.9.5\n" ] } ], "source": [ "pip install rdkit" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "id": "ESaAvgIV4gz8" }, "outputs": [], "source": [ "import numpy as np\n", "from sklearn.decomposition import PCA\n", "import matplotlib.pyplot as plt\n", "%matplotlib inline\n", "\n", "from rdkit import Chem, DataStructs\n", "from rdkit.Chem import AllChem, Draw\n", "from rdkit.Chem.Draw import IPythonConsole\n", "\n", "#from lstm_chem.utils.config import process_config\n", "#from lstm_chem.model import LSTMChem\n", "#from lstm_chem.finetuner import LSTMChemFinetuner\n", "#from lstm_chem.data_loader import DataLoader" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "colab": { "base_uri": "https://localhost:8080/" }, "id": "RPVwkm9CvpV-", "outputId": "7b107b41-902b-4907-9d81-a9a460a17c6b" }, "outputs": [ { "output_type": "stream", "name": "stdout", "text": [ "Loading model architecture from /content/LSTM_Chem/experiments/2020-03-24/LSTM_Chem/model_arch.json ...\n", "Loading model checkpoint from /content/LSTM_Chem/experiments/2020-03-24/LSTM_Chem/checkpoints/LSTM_Chem-22-0.45.hdf5 ...\n", "Loaded the Model.\n", "loading SMILES...\n", "done.\n", "tokenizing SMILES...\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ "100%|██████████| 1567/1567 [00:00<00:00, 32948.53it/s]" ] }, { "output_type": "stream", "name": "stdout", "text": [ "done.\n", "Epoch 1/15\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ "\n" ] }, { "output_type": "stream", "name": "stdout", "text": [ "1567/1567 [==============================] - 20s 10ms/step - loss: 1.5729\n", "Epoch 2/15\n", "1567/1567 [==============================] - 15s 10ms/step - loss: 1.3931\n", "Epoch 3/15\n", "1567/1567 [==============================] - 16s 10ms/step - loss: 1.3388\n", "Epoch 4/15\n", "1567/1567 [==============================] - 16s 10ms/step - loss: 1.2836\n", "Epoch 5/15\n", "1567/1567 [==============================] - 15s 10ms/step - loss: 1.2557\n", "Epoch 6/15\n", "1567/1567 [==============================] - 16s 10ms/step - loss: 1.2298\n", "Epoch 7/15\n", "1567/1567 [==============================] - 16s 10ms/step - loss: 1.2174\n", "Epoch 8/15\n", "1567/1567 [==============================] - 16s 10ms/step - loss: 1.1929\n", "Epoch 9/15\n", "1567/1567 [==============================] - 16s 10ms/step - loss: 1.1726\n", "Epoch 10/15\n", "1567/1567 [==============================] - 17s 11ms/step - loss: 1.1627\n", "Epoch 11/15\n", "1567/1567 [==============================] - 16s 10ms/step - loss: 1.1446\n", "Epoch 12/15\n", "1567/1567 [==============================] - 15s 10ms/step - loss: 1.1349\n", "Epoch 13/15\n", "1567/1567 [==============================] - 16s 10ms/step - loss: 1.1216\n", "Epoch 14/15\n", "1567/1567 [==============================] - 16s 10ms/step - loss: 1.1056\n", "Epoch 15/15\n", "1567/1567 [==============================] - 15s 10ms/step - loss: 1.1026\n" ] }, { "output_type": "execute_result", "data": { "text/plain": [ "" ] }, "metadata": {}, "execution_count": 34 } ], "source": [ "config = process_config('/content/config.json')\n", "\n", "modeler = LSTMChem(config, session='finetune')\n", "finetune_dl = DataLoader(config, data_type='finetune')\n", "\n", "finetuner = LSTMChemFinetuner(modeler, finetune_dl)\n", "finetuner.finetune()" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "colab": { "base_uri": "https://localhost:8080/" }, "id": "CzkqEJsmvpRn", "outputId": "9fc050c2-09e3-464a-d722-ad1064b3b943" }, "outputs": [ { "output_type": "stream", "name": "stdout", "text": [ "\u001b[1;30;43mStreaming output truncated to the last 5000 lines.\u001b[0m\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]]]\n", "[[[0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0.\n", " 0.]]]\n", "[[[0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0.\n", " 0.]]]\n", "[[[0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0.\n", " 0.]]]\n", "[[[0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0.\n", " 0.]]]\n", "[[[0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0.\n", " 0.]]]\n", "[[[0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]]]\n", "[[[0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]]]\n", "[[[0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]]]\n", "[[[0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]]]\n", "[[[0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]]]\n", "[[[0. 0. 0. ... 1. 0. 0.]\n", " [0. 0. 0. ... 0. 0. 0.]\n", " [0. 0. 0. ... 0. 0. 0.]\n", " ...\n", " [0. 0. 0. ... 0. 0. 0.]\n", " [0. 0. 0. ... 0. 0. 0.]\n", " [0. 0. 0. ... 0. 0. 0.]]]\n", "[[[0. 0. 0. ... 1. 0. 0.]\n", " [0. 0. 0. ... 0. 0. 0.]\n", " [0. 0. 0. ... 0. 0. 0.]\n", " ...\n", " [0. 0. 0. ... 0. 0. 0.]\n", " [0. 0. 0. ... 0. 0. 0.]\n", " [0. 0. 0. ... 0. 0. 0.]]]\n", "[[[0. 0. 0. ... 1. 0. 0.]\n", " [0. 0. 0. ... 0. 0. 0.]\n", " [0. 0. 0. ... 0. 0. 0.]\n", " ...\n", " [0. 0. 0. ... 0. 0. 0.]\n", " [0. 0. 0. ... 0. 0. 0.]\n", " [0. 0. 0. ... 0. 0. 0.]]]\n", "[[[0. 0. 0. ... 1. 0. 0.]\n", " [0. 0. 0. ... 0. 0. 0.]\n", " [0. 0. 0. ... 0. 0. 0.]\n", " ...\n", " [0. 0. 0. ... 0. 0. 0.]\n", " [0. 0. 0. ... 0. 0. 0.]\n", " [0. 0. 0. ... 0. 0. 0.]]]\n", "[[[0. 0. 0. ... 1. 0. 0.]\n", " [0. 0. 0. ... 0. 0. 0.]\n", " [0. 0. 0. ... 0. 0. 0.]\n", " ...\n", " [0. 0. 0. ... 0. 0. 0.]\n", " [0. 0. 0. ... 0. 0. 0.]\n", " [0. 0. 0. ... 0. 0. 0.]]]\n", "[[[0. 0. 0. ... 1. 0. 0.]\n", " [0. 0. 0. ... 0. 0. 0.]\n", " [0. 0. 0. ... 0. 0. 0.]\n", " ...\n", " [0. 0. 0. ... 0. 0. 0.]\n", " [0. 0. 0. ... 0. 0. 0.]\n", " [0. 0. 0. ... 0. 0. 0.]]]\n", "[[[0. 0. 0. ... 1. 0. 0.]\n", " [0. 0. 0. ... 0. 0. 0.]\n", " [0. 0. 0. ... 0. 0. 0.]\n", " ...\n", " [0. 0. 0. ... 0. 0. 0.]\n", " [0. 0. 0. ... 0. 0. 0.]\n", " [0. 0. 0. ... 0. 0. 0.]]]\n", "[[[0. 0. 0. ... 1. 0. 0.]\n", " [0. 0. 0. ... 0. 0. 0.]\n", " [0. 0. 0. ... 0. 0. 0.]\n", " ...\n", " [0. 0. 0. ... 0. 0. 0.]\n", " [0. 0. 0. ... 0. 0. 0.]\n", " [0. 0. 0. ... 0. 0. 0.]]]\n", "[[[0. 0. 0. ... 1. 0. 0.]\n", " [0. 0. 0. ... 0. 0. 0.]\n", " [0. 0. 0. ... 0. 0. 0.]\n", " ...\n", " [0. 0. 0. ... 0. 0. 0.]\n", " [0. 0. 0. ... 0. 0. 0.]\n", " [0. 0. 0. ... 0. 0. 0.]]]\n", "[[[0. 0. 0. ... 1. 0. 0.]\n", " [0. 0. 0. ... 0. 0. 0.]\n", " [0. 0. 0. ... 0. 0. 0.]\n", " ...\n", " [0. 0. 0. ... 0. 0. 0.]\n", " [0. 0. 0. ... 0. 0. 0.]\n", " [0. 0. 0. ... 0. 0. 0.]]]\n", "[[[0. 0. 0. ... 1. 0. 0.]\n", " [0. 0. 0. ... 0. 0. 0.]\n", " [0. 0. 0. ... 0. 0. 0.]\n", " ...\n", " [0. 0. 0. ... 0. 0. 0.]\n", " [0. 0. 0. ... 0. 0. 0.]\n", " [0. 0. 0. ... 0. 0. 0.]]]\n", "[[[0. 0. 0. ... 1. 0. 0.]\n", " [0. 0. 0. ... 0. 0. 0.]\n", " [0. 0. 0. ... 0. 0. 0.]\n", " ...\n", " [0. 0. 0. ... 0. 0. 0.]\n", " [0. 0. 0. ... 0. 0. 0.]\n", " [0. 0. 0. ... 0. 0. 0.]]]\n", "[[[0. 0. 0. ... 1. 0. 0.]\n", " [0. 0. 0. ... 0. 0. 0.]\n", " [0. 0. 0. ... 0. 0. 0.]\n", " ...\n", " [0. 0. 0. ... 0. 0. 0.]\n", " [0. 0. 0. ... 0. 0. 0.]\n", " [0. 0. 0. ... 0. 0. 0.]]]\n", "[[[0. 0. 0. ... 1. 0. 0.]\n", " [0. 0. 0. ... 0. 0. 0.]\n", " [0. 0. 0. ... 0. 0. 0.]\n", " ...\n", " [0. 0. 0. ... 0. 0. 0.]\n", " [0. 0. 0. ... 0. 0. 0.]\n", " [0. 0. 0. ... 0. 0. 0.]]]\n", "[[[0. 0. 0. ... 1. 0. 0.]\n", " [0. 0. 0. ... 0. 0. 0.]\n", " [0. 0. 0. ... 0. 0. 0.]\n", " ...\n", " [0. 0. 0. ... 0. 0. 0.]\n", " [0. 0. 0. ... 0. 0. 0.]\n", " [0. 0. 0. ... 0. 0. 0.]]]\n", "[[[0. 0. 0. ... 1. 0. 0.]\n", " [0. 0. 0. ... 0. 0. 0.]\n", " [0. 0. 0. ... 0. 0. 0.]\n", " ...\n", " [0. 0. 0. ... 0. 0. 0.]\n", " [0. 0. 0. ... 0. 0. 0.]\n", " [0. 0. 0. ... 0. 0. 0.]]]\n", "[[[0. 0. 0. ... 1. 0. 0.]\n", " [0. 0. 0. ... 0. 0. 0.]\n", " [0. 0. 0. ... 0. 0. 0.]\n", " ...\n", " [0. 0. 0. ... 0. 0. 0.]\n", " [0. 0. 0. ... 0. 0. 0.]\n", " [0. 0. 0. ... 0. 0. 0.]]]\n", "[[[0. 0. 0. ... 1. 0. 0.]\n", " [0. 0. 0. ... 0. 0. 0.]\n", " [0. 0. 0. ... 0. 0. 0.]\n", " ...\n", " [0. 0. 0. ... 0. 0. 0.]\n", " [0. 0. 0. ... 0. 0. 0.]\n", " [0. 0. 0. ... 0. 0. 0.]]]\n", "[[[0. 0. 0. ... 1. 0. 0.]\n", " [0. 0. 0. ... 0. 0. 0.]\n", " [0. 0. 0. ... 0. 0. 0.]\n", " ...\n", " [0. 0. 0. ... 0. 0. 0.]\n", " [0. 0. 0. ... 0. 0. 0.]\n", " [0. 0. 0. ... 0. 0. 0.]]]\n", "[[[0. 0. 0. ... 1. 0. 0.]\n", " [0. 0. 0. ... 0. 0. 0.]\n", " [0. 0. 0. ... 0. 0. 0.]\n", " ...\n", " [0. 0. 0. ... 0. 0. 0.]\n", " [0. 0. 0. ... 0. 0. 0.]\n", " [0. 0. 0. ... 0. 0. 0.]]]\n", "[[[0. 0. 0. ... 1. 0. 0.]\n", " [0. 0. 0. ... 0. 0. 0.]\n", " [0. 0. 0. ... 0. 0. 0.]\n", " ...\n", " [0. 0. 0. ... 0. 0. 0.]\n", " [0. 0. 0. ... 0. 0. 0.]\n", " [0. 0. 0. ... 0. 0. 0.]]]\n", "[[[0. 0. 0. ... 1. 0. 0.]\n", " [0. 0. 0. ... 0. 0. 0.]\n", " [0. 0. 0. ... 0. 0. 0.]\n", " ...\n", " [0. 0. 0. ... 0. 0. 0.]\n", " [0. 0. 0. ... 0. 0. 0.]\n", " [0. 0. 0. ... 0. 0. 0.]]]\n", "[[[0. 0. 0. ... 1. 0. 0.]\n", " [0. 0. 0. ... 0. 0. 0.]\n", " [0. 0. 0. ... 0. 0. 0.]\n", " ...\n", " [0. 0. 0. ... 0. 0. 0.]\n", " [0. 0. 0. ... 0. 0. 0.]\n", " [0. 0. 0. ... 0. 0. 0.]]]\n", "[[[0. 0. 0. ... 1. 0. 0.]\n", " [0. 0. 0. ... 0. 0. 0.]\n", " [0. 0. 0. ... 0. 0. 0.]\n", " ...\n", " [0. 0. 0. ... 0. 0. 0.]\n", " [0. 0. 0. ... 0. 0. 0.]\n", " [0. 0. 0. ... 0. 0. 0.]]]\n", "[[[0. 0. 0. ... 1. 0. 0.]\n", " [0. 0. 0. ... 0. 0. 0.]\n", " [0. 0. 0. ... 0. 0. 0.]\n", " ...\n", " [0. 0. 0. ... 0. 0. 0.]\n", " [0. 0. 0. ... 0. 0. 0.]\n", " [0. 0. 0. ... 0. 0. 0.]]]\n", "[[[0. 0. 0. ... 1. 0. 0.]\n", " [0. 0. 0. ... 0. 0. 0.]\n", " [0. 0. 0. ... 0. 0. 0.]\n", " ...\n", " [0. 0. 0. ... 0. 0. 0.]\n", " [0. 0. 0. ... 0. 0. 0.]\n", " [0. 0. 0. ... 0. 0. 0.]]]\n", "[[[0. 0. 0. ... 1. 0. 0.]\n", " [0. 0. 0. ... 0. 0. 0.]\n", " [0. 0. 0. ... 0. 0. 0.]\n", " ...\n", " [0. 0. 0. ... 0. 0. 0.]\n", " [0. 0. 0. ... 0. 0. 0.]\n", " [0. 0. 0. ... 0. 0. 0.]]]\n", "[[[0. 0. 0. ... 1. 0. 0.]\n", " [0. 0. 0. ... 0. 0. 0.]\n", " [0. 0. 0. ... 0. 0. 0.]\n", " ...\n", " [0. 0. 0. ... 0. 0. 0.]\n", " [0. 0. 0. ... 0. 0. 0.]\n", " [0. 0. 0. ... 0. 0. 0.]]]\n", "[[[0. 0. 0. ... 1. 0. 0.]\n", " [0. 0. 0. ... 0. 0. 0.]\n", " [0. 0. 0. ... 0. 0. 0.]\n", " ...\n", " [0. 0. 0. ... 0. 0. 0.]\n", " [0. 0. 0. ... 0. 0. 0.]\n", " [0. 0. 0. ... 0. 0. 0.]]]\n", "[[[0. 0. 0. ... 1. 0. 0.]\n", " [0. 0. 0. ... 0. 0. 0.]\n", " [0. 0. 0. ... 0. 0. 0.]\n", " ...\n", " [0. 0. 0. ... 0. 0. 0.]\n", " [0. 0. 0. ... 0. 0. 0.]\n", " [0. 0. 0. ... 0. 0. 0.]]]\n", "[[[0. 0. 0. ... 1. 0. 0.]\n", " [0. 0. 0. ... 0. 0. 0.]\n", " [0. 0. 0. ... 0. 0. 0.]\n", " ...\n", " [0. 0. 0. ... 0. 0. 0.]\n", " [0. 0. 0. ... 0. 0. 0.]\n", " [0. 0. 0. ... 0. 0. 0.]]]\n", "[[[0. 0. 0. ... 1. 0. 0.]\n", " [0. 0. 0. ... 0. 0. 0.]\n", " [0. 0. 0. ... 0. 0. 0.]\n", " ...\n", " [0. 0. 0. ... 0. 0. 0.]\n", " [0. 0. 0. ... 0. 0. 0.]\n", " [0. 0. 0. ... 0. 0. 0.]]]\n", "[[[0. 0. 0. ... 1. 0. 0.]\n", " [0. 0. 0. ... 0. 0. 0.]\n", " [0. 0. 0. ... 0. 0. 0.]\n", " ...\n", " [0. 0. 0. ... 0. 0. 0.]\n", " [0. 0. 0. ... 0. 0. 0.]\n", " [0. 0. 0. ... 0. 0. 0.]]]\n", "[[[0. 0. 0. ... 1. 0. 0.]\n", " [0. 0. 0. ... 0. 0. 0.]\n", " [0. 0. 0. ... 0. 0. 0.]\n", " ...\n", " [0. 0. 0. ... 0. 0. 0.]\n", " [0. 0. 0. ... 0. 0. 0.]\n", " [0. 0. 0. ... 0. 0. 0.]]]\n", "[[[0. 0. 0. ... 1. 0. 0.]\n", " [0. 0. 0. ... 0. 0. 0.]\n", " [0. 0. 0. ... 0. 0. 0.]\n", " ...\n", " [0. 0. 0. ... 0. 0. 0.]\n", " [0. 0. 0. ... 0. 0. 0.]\n", " [0. 0. 0. ... 0. 0. 0.]]]\n", "[[[0. 0. 0. ... 1. 0. 0.]\n", " [0. 0. 0. ... 0. 0. 0.]\n", " [0. 0. 0. ... 0. 0. 0.]\n", " ...\n", " [0. 0. 0. ... 0. 0. 0.]\n", " [0. 0. 0. ... 0. 0. 0.]\n", " [0. 0. 0. ... 0. 0. 0.]]]\n", "[[[0. 0. 0. ... 1. 0. 0.]\n", " [0. 0. 0. ... 0. 0. 0.]\n", " [0. 0. 0. ... 0. 0. 0.]\n", " ...\n", " [0. 0. 0. ... 0. 0. 0.]\n", " [0. 0. 0. ... 0. 0. 0.]\n", " [0. 0. 0. ... 0. 0. 0.]]]\n", "[[[0. 0. 0. ... 1. 0. 0.]\n", " [0. 0. 0. ... 0. 0. 0.]\n", " [0. 0. 0. ... 0. 0. 0.]\n", " ...\n", " [0. 0. 0. ... 0. 0. 0.]\n", " [0. 0. 0. ... 0. 0. 0.]\n", " [0. 0. 0. ... 0. 0. 0.]]]\n", "[[[0. 0. 0. ... 1. 0. 0.]\n", " [0. 0. 0. ... 0. 0. 0.]\n", " [0. 0. 0. ... 0. 0. 0.]\n", " ...\n", " [0. 0. 0. ... 0. 0. 0.]\n", " [0. 0. 0. ... 0. 0. 0.]\n", " [0. 0. 0. ... 0. 0. 0.]]]\n", "[[[0. 0. 0. ... 1. 0. 0.]\n", " [0. 0. 0. ... 0. 0. 0.]\n", " [0. 0. 0. ... 0. 0. 0.]\n", " ...\n", " [0. 0. 0. ... 0. 0. 0.]\n", " [0. 0. 0. ... 0. 0. 0.]\n", " [0. 0. 0. ... 0. 0. 0.]]]\n", "[[[0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0.\n", " 0.]]]\n", "[[[0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]]]\n", "[[[0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]]]\n", "[[[0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]]]\n", "[[[0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]]]\n", "[[[0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]]]\n", "[[[0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]]]\n", "[[[0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]]]\n", "[[[0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]]]\n", "[[[0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]]]\n", "[[[0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]]]\n", "[[[0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0.\n", " 0.]]]\n", "[[[0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]]]\n", "[[[0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0.\n", " 0.]]]\n", "[[[0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0.\n", " 0.]]]\n", "[[[0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0.\n", " 0.]]]\n", "[[[0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0.\n", " 0.]]]\n", "[[[0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0.\n", " 0.]]]\n", "[[[0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0.\n", " 0.]]]\n", "[[[0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0.\n", " 0.]]]\n", "[[[0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]]]\n", "[[[0. 0. 0. ... 1. 0. 0.]\n", " [0. 0. 0. ... 0. 0. 0.]\n", " [0. 0. 0. ... 0. 0. 0.]\n", " ...\n", " [0. 0. 0. ... 0. 0. 0.]\n", " [0. 0. 0. ... 0. 0. 0.]\n", " [0. 0. 0. ... 0. 0. 0.]]]\n", "[[[0. 0. 0. ... 1. 0. 0.]\n", " [0. 0. 0. ... 0. 0. 0.]\n", " [0. 0. 0. ... 0. 0. 0.]\n", " ...\n", " [0. 0. 0. ... 0. 0. 0.]\n", " [0. 0. 0. ... 0. 0. 0.]\n", " [0. 0. 0. ... 0. 0. 0.]]]\n", "[[[0. 0. 0. ... 1. 0. 0.]\n", " [0. 0. 0. ... 0. 0. 0.]\n", " [0. 0. 0. ... 0. 0. 0.]\n", " ...\n", " [0. 0. 0. ... 0. 0. 0.]\n", " [0. 0. 0. ... 0. 0. 0.]\n", " [0. 0. 0. ... 0. 0. 0.]]]\n", "[[[0. 0. 0. ... 1. 0. 0.]\n", " [0. 0. 0. ... 0. 0. 0.]\n", " [0. 0. 0. ... 0. 0. 0.]\n", " ...\n", " [0. 0. 0. ... 0. 0. 0.]\n", " [0. 0. 0. ... 0. 0. 0.]\n", " [0. 0. 0. ... 0. 0. 0.]]]\n", "[[[0. 0. 0. ... 1. 0. 0.]\n", " [0. 0. 0. ... 0. 0. 0.]\n", " [0. 0. 0. ... 0. 0. 0.]\n", " ...\n", " [0. 0. 0. ... 0. 0. 0.]\n", " [0. 0. 0. ... 0. 0. 0.]\n", " [0. 0. 0. ... 0. 0. 0.]]]\n", "[[[0. 0. 0. ... 1. 0. 0.]\n", " [0. 0. 0. ... 0. 0. 0.]\n", " [0. 0. 0. ... 0. 0. 0.]\n", " ...\n", " [0. 0. 0. ... 0. 0. 0.]\n", " [0. 0. 0. ... 0. 0. 0.]\n", " [0. 0. 0. ... 0. 0. 0.]]]\n", "[[[0. 0. 0. ... 1. 0. 0.]\n", " [0. 0. 0. ... 0. 0. 0.]\n", " [0. 0. 0. ... 0. 0. 0.]\n", " ...\n", " [0. 0. 0. ... 0. 0. 0.]\n", " [0. 0. 0. ... 0. 0. 0.]\n", " [0. 0. 0. ... 0. 0. 0.]]]\n", "[[[0. 0. 0. ... 1. 0. 0.]\n", " [0. 0. 0. ... 0. 0. 0.]\n", " [0. 0. 0. ... 0. 0. 0.]\n", " ...\n", " [0. 0. 0. ... 0. 0. 0.]\n", " [0. 0. 0. ... 0. 0. 0.]\n", " [0. 0. 0. ... 0. 0. 0.]]]\n", "[[[0. 0. 0. ... 1. 0. 0.]\n", " [0. 0. 0. ... 0. 0. 0.]\n", " [0. 0. 0. ... 0. 0. 0.]\n", " ...\n", " [0. 0. 0. ... 0. 0. 0.]\n", " [0. 0. 0. ... 0. 0. 0.]\n", " [0. 0. 0. ... 0. 0. 0.]]]\n", "[[[0. 0. 0. ... 1. 0. 0.]\n", " [0. 0. 0. ... 0. 0. 0.]\n", " [0. 0. 0. ... 0. 0. 0.]\n", " ...\n", " [0. 0. 0. ... 0. 0. 0.]\n", " [0. 0. 0. ... 0. 0. 0.]\n", " [0. 0. 0. ... 0. 0. 0.]]]\n", "[[[0. 0. 0. ... 1. 0. 0.]\n", " [0. 0. 0. ... 0. 0. 0.]\n", " [0. 0. 0. ... 0. 0. 0.]\n", " ...\n", " [0. 0. 0. ... 0. 0. 0.]\n", " [0. 0. 0. ... 0. 0. 0.]\n", " [0. 0. 0. ... 0. 0. 0.]]]\n", "[[[0. 0. 0. ... 1. 0. 0.]\n", " [0. 0. 0. ... 0. 0. 0.]\n", " [0. 0. 0. ... 0. 0. 0.]\n", " ...\n", " [0. 0. 0. ... 0. 0. 0.]\n", " [0. 0. 0. ... 0. 0. 0.]\n", " [0. 0. 0. ... 0. 0. 0.]]]\n", "[[[0. 0. 0. ... 1. 0. 0.]\n", " [0. 0. 0. ... 0. 0. 0.]\n", " [0. 0. 0. ... 0. 0. 0.]\n", " ...\n", " [0. 0. 0. ... 0. 0. 0.]\n", " [0. 0. 0. ... 0. 0. 0.]\n", " [0. 0. 0. ... 0. 0. 0.]]]\n", "[[[0. 0. 0. ... 1. 0. 0.]\n", " [0. 0. 0. ... 0. 0. 0.]\n", " [0. 0. 0. ... 0. 0. 0.]\n", " ...\n", " [0. 0. 0. ... 0. 0. 0.]\n", " [0. 0. 0. ... 0. 0. 0.]\n", " [0. 0. 0. ... 0. 0. 0.]]]\n", "[[[0. 0. 0. ... 1. 0. 0.]\n", " [0. 0. 0. ... 0. 0. 0.]\n", " [0. 0. 0. ... 0. 0. 0.]\n", " ...\n", " [0. 0. 0. ... 0. 0. 0.]\n", " [0. 0. 0. ... 0. 0. 0.]\n", " [0. 0. 0. ... 0. 0. 0.]]]\n", "[[[0. 0. 0. ... 1. 0. 0.]\n", " [0. 0. 0. ... 0. 0. 0.]\n", " [0. 0. 0. ... 0. 0. 0.]\n", " ...\n", " [0. 0. 0. ... 0. 0. 0.]\n", " [0. 0. 0. ... 0. 0. 0.]\n", " [0. 0. 0. ... 0. 0. 0.]]]\n", "[[[0. 0. 0. ... 1. 0. 0.]\n", " [0. 0. 0. ... 0. 0. 0.]\n", " [0. 0. 0. ... 0. 0. 0.]\n", " ...\n", " [0. 0. 0. ... 0. 0. 0.]\n", " [0. 0. 0. ... 0. 0. 0.]\n", " [0. 0. 0. ... 0. 0. 0.]]]\n", "[[[0. 0. 0. ... 1. 0. 0.]\n", " [0. 0. 0. ... 0. 0. 0.]\n", " [0. 0. 0. ... 0. 0. 0.]\n", " ...\n", " [0. 0. 0. ... 0. 0. 0.]\n", " [0. 0. 0. ... 0. 0. 0.]\n", " [0. 0. 0. ... 0. 0. 0.]]]\n", "[[[0. 0. 0. ... 1. 0. 0.]\n", " [0. 0. 0. ... 0. 0. 0.]\n", " [0. 0. 0. ... 0. 0. 0.]\n", " ...\n", " [0. 0. 0. ... 0. 0. 0.]\n", " [0. 0. 0. ... 0. 0. 0.]\n", " [0. 0. 0. ... 0. 0. 0.]]]\n", "[[[0. 0. 0. ... 1. 0. 0.]\n", " [0. 0. 0. ... 0. 0. 0.]\n", " [0. 0. 0. ... 0. 0. 0.]\n", " ...\n", " [0. 0. 0. ... 0. 0. 0.]\n", " [0. 0. 0. ... 0. 0. 0.]\n", " [0. 0. 0. ... 0. 0. 0.]]]\n", "[[[0. 0. 0. ... 1. 0. 0.]\n", " [0. 0. 0. ... 0. 0. 0.]\n", " [0. 0. 0. ... 0. 0. 0.]\n", " ...\n", " [0. 0. 0. ... 0. 0. 0.]\n", " [0. 0. 0. ... 0. 0. 0.]\n", " [0. 0. 0. ... 0. 0. 0.]]]\n", "[[[0. 0. 0. ... 1. 0. 0.]\n", " [0. 0. 0. ... 0. 0. 0.]\n", " [0. 0. 0. ... 0. 0. 0.]\n", " ...\n", " [0. 0. 0. ... 0. 0. 0.]\n", " [0. 0. 0. ... 0. 0. 0.]\n", " [0. 0. 0. ... 0. 0. 0.]]]\n", "[[[0. 0. 0. ... 1. 0. 0.]\n", " [0. 0. 0. ... 0. 0. 0.]\n", " [0. 0. 0. ... 0. 0. 0.]\n", " ...\n", " [0. 0. 0. ... 0. 0. 0.]\n", " [0. 0. 0. ... 0. 0. 0.]\n", " [0. 0. 0. ... 0. 0. 0.]]]\n", "[[[0. 0. 0. ... 1. 0. 0.]\n", " [0. 0. 0. ... 0. 0. 0.]\n", " [0. 0. 0. ... 0. 0. 0.]\n", " ...\n", " [0. 0. 0. ... 0. 0. 0.]\n", " [0. 0. 0. ... 0. 0. 0.]\n", " [0. 0. 0. ... 0. 0. 0.]]]\n", "[[[0. 0. 0. ... 1. 0. 0.]\n", " [0. 0. 0. ... 0. 0. 0.]\n", " [0. 0. 0. ... 0. 0. 0.]\n", " ...\n", " [0. 0. 0. ... 0. 0. 0.]\n", " [0. 0. 0. ... 0. 0. 0.]\n", " [0. 0. 0. ... 0. 0. 0.]]]\n", "[[[0. 0. 0. ... 1. 0. 0.]\n", " [0. 0. 0. ... 0. 0. 0.]\n", " [0. 0. 0. ... 0. 0. 0.]\n", " ...\n", " [0. 0. 0. ... 0. 0. 0.]\n", " [0. 0. 0. ... 0. 0. 0.]\n", " [0. 0. 0. ... 0. 0. 0.]]]\n", "[[[0. 0. 0. ... 1. 0. 0.]\n", " [0. 0. 0. ... 0. 0. 0.]\n", " [0. 0. 0. ... 0. 0. 0.]\n", " ...\n", " [0. 0. 0. ... 0. 0. 0.]\n", " [0. 0. 0. ... 0. 0. 0.]\n", " [0. 0. 0. ... 0. 0. 0.]]]\n", "[[[0. 0. 0. ... 1. 0. 0.]\n", " [0. 0. 0. ... 0. 0. 0.]\n", " [0. 0. 0. ... 0. 0. 0.]\n", " ...\n", " [0. 0. 0. ... 0. 0. 0.]\n", " [0. 0. 0. ... 0. 0. 0.]\n", " [0. 0. 0. ... 0. 0. 0.]]]\n", "[[[0. 0. 0. ... 1. 0. 0.]\n", " [0. 0. 0. ... 0. 0. 0.]\n", " [0. 0. 0. ... 0. 0. 0.]\n", " ...\n", " [0. 0. 0. ... 0. 0. 0.]\n", " [0. 0. 0. ... 0. 0. 0.]\n", " [0. 0. 0. ... 0. 0. 0.]]]\n", "[[[0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0.\n", " 0.]]]\n", "[[[0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]]]\n", "[[[0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]]]\n", "[[[0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]]]\n", "[[[0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]]]\n", "[[[0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]]]\n", "[[[0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]]]\n", "[[[0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]]]\n", "[[[0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]]]\n", "[[[0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]]]\n", "[[[0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]]]\n", "[[[0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]]]\n", "[[[0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]]]\n", "[[[0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]]]\n", "[[[0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]]]\n", "[[[0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0.\n", " 0.]]]\n", "[[[0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]]]\n", "[[[0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0.\n", " 0.]]]\n", "[[[0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0.\n", " 0.]]]\n", "[[[0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0.\n", " 0.]]]\n", "[[[0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0.\n", " 0.]]]\n", "[[[0. 0. 0. ... 1. 0. 0.]\n", " [0. 0. 0. ... 0. 0. 0.]\n", " [0. 0. 0. ... 0. 0. 0.]\n", " ...\n", " [0. 0. 0. ... 0. 0. 0.]\n", " [0. 0. 0. ... 0. 0. 0.]\n", " [0. 0. 0. ... 0. 0. 0.]]]\n", "[[[0. 0. 0. ... 1. 0. 0.]\n", " [0. 0. 0. ... 0. 0. 0.]\n", " [0. 0. 0. ... 0. 0. 0.]\n", " ...\n", " [0. 0. 0. ... 0. 0. 0.]\n", " [0. 0. 0. ... 0. 0. 0.]\n", " [0. 0. 0. ... 0. 0. 0.]]]\n", "[[[0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0.\n", " 0.]]]\n", "[[[0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]]]\n", "[[[0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]]]\n", "[[[0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]]]\n", "[[[0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]]]\n", "[[[0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]]]\n", "[[[0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]]]\n", "[[[0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]]]\n", "[[[0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]]]\n", "[[[0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]]]\n", "[[[0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]]]\n", "[[[0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]]]\n", "[[[0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]]]\n", "[[[0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]]]\n", "[[[0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]]]\n", "[[[0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]]]\n", "[[[0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]]]\n", "[[[0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]]]\n", "[[[0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]]]\n", "[[[0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]]]\n", "[[[0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]]]\n", "[[[0. 0. 0. ... 1. 0. 0.]\n", " [0. 0. 0. ... 0. 0. 0.]\n", " [0. 0. 0. ... 0. 0. 0.]\n", " ...\n", " [0. 0. 0. ... 0. 0. 0.]\n", " [0. 0. 0. ... 0. 0. 0.]\n", " [0. 0. 0. ... 0. 0. 0.]]]\n", "[[[0. 0. 0. ... 1. 0. 0.]\n", " [0. 0. 0. ... 0. 0. 0.]\n", " [0. 0. 0. ... 0. 0. 0.]\n", " ...\n", " [0. 0. 0. ... 0. 0. 0.]\n", " [0. 0. 0. ... 0. 0. 0.]\n", " [0. 0. 0. ... 0. 0. 0.]]]\n", "[[[0. 0. 0. ... 1. 0. 0.]\n", " [0. 0. 0. ... 0. 0. 0.]\n", " [0. 0. 0. ... 0. 0. 0.]\n", " ...\n", " [0. 0. 0. ... 0. 0. 0.]\n", " [0. 0. 0. ... 0. 0. 0.]\n", " [0. 0. 0. ... 0. 0. 0.]]]\n", "[[[0. 0. 0. ... 1. 0. 0.]\n", " [0. 0. 0. ... 0. 0. 0.]\n", " [0. 0. 0. ... 0. 0. 0.]\n", " ...\n", " [0. 0. 0. ... 0. 0. 0.]\n", " [0. 0. 0. ... 0. 0. 0.]\n", " [0. 0. 0. ... 0. 0. 0.]]]\n", "[[[0. 0. 0. ... 1. 0. 0.]\n", " [0. 0. 0. ... 0. 0. 0.]\n", " [0. 0. 0. ... 0. 0. 0.]\n", " ...\n", " [0. 0. 0. ... 0. 0. 0.]\n", " [0. 0. 0. ... 0. 0. 0.]\n", " [0. 0. 0. ... 0. 0. 0.]]]\n", "[[[0. 0. 0. ... 1. 0. 0.]\n", " [0. 0. 0. ... 0. 0. 0.]\n", " [0. 0. 0. ... 0. 0. 0.]\n", " ...\n", " [0. 0. 0. ... 0. 0. 0.]\n", " [0. 0. 0. ... 0. 0. 0.]\n", " [0. 0. 0. ... 0. 0. 0.]]]\n", "[[[0. 0. 0. ... 1. 0. 0.]\n", " [0. 0. 0. ... 0. 0. 0.]\n", " [0. 0. 0. ... 0. 0. 0.]\n", " ...\n", " [0. 0. 0. ... 0. 0. 0.]\n", " [0. 0. 0. ... 0. 0. 0.]\n", " [0. 0. 0. ... 0. 0. 0.]]]\n", "[[[0. 0. 0. ... 1. 0. 0.]\n", " [0. 0. 0. ... 0. 0. 0.]\n", " [0. 0. 0. ... 0. 0. 0.]\n", " ...\n", " [0. 0. 0. ... 0. 0. 0.]\n", " [0. 0. 0. ... 0. 0. 0.]\n", " [0. 0. 0. ... 0. 0. 0.]]]\n", "[[[0. 0. 0. ... 1. 0. 0.]\n", " [0. 0. 0. ... 0. 0. 0.]\n", " [0. 0. 0. ... 0. 0. 0.]\n", " ...\n", " [0. 0. 0. ... 0. 0. 0.]\n", " [0. 0. 0. ... 0. 0. 0.]\n", " [0. 0. 0. ... 0. 0. 0.]]]\n", "[[[0. 0. 0. ... 1. 0. 0.]\n", " [0. 0. 0. ... 0. 0. 0.]\n", " [0. 0. 0. ... 0. 0. 0.]\n", " ...\n", " [0. 0. 0. ... 0. 0. 0.]\n", " [0. 0. 0. ... 0. 0. 0.]\n", " [0. 0. 0. ... 0. 0. 0.]]]\n", "[[[0. 0. 0. ... 1. 0. 0.]\n", " [0. 0. 0. ... 0. 0. 0.]\n", " [0. 0. 0. ... 0. 0. 0.]\n", " ...\n", " [0. 0. 0. ... 0. 0. 0.]\n", " [0. 0. 0. ... 0. 0. 0.]\n", " [0. 0. 0. ... 0. 0. 0.]]]\n", "[[[0. 0. 0. ... 1. 0. 0.]\n", " [0. 0. 0. ... 0. 0. 0.]\n", " [0. 0. 0. ... 0. 0. 0.]\n", " ...\n", " [0. 0. 0. ... 0. 0. 0.]\n", " [0. 0. 0. ... 0. 0. 0.]\n", " [0. 0. 0. ... 0. 0. 0.]]]\n", "[[[0. 0. 0. ... 1. 0. 0.]\n", " [0. 0. 0. ... 0. 0. 0.]\n", " [0. 0. 0. ... 0. 0. 0.]\n", " ...\n", " [0. 0. 0. ... 0. 0. 0.]\n", " [0. 0. 0. ... 0. 0. 0.]\n", " [0. 0. 0. ... 0. 0. 0.]]]\n", "[[[0. 0. 0. ... 1. 0. 0.]\n", " [0. 0. 0. ... 0. 0. 0.]\n", " [0. 0. 0. ... 0. 0. 0.]\n", " ...\n", " [0. 0. 0. ... 0. 0. 0.]\n", " [0. 0. 0. ... 0. 0. 0.]\n", " [0. 0. 0. ... 0. 0. 0.]]]\n", "[[[0. 0. 0. ... 1. 0. 0.]\n", " [0. 0. 0. ... 0. 0. 0.]\n", " [0. 0. 0. ... 0. 0. 0.]\n", " ...\n", " [0. 0. 0. ... 0. 0. 0.]\n", " [0. 0. 0. ... 0. 0. 0.]\n", " [0. 0. 0. ... 0. 0. 0.]]]\n", "[[[0. 0. 0. ... 1. 0. 0.]\n", " [0. 0. 0. ... 0. 0. 0.]\n", " [0. 0. 0. ... 0. 0. 0.]\n", " ...\n", " [0. 0. 0. ... 0. 0. 0.]\n", " [0. 0. 0. ... 0. 0. 0.]\n", " [0. 0. 0. ... 0. 0. 0.]]]\n", "[[[0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0.\n", " 0.]]]\n", "[[[0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]]]\n", "[[[0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]]]\n", "[[[0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]]]\n", "[[[0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]]]\n", "[[[0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]]]\n", "[[[0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]]]\n", "[[[0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]]]\n", "[[[0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]]]\n", "[[[0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]]]\n", "[[[0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0.\n", " 0.]]]\n", "[[[0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]]]\n", "[[[0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]]]\n", "[[[0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]]]\n", "[[[0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]]]\n", "[[[0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]]]\n", "[[[0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]]]\n", "[[[0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]]]\n", "[[[0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]]]\n", "[[[0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]]]\n", "[[[0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]]]\n", "[[[0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]]]\n", "[[[0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]]]\n", "[[[0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]]]\n", "[[[0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]]]\n", "[[[0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]]]\n", "[[[0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]]]\n", "[[[0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]]]\n", "[[[0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]]]\n", "[[[0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]]]\n", "[[[0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]]]\n", "[[[0. 0. 0. ... 1. 0. 0.]\n", " [0. 0. 0. ... 0. 0. 0.]\n", " [0. 0. 0. ... 0. 0. 0.]\n", " ...\n", " [0. 0. 0. ... 0. 0. 0.]\n", " [0. 0. 0. ... 0. 0. 0.]\n", " [0. 0. 0. ... 0. 0. 0.]]]\n", "[[[0. 0. 0. ... 1. 0. 0.]\n", " [0. 0. 0. ... 0. 0. 0.]\n", " [0. 0. 0. ... 0. 0. 0.]\n", " ...\n", " [0. 0. 0. ... 0. 0. 0.]\n", " [0. 0. 0. ... 0. 0. 0.]\n", " [0. 0. 0. ... 0. 0. 0.]]]\n", "[[[0. 0. 0. ... 1. 0. 0.]\n", " [0. 0. 0. ... 0. 0. 0.]\n", " [0. 0. 0. ... 0. 0. 0.]\n", " ...\n", " [0. 0. 0. ... 0. 0. 0.]\n", " [0. 0. 0. ... 0. 0. 0.]\n", " [0. 0. 0. ... 0. 0. 0.]]]\n", "[[[0. 0. 0. ... 1. 0. 0.]\n", " [0. 0. 0. ... 0. 0. 0.]\n", " [0. 0. 0. ... 0. 0. 0.]\n", " ...\n", " [0. 0. 0. ... 0. 0. 0.]\n", " [0. 0. 0. ... 0. 0. 0.]\n", " [0. 0. 0. ... 0. 0. 0.]]]\n", "[[[0. 0. 0. ... 1. 0. 0.]\n", " [0. 0. 0. ... 0. 0. 0.]\n", " [0. 0. 0. ... 0. 0. 0.]\n", " ...\n", " [0. 0. 0. ... 0. 0. 0.]\n", " [0. 0. 0. ... 0. 0. 0.]\n", " [0. 0. 0. ... 0. 0. 0.]]]\n", "[[[0. 0. 0. ... 1. 0. 0.]\n", " [0. 0. 0. ... 0. 0. 0.]\n", " [0. 0. 0. ... 0. 0. 0.]\n", " ...\n", " [0. 0. 0. ... 0. 0. 0.]\n", " [0. 0. 0. ... 0. 0. 0.]\n", " [0. 0. 0. ... 0. 0. 0.]]]\n", "[[[0. 0. 0. ... 1. 0. 0.]\n", " [0. 0. 0. ... 0. 0. 0.]\n", " [0. 0. 0. ... 0. 0. 0.]\n", " ...\n", " [0. 0. 0. ... 0. 0. 0.]\n", " [0. 0. 0. ... 0. 0. 0.]\n", " [0. 0. 0. ... 0. 0. 0.]]]\n", "[[[0. 0. 0. ... 1. 0. 0.]\n", " [0. 0. 0. ... 0. 0. 0.]\n", " [0. 0. 0. ... 0. 0. 0.]\n", " ...\n", " [0. 0. 0. ... 0. 0. 0.]\n", " [0. 0. 0. ... 0. 0. 0.]\n", " [0. 0. 0. ... 0. 0. 0.]]]\n", "[[[0. 0. 0. ... 1. 0. 0.]\n", " [0. 0. 0. ... 0. 0. 0.]\n", " [0. 0. 0. ... 0. 0. 0.]\n", " ...\n", " [0. 0. 0. ... 0. 0. 0.]\n", " [0. 0. 0. ... 0. 0. 0.]\n", " [0. 0. 0. ... 0. 0. 0.]]]\n", "[[[0. 0. 0. ... 1. 0. 0.]\n", " [0. 0. 0. ... 0. 0. 0.]\n", " [0. 0. 0. ... 0. 0. 0.]\n", " ...\n", " [0. 0. 0. ... 0. 0. 0.]\n", " [0. 0. 0. ... 0. 0. 0.]\n", " [0. 0. 0. ... 0. 0. 0.]]]\n", "[[[0. 0. 0. ... 1. 0. 0.]\n", " [0. 0. 0. ... 0. 0. 0.]\n", " [0. 0. 0. ... 0. 0. 0.]\n", " ...\n", " [0. 0. 0. ... 0. 0. 0.]\n", " [0. 0. 0. ... 0. 0. 0.]\n", " [0. 0. 0. ... 0. 0. 0.]]]\n", "[[[0. 0. 0. ... 1. 0. 0.]\n", " [0. 0. 0. ... 0. 0. 0.]\n", " [0. 0. 0. ... 0. 0. 0.]\n", " ...\n", " [0. 0. 0. ... 0. 0. 0.]\n", " [0. 0. 0. ... 0. 0. 0.]\n", " [0. 0. 0. ... 0. 0. 0.]]]\n", "[[[0. 0. 0. ... 1. 0. 0.]\n", " [0. 0. 0. ... 0. 0. 0.]\n", " [0. 0. 0. ... 0. 0. 0.]\n", " ...\n", " [0. 0. 0. ... 0. 0. 0.]\n", " [0. 0. 0. ... 0. 0. 0.]\n", " [0. 0. 0. ... 0. 0. 0.]]]\n", "[[[0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0.\n", " 0.]]]\n", "[[[0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]]]\n", "[[[0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]]]\n", "[[[0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0.\n", " 0.]]]\n", "[[[0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]]]\n", "[[[0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0.\n", " 0.]]]\n", "[[[0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0.\n", " 0.]]]\n", "[[[0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0.\n", " 0.]]]\n", "[[[0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]]]\n", "[[[0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]]]\n", "[[[0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]]]\n", "[[[0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0.\n", " 0.]]]\n", "[[[0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0.\n", " 0.]]]\n", "[[[0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]]]\n", "[[[0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]]]\n", "[[[0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]]]\n", "[[[0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]]]\n", "[[[0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0.\n", " 0.]]]\n", "[[[0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]]]\n", "[[[0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0.\n", " 0.]]]\n", "[[[0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0.\n", " 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0.\n", " 0.]]]\n", "[[[0. 0. 0. ... 1. 0. 0.]\n", " [0. 0. 0. ... 0. 0. 0.]\n", " [0. 0. 0. ... 0. 0. 0.]\n", " ...\n", " [0. 0. 0. ... 0. 0. 0.]\n", " [0. 0. 0. ... 0. 0. 0.]\n", " [0. 0. 0. ... 0. 0. 0.]]]\n", "[[[0. 0. 0. ... 1. 0. 0.]\n", " [0. 0. 0. ... 0. 0. 0.]\n", " [0. 0. 0. ... 0. 0. 0.]\n", " ...\n", " [0. 0. 0. ... 0. 0. 0.]\n", " [0. 0. 0. ... 0. 0. 0.]\n", " [0. 0. 0. ... 0. 0. 0.]]]\n", "[[[0. 0. 0. ... 1. 0. 0.]\n", " [0. 0. 0. ... 0. 0. 0.]\n", " [0. 0. 0. ... 0. 0. 0.]\n", " ...\n", " [0. 0. 0. ... 0. 0. 0.]\n", " [0. 0. 0. ... 0. 0. 0.]\n", " [0. 0. 0. ... 0. 0. 0.]]]\n", "[[[0. 0. 0. ... 1. 0. 0.]\n", " [0. 0. 0. ... 0. 0. 0.]\n", " [0. 0. 0. ... 0. 0. 0.]\n", " ...\n", " [0. 0. 0. ... 0. 0. 0.]\n", " [0. 0. 0. ... 0. 0. 0.]\n", " [0. 0. 0. ... 0. 0. 0.]]]\n", "[[[0. 0. 0. ... 1. 0. 0.]\n", " [0. 0. 0. ... 0. 0. 0.]\n", " [0. 0. 0. ... 0. 0. 0.]\n", " ...\n", " [0. 0. 0. ... 0. 0. 0.]\n", " [0. 0. 0. ... 0. 0. 0.]\n", " [0. 0. 0. ... 0. 0. 0.]]]\n", "[[[0. 0. 0. ... 1. 0. 0.]\n", " [0. 0. 0. ... 0. 0. 0.]\n", " [0. 0. 0. ... 0. 0. 0.]\n", " ...\n", " [0. 0. 0. ... 0. 0. 0.]\n", " [0. 0. 0. ... 0. 0. 0.]\n", " [0. 0. 0. ... 0. 0. 0.]]]\n", "[[[0. 0. 0. ... 1. 0. 0.]\n", " [0. 0. 0. ... 0. 0. 0.]\n", " [0. 0. 0. ... 0. 0. 0.]\n", " ...\n", " [0. 0. 0. ... 0. 0. 0.]\n", " [0. 0. 0. ... 0. 0. 0.]\n", " [0. 0. 0. ... 0. 0. 0.]]]\n", "[[[0. 0. 0. ... 1. 0. 0.]\n", " [0. 0. 0. ... 0. 0. 0.]\n", " [0. 0. 0. ... 0. 0. 0.]\n", " ...\n", " [0. 0. 0. ... 0. 0. 0.]\n", " [0. 0. 0. ... 0. 0. 0.]\n", " [0. 0. 0. ... 0. 0. 0.]]]\n", "[[[0. 0. 0. ... 1. 0. 0.]\n", " [0. 0. 0. ... 0. 0. 0.]\n", " [0. 0. 0. ... 0. 0. 0.]\n", " ...\n", " [0. 0. 0. ... 0. 0. 0.]\n", " [0. 0. 0. ... 0. 0. 0.]\n", " [0. 0. 0. ... 0. 0. 0.]]]\n", "[[[0. 0. 0. ... 1. 0. 0.]\n", " [0. 0. 0. ... 0. 0. 0.]\n", " [0. 0. 0. ... 0. 0. 0.]\n", " ...\n", " [0. 0. 0. ... 0. 0. 0.]\n", " [0. 0. 0. ... 0. 0. 0.]\n", " [0. 0. 0. ... 0. 0. 0.]]]\n", "[[[0. 0. 0. ... 1. 0. 0.]\n", " [0. 0. 0. ... 0. 0. 0.]\n", " [0. 0. 0. ... 0. 0. 0.]\n", " ...\n", " [0. 0. 0. ... 0. 0. 0.]\n", " [0. 0. 0. ... 0. 0. 0.]\n", " [0. 0. 0. ... 0. 0. 0.]]]\n", "[[[0. 0. 0. ... 1. 0. 0.]\n", " [0. 0. 0. ... 0. 0. 0.]\n", " [0. 0. 0. ... 0. 0. 0.]\n", " ...\n", " [0. 0. 0. ... 0. 0. 0.]\n", " [0. 0. 0. ... 0. 0. 0.]\n", " [0. 0. 0. ... 0. 0. 0.]]]\n", "[[[0. 0. 0. ... 1. 0. 0.]\n", " [0. 0. 0. ... 0. 0. 0.]\n", " [0. 0. 0. ... 0. 0. 0.]\n", " ...\n", " [0. 0. 0. ... 0. 0. 0.]\n", " [0. 0. 0. ... 0. 0. 0.]\n", " [0. 0. 0. ... 0. 0. 0.]]]\n", "[[[0. 0. 0. ... 1. 0. 0.]\n", " [0. 0. 0. ... 0. 0. 0.]\n", " [0. 0. 0. ... 0. 0. 0.]\n", " ...\n", " [0. 0. 0. ... 0. 0. 0.]\n", " [0. 0. 0. ... 0. 0. 0.]\n", " [0. 0. 0. ... 0. 0. 0.]]]\n", "[[[0. 0. 0. ... 1. 0. 0.]\n", " [0. 0. 0. ... 0. 0. 0.]\n", " [0. 0. 0. ... 0. 0. 0.]\n", " ...\n", " [0. 0. 0. ... 0. 0. 0.]\n", " [0. 0. 0. ... 0. 0. 0.]\n", " [0. 0. 0. ... 0. 0. 0.]]]\n", "[[[0. 0. 0. ... 1. 0. 0.]\n", " [0. 0. 0. ... 0. 0. 0.]\n", " [0. 0. 0. ... 0. 0. 0.]\n", " ...\n", " [0. 0. 0. ... 0. 0. 0.]\n", " [0. 0. 0. ... 0. 0. 0.]\n", " [0. 0. 0. ... 0. 0. 0.]]]\n", "[[[0. 0. 0. ... 1. 0. 0.]\n", " [0. 0. 0. ... 0. 0. 0.]\n", " [0. 0. 0. ... 0. 0. 0.]\n", " ...\n", " [0. 0. 0. ... 0. 0. 0.]\n", " [0. 0. 0. ... 0. 0. 0.]\n", " [0. 0. 0. ... 0. 0. 0.]]]\n", "[[[0. 0. 0. ... 1. 0. 0.]\n", " [0. 0. 0. ... 0. 0. 0.]\n", " [0. 0. 0. ... 0. 0. 0.]\n", " ...\n", " [0. 0. 0. ... 0. 0. 0.]\n", " [0. 0. 0. ... 0. 0. 0.]\n", " [0. 0. 0. ... 0. 0. 0.]]]\n", "[[[0. 0. 0. ... 1. 0. 0.]\n", " [0. 0. 0. ... 0. 0. 0.]\n", " [0. 0. 0. ... 0. 0. 0.]\n", " ...\n", " [0. 0. 0. ... 0. 0. 0.]\n", " [0. 0. 0. ... 0. 0. 0.]\n", " [0. 0. 0. ... 0. 0. 0.]]]\n", "[[[0. 0. 0. ... 1. 0. 0.]\n", " [0. 0. 0. ... 0. 0. 0.]\n", " [0. 0. 0. ... 0. 0. 0.]\n", " ...\n", " [0. 0. 0. ... 0. 0. 0.]\n", " [0. 0. 0. ... 0. 0. 0.]\n", " [0. 0. 0. ... 0. 0. 0.]]]\n", "[[[0. 0. 0. ... 1. 0. 0.]\n", " [0. 0. 0. ... 0. 0. 0.]\n", " [0. 0. 0. ... 0. 0. 0.]\n", " ...\n", " [0. 0. 0. ... 0. 0. 0.]\n", " [0. 0. 0. ... 0. 0. 0.]\n", " [0. 0. 0. ... 0. 0. 0.]]]\n", "[[[0. 0. 0. ... 1. 0. 0.]\n", " [0. 0. 0. ... 0. 0. 0.]\n", " [0. 0. 0. ... 0. 0. 0.]\n", " ...\n", " [0. 0. 0. ... 0. 0. 0.]\n", " [0. 0. 0. ... 0. 0. 0.]\n", " [0. 0. 0. ... 0. 0. 0.]]]\n", "[[[0. 0. 0. ... 1. 0. 0.]\n", " [0. 0. 0. ... 0. 0. 0.]\n", " [0. 0. 0. ... 0. 0. 0.]\n", " ...\n", " [0. 0. 0. ... 0. 0. 0.]\n", " [0. 0. 0. ... 0. 0. 0.]\n", " [0. 0. 0. ... 0. 0. 0.]]]\n", "[[[0. 0. 0. ... 1. 0. 0.]\n", " [0. 0. 0. ... 0. 0. 0.]\n", " [0. 0. 0. ... 0. 0. 0.]\n", " ...\n", " [0. 0. 0. ... 0. 0. 0.]\n", " [0. 0. 0. ... 0. 0. 0.]\n", " [0. 0. 0. ... 0. 0. 0.]]]\n" ] } ], "source": [ "finetuned_smiles = finetuner.sample(num=100)" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "colab": { "base_uri": "https://localhost:8080/" }, "id": "axAgv1yeAGi5", "outputId": "524e454a-3048-491c-94ea-9aace39df6c9" }, "outputs": [ { "output_type": "execute_result", "data": { "text/plain": [ "['CN(C)CCCC1c2ccccc2Cc2ccccc21',\n", " 'O=c1nc(-c2ccccc2Cl)c2cc(O)ccc2[nH]1',\n", " 'CC(C)CCN1CCC(C)(c2ccccc2)c2ccccc21',\n", " 'FC(F)(Cl)CCl',\n", " 'ClC(Cl)Cl',\n", " 'Cc1cnc2c(c1)C(c1ccccc1)=NCC(=O)N2',\n", " 'CCc1ccc(CNC2=NC(=O)CC2)cc1',\n", " 'CC(=O)C1c2ccccc2Oc2ccccc21',\n", " 'C=CC1(CCCN(C)C)c2ccccc2C1c1ccccc1',\n", " 'NCCc1ccccc1',\n", " 'CN(C)CCCN1c2ccccc2C=Cc2ccccc21',\n", " 'NC(Cl)(Cl)Br',\n", " 'CCCN',\n", " 'CC(N)=O',\n", " 'O=C(c1cccnc1)N1CCOCC1',\n", " 'CCc1ccccc1',\n", " 'CCCC(=O)C1=CC=CNC1C(N)=O',\n", " 'CN1CCN(C(=O)c2cccnc2)CC1',\n", " 'CN(C)CCCC1C2=C(C=CC=Cc3ccccc31)C2',\n", " 'CCNC1=NC2C=C(O)C=CC(Cc3ccc(Cl)cc31)C2',\n", " 'CN(C)CCC(c1ccccc1)c1ccccc1',\n", " 'Cc1ncsc1CCCl',\n", " 'CCCC1CC(=O)NC1C',\n", " 'CN(C)CCN1C2=NC=CC=Cc3ccc(Cl)cc3C21',\n", " 'Cc1ccc(OCC2C(O)C2CC(C)C)cc1',\n", " 'CN(C)CCOC(c1ccccc1)c1ccccc1',\n", " 'CCC1(CC)C(=O)NC(=O)OC1=O',\n", " 'C1CCCCC1',\n", " 'CN(C)CCC1C2=C(C=CC=Cc3ccc(Cl)cc31)S2',\n", " 'C=CCC1CCN(C(O)c2ccccc2)CC1',\n", " 'Cc1csc(N=C(N)N)n1',\n", " 'CCC(=O)Oc1ccc2c(c1)N(CCCN1CCN(CCO)CC1)c1ccccc1S2',\n", " 'CN(C)CC=C1c2ccccc2C=Cc2ccccc21',\n", " 'CCC(=O)O',\n", " 'OC=NC1=C(c2ccccc2)CNC1',\n", " 'CCC',\n", " 'CCC(C)CC',\n", " 'CN(C)CCCN1c2ccccc2Sc2ccccc21',\n", " 'CCCCn1nc(N)nc1C(=O)O',\n", " 'CCNCCCCc1cccnc1',\n", " 'CCC(F)(F)C(F)(F)F',\n", " 'O=C(O)Oc1ccccc1',\n", " 'CCO',\n", " 'CC(=O)C=CC(c1ccccc1)c1ccc(Cl)cc1',\n", " 'CCCOC(N)=O',\n", " 'CC1C(=O)CN=C(c2ccccc2Cl)c2cc(Cl)ccc21',\n", " 'CCN',\n", " 'CC(C)CCO',\n", " 'CCN1CCN(CCCC2c3ccccc3Sc3ccc(C(F)(F)F)cc32)CC1',\n", " 'CNC(C)C',\n", " 'CC(C)(C=O)CO',\n", " 'CC(O)C(F)(F)F',\n", " 'CCc1ccccc1',\n", " 'FC(F)(F)CCl',\n", " 'CN(C)CCC1c2ccccc2Sc2ccccc21',\n", " 'FC(F)(F)CC1(C(F)(F)Cl)CO1',\n", " 'CCCCO',\n", " 'C=CC(N)C1=CN=C(C)C1=O',\n", " 'C#CCC',\n", " 'Cc1ccccc1-n1ccc(C)c1CC1CCCCC1',\n", " 'CC(C)CCOc1ccccc1',\n", " 'C=C',\n", " 'C=NCc1scnc1C',\n", " 'C=CCC1(CC(C)C)C(=O)NC(=O)NC1=O',\n", " 'CCNc1nccs1',\n", " 'C=CCC1(CC)C(=O)NC(=O)NC1=S',\n", " 'CCCC1C(=O)CC(c2ccccc2)C1=O',\n", " 'CC1(C)CC(c2ccccc2)c2cc(O)c(C(=O)O)cc21',\n", " 'CC(=O)C(c1ccccc1)c1ccccc1',\n", " 'CC1C2=C(C=Cc3ccccc31)C(=O)OC2(C)C',\n", " 'CCCCCC(=O)NO',\n", " 'CCC1(O)C(=O)OC(=O)N(C)C1=O',\n", " 'C1CC1',\n", " 'ON1CCCOC(c2ccccc2)C1',\n", " 'NNCC=C1c2ccccc2Sc2ccccc21',\n", " 'CN(C)CC=C1c2ccccc2Sc2ccccc21',\n", " 'COC1CCN(C)CCc2ccc(Cl)cc2N1c1ccccc1',\n", " 'CN(C)CCC=C1c2ccccc2Sc2ccc(C(N)=O)cc21',\n", " 'COCCCC(c1ccccc1)c1ccccc1',\n", " 'CN1C(=O)CN=C(Br)c2cc(Cl)ccc21',\n", " 'CC(C)OCC(=O)O',\n", " 'C=CCCC(=O)C(C)c1ccccc1',\n", " 'CC1C=NNC1=O',\n", " 'CNc1c(C)cccc1Cl',\n", " 'CC1CCCC1',\n", " 'CC(C)CO',\n", " 'C#CCNC(O)c1cccc(Br)c1',\n", " 'FC(F)(F)C1=CC=CC=CC2CCN=CC12',\n", " 'O=C1C2=CC=CC=CCCCC3CCC(CCC23)OC1C(F)(F)F',\n", " 'CC(=O)N1C(=O)OC1Cc1ccccc1',\n", " 'Cc1ccccc1',\n", " 'CC1CCCC1',\n", " 'OCCN1CCN(CCC2c3ccccc3Sc3ccc(Cl)cc32)CC1',\n", " 'CCC1=CC=C(C)C1',\n", " 'CC1(C)Cc2ccccc2N(N)c2ccccc21',\n", " 'C=C(N)N(C)Cc1ccccc1',\n", " 'CC(Cc1ccccc1)OC(=O)O',\n", " 'CC(C)C(=O)CC(c1ccccc1)c1ccccc1',\n", " 'CC(F)(F)Cl',\n", " 'O=C(NCC(O)c1ccccc1O)c1ccccc1C=Cc1ccc(Br)cc1']" ] }, "metadata": {}, "execution_count": 36 } ], "source": [ "finetuned_smiles" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "id": "gn4vlKNZ5IYR" }, "outputs": [], "source": [ "with open('/content/bbbp.txt') as f:\n", " ksmiles = [l.rstrip() for l in f]\n", "kmols = [Chem.MolFromSmiles(smi) for smi in ksmiles]\n", "\n", "Kfps = []\n", "for mol in kmols:\n", " try:\n", " bv = AllChem.GetMACCSKeysFingerprint(mol)\n", " fp = np.zeros(len(bv))\n", " DataStructs.ConvertToNumpyArray(bv, fp)\n", " Kfps.append(fp)\n", " except:\n", " pass \n", "\n", "Klen = len(Kfps)" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "id": "1WvcJGzt5SFF" }, "outputs": [], "source": [ "with open('/content/bbbp.txt') as f:\n", " fsmiles = [l.rstrip() for l in f]\n", "fmols = [Chem.MolFromSmiles(smi) for smi in fsmiles]\n", "\n", "Ffps, Fbvs = [], []\n", "for mol in fmols:\n", " try:\n", "\n", " bv = AllChem.GetMACCSKeysFingerprint(mol)\n", " Fbvs.append(bv)\n", " \n", " fp = np.zeros(len(bv))\n", " DataStructs.ConvertToNumpyArray(bv, fp)\n", " Ffps.append(fp)\n", " except:\n", " pass\n", "\n", "Flen = len(Ffps)" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "id": "ZGRvrTSL5aDL" }, "outputs": [], "source": [ "Sfps, Sbvs, smols = [], [], []\n", "\n", "#with open('/content/bbbp_gen.txt') as f:\n", " # finetuned_smiles = [l.rstrip() for l in f]\n", "#fmols = [Chem.MolFromSmiles(smi) for smi in fsmiles]\n", "\n", "for smi in finetuned_smiles:\n", " mol = Chem.MolFromSmiles(smi)\n", " smols.append(mol)\n", " \n", " bv = AllChem.GetMACCSKeysFingerprint(mol)\n", " Sbvs.append(bv)\n", " \n", " fp = np.zeros(len(bv))\n", " DataStructs.ConvertToNumpyArray(bv, fp)\n", " Sfps.append(fp)\n", "\n" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "id": "uRgKLu425dkb" }, "outputs": [], "source": [ "x = Kfps + Ffps + Sfps\n", "pca = PCA(n_components=2, random_state=71)\n", "X = pca.fit_transform(x)" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "colab": { "base_uri": "https://localhost:8080/", "height": 337 }, "id": "726JRpW35e51", "outputId": "9cff27e1-2181-49eb-88f1-c24221f42868" }, "outputs": [ { "output_type": "display_data", "data": { "text/plain": [ "
" ], "image/png": "iVBORw0KGgoAAAANSUhEUgAAAfAAAAFACAYAAABDZi6TAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/NK7nSAAAACXBIWXMAAAsTAAALEwEAmpwYAACEc0lEQVR4nO29fXhcZ3knfB/Jssea8cxIWBrJGotRBhorMlJInO/EikuDeBeuMilwUSeUZBsIaDsuu29LtzDXNrCtt+1CtyzZd7fLNnxMYcxH2gQWWsiyUhI7ceo44FAnpiEkgaSJIYmJSUiCHft+/5Dv42eeeb7OmXPmQ7p/1zWXrZnz8ZznnPP87u/bQ0RgMBgMBoPRXehp9wAYDAaDwWAEBxM4g8FgMBhdCCZwBoPBYDC6EEzgDAaDwWB0IZjAGQwGg8HoQjCBMxgMBoPRhWg7gXue1+t53nc9z/t6u8fCYDAYDEa3oO0EDgAfAIBD7R4Eg8FgMBjdhLYSuOd5eQB4MwD8dTvHwWAwGAxGt2FVm8//CQD4AwBY57Lx+vXrsVAoxDkeBoPBYDA6Bvfdd98ziDik+q1tBO553lsA4KeIeJ/neZcbtrseAK4HABgfH4f9+/e3ZoAMBoPBYLQZnuf9SPdbO03olwDAr3ue9xgAfBEAftXzvM/LGyHipxBxCyJuGRpSCiEMBoPBYKw4tI3AEfFDiJhHxAIA/CYALCDiu9o1HgaDwWAwugmdEIXOYDAYDAYjINodxAYAAIh4OwDc3uZhMBgMBoPRNWANnMFgMBiMLgQTOIPBYDAYXQgmcAaDwWAwuhBM4AwGg6HArl27YPPmzdDb2wubN2+GXbt2tXtIDEYdmMAZDEbHwEaal1++9IkKO3bsgL6+PeB5t0Mmk4Genh7YvHkz7NixAyqVCtx4443w8ssvw4033giVSoVJnNFRYAJnMBhNIwptddeuXS0lzR07dsDNN98MU1NTsHXrVrj11luhUChAqVSCz3/+83DTTTfBtm3boK+vD7Zt2wY33XQTvPvdG8HzbmeNnNEZQMSu+Zx77rnIYDA6C7VaDScmJnBhYQGPHTuGCwsLODExgbVaLdBxpqamcGFhoe67hYUFnJqawtlZxNlZRIClD/3dDFat2o0zM0fqjjkzcwSnpqawp6cHjx07Vrf9sWPHEOBnmMmcDH2NDEZQAMB+1HAia+AMBqMp7Ny5U6mt7ty5M9BxDh06BJdeemndd5deeikcOhRPt+FXXnkFMplM3XeZTAYOHToEk5OTsGfPHv/7yy8HOO+8FwAgC0ePevDRj26DdPq+wNfIYEQJJnAGg9EUoiJemTQBAPbs2QOTk5Nw++0At98OMDu79KG/bTCZ9gcGfgM+8pE76o75kY/cAZOTk1AqleDqq6+GxcVFOH78OOzffxy+971ef98DBwAeeywbm3DBYLiACZzBYDQFE/EG8Y1XKhW47rrrfNJcXFyE6667DiqVSqDxUKCbzad+9dVXw1VXXQXPPfczQDzpn69UKkGtVoO3ve1tsGPHDkgkEvDyy/fAxo3P+uc4+2yAQuE5mJycrDsng9FS6GzrnfhhHziD0XnQ+cDL5XJg33itVvN90FNTU6F8zOQfl33qtVoNE4l7EGDRP3a5XMaBgQH0PA/T6TR6nld33nK5jCMjI1ipVHBiYgKTyWO+DzyXy+HQ0BDWarVIfPIMhgpg8IG3nZSDfJjAGYzOhIp4TUFpNoQhRDnQDWARt2494Y9vYmICZ2aO4NatJ3xhYm5uzifwgYEBLJfLdcccGBjwr6FWq2F//z4E+Bn29u7GarWKMzNHMJHYG2lwHYMhwkTg3tLv3YEtW7bg/v372z0MBoPhgN7eXnj55Zehr6/P/+748eOQSCTgxIkTxn3JHC37uXXfi7/dccfSv/3998JrX/saOHBgAJLJpf/ff/8AACz5vJ977mfw2GMTcMstt8Cll14Ke/bsgauuugpmZmbgiSeegEOHDkF/fz/89//+3+G3fuu3/PPMzp6EO++8ExAvh8svXzqOeFzd+BiMMPA87z5E3KL6rSO6kTEYjOUH8o1v27bN/4584zrIJGwibBm0De3zvvc9DJXKO2Fx8SZ48UWvIeL84MEsnDjxGJRKr4bnn38estksFItFOHDgAOzatcsn9WuvvRZWrVoF//N/bgcAgDvv7AGAy/3z3HtvClavvh1mZy9n4ma0FEzgDAYjFlBQ2k033eST4XXXXRcq9SoMsW/fvkS4O3bsgFTqR/CRj3wNPvrRbf5+fX0vgud5cOutt/rju/LKK+GWW27xhY5t27bBZz/7WXjve98LY2PvhKNHjwLAQN159uzZAz0958KBA4Evi8FoCmxCZzAYsWHXrl2wc+dOP7e6Uqn4xGqCTNAygQc1VVNEejp9Hxw8mIVE4hX4xS+WTPukmD/3nN7sv2bNGgAASKVS8OKLfw+bN0/BvfemfKEkkdgLw8M51sAZkcNkQuc0MgaDERu2b98OBw8ehBMnTsDBgwdh+/btocquhs0DF8exc+dOeOWVy+DEiaPw0ksvKbfTpcSdddZZcPLkSfj5z38Ov/Irr4Uf/OBhSCQS8Ja3pCCR2AuHDuXgjjs4nYzRWjCBMxiMlsG13nlQgnYBCROZTAG+/e37AOAV6Ok5Cc89t6R9AwCUSiXYvn07LC4uQjaLkEi8BFdeeSU8+OCDvrDx4IM5+MUvzoMTJ07AeeedB8PDuWgHymC4Qhee3okfTiNjMLobutSy0dHRlo2hr28Prllzt5/6JaaWjYyM4Pj4OGYyGQT4GXrec0557EHTx06npC2GzndnrAwA54EzGIxWwFaIRdckxPO8hhzsuACwiJs2PeUTeG/vnQiwiOl0GsvlMgI8h8nkMf/3TGbpg6jPY1cRuFgkRswx1+WkM4kzVGACZzAYscOlK5lOAy8WizgwMBDr2EiwGBgYwEqlUke6IjFTxzEVgR87dgx7enqs56MKbuJcjIyMYLlcxv7+fdouaAyGDCZwBoMRGXRatkvltVqthrlcroHkq9Uqep4X23hlwWLJVP6IUgOm6ms9PUcxmay3FrhWkhMruIn7ptNpv0KcSOBbt55wEgwYKw9M4AxGBGC/pVnL1pnHZWJKJpNYLBbrBICFhYXYNHCdYDEwMKA09ZP2vGbNi+h5R0P1Ofc8TzsXo6OjRguAjCjqwzO6F0zgDEaTaKXfspMXbJOW7Vr7XGVeFhuDIEY7B66ChTxGsclJkHGUy2VMp9NYqVTqroH+XlhYwGw26/QsubglGMsbTOAMRpNold+y0xdsExkGGXu5XMZMJoOe52GxWMRqtdpUFzMTmmmqEhQknJRKJa0PnObLRUBp5dgZnQkmcAajSbTKb9npC7ZtfEE0Z5NpO8o5aKVQRGM3zVOQawljPWAsL3QkgQNAAgD2AcD9APAAAHzUtg8TOCMIdGk8YUALr6vfMiziXrDDmqbpuqMkQ1NKWdRz0Cq3BPUTp3/F89E1mMzlUbZkZSwPdCqBewCQOvX/PgD4RwC40LQPEzjDFaY0njBolQ88zgW7GfIVBZeoyLBVGnirILoFVJH2lUoFBwYGAvm6o3YnMLoPHUngdYMA6AeA7wDABabtmMAZrtCRQDORzq3Q4uI09+oIM5VKaa+HiFt0HQSpOGaCfK2VSgWz2Sx6noejo6NdRVq1Ws0fs26es9lsKF93Jwc1MuJHxxI4APQCwAEAeAEA/ty2PRM4wxU6M2xcucZRIq4F22Se15FknASOePpaZdImMu8W0hIJ2OQaCFqhjn3djI4lcH8QAFkAWASAzYrfrgeA/QCwf3x8PKYpYiw3xKGBR4l2aFU287zJTB01cQcdW6dDJGDdtYyNjfl1BLLZbJ07p9uvnxEfOp7Al8YIfwQAv2/ahjVwhiui9oFHiXalitnOa9L44ibwVmigcV6DSMCqec7n8zg8PFwXQzE6OlqX955I7MWZmSP+PqOjox3xvDLai44kcAAYAoDsqf+vBYDdAPAW0z5M4IwgiDIKPUq0U9sSTdbFYrFOaGinxifPCeXZ5/P5yCwVcRK4yp+fyWSwp6cHU6kUrl59t7WOwMDA/djbu7uu8Eun+/4Z8aNTCXwaAL4LAN8DgIMA8Ee2fZjAGcsBzWqbUZjfO61gjDyemZkj2Ne3B8fHx5se4+ws4uTkYZ88+/v34eTkYet4gs6xqUa8qY6APL64UxUZ3YWOJPAwHyZwxnJAMxp4lMTbrCAQR0Ab+YjFXt3iOcIQ2uTkYUwk9tYdM5HYq73eqIWbWq2G2WxWW0dgdhZPXXcjgXMgG4MJnMHoIDRDEJ0U7BSHSVqOet+69UTdOcIQWtAyuKb89LAkXi6XcXR0VFtHoKenB/v792EyeaxpgYWxvMAEzmA0iaijxsMeL6j53eU8QccSd2oZnaO/f18kwkrQMrimOW5WE9fNc6FQwPHxR9DzjtYFso2MjNRtF3cwIaPzwATOYDSBVnYisyGIBu6i6YexBrSKwCcnD0diyg5aBteUghhlVTyRzFet2o1r1tztzynAIvb27sbBwcG6/ZjAVx6YwBmMJtCqOuguCEK4LmTfjEm+FWQSZcCeqwDmeZ5yjqk4kIsJ3zTucrlcV6SmUqlgX99duGHDP9cF2m3a9JR/rlYITYzOBBM4g9EEWtWJzBUiOVCaXNjqXs1ExAepjx5n4ZogbgKARezv32ftkmbq5W0TbkxCllhyVa6TXiwWtUIiE/jKBRM4g9EEWtULPAhcNHGX1p8UHa3bJoqxxJmyFvTYLsSnOyblZZfLZezpOYoAP1MKDKZ5N/3meZ7VSsDEvfLABM7oGnRi44ZO8oETXJtfZLNZrFQqSnITi4WIZCVWCGt2LC6/NwPXYwfVYHVWDuoOlkwew0zmpPJZMFk1TL8VCgXrs88EvvLABM7oCnRacRF5bJSj3AmChalhhoqQVWZ2OoYsNAVt+GIzw8dZJtX12DoCDyow9vQcxWTymH+cTAYxmTzmFFdQKBS0Fo9MJtMxlQIZnQUmcEZXoJNynDsdplxl1zmMar5txyEXRLPnQWwk3Hw+H+gaJicPY3//Puzp6cF8Ph+40hvAzzCTOVlH4JnMSfQ8z+oyyOfzSotHLpfDUqkUeD5YG18ZYAJndAW4paIZInnpyCfIHEZl8bAdhyqhxXGe8fFxHB4edjq23DCkWCw2kH+lUsGBgQGtRk7CyhJxL323sLCAxWKxwe8va/Ymi0eY55wJfGWACZzRFWANXA+RvKrVKhaLRfQ8D7PZbJ15PGieeD6fx1QqhZ7nYaFQiLRIiWy2btYFYTJNu5jB5f1lYUcniExOHq6Lttf5wOUAQXlMpnsT5DnniPSVBSZwRlegk33grYJuMaZFPqqIb5fjNBtMGDXRmPz+LuOT95cJVUew/f376sZdq9UwlUo1zA1p0bq5pQA4XXS76xwzga8sMIEzugYycZTL5Y6LSo8TusWYyMdFw3Zpo2qLYo9SkIqKYHRjls3XrvvXarU6N4RM8JTvryLKsKlirjn8LnBNiVtJ789yBBM4oyuhIpJcLof5fL4jFqIoNR+bVkWkYPNxu5Kv6TguQkIQYoiKaEzX5mKCVu2fTqd9N0Q6na67bsr3V90T01haFcvhkgq30i1aywFM4IyuRLMaV9xoJYHTYqwKvAqTc23aTiQgkVhTqZRfTSzqdpuux7OZr13OJfr9xTz5SqWCIyMjRh+4fCyV0BE0DiEuDdmlkA9r550PJnBGV8KkybQzuM3VBxlmgTQJBUQ+uVxOS3au2p+JNG3+9qCpWzYEDV5sJtjRJiyootCDCmpRxSE0C9OzwNp594AJnNGVMC3UcaaX2XzILgQedoFs1twchfZn0/ZTqZTVjB+sOErwFqlx9VOP6rlymYO4NeSwfnpGZ4EJnNGVcPV5RmkKLJfLDWbUkZERZSCYiWzbtUBGmdtN+ckiKOo7ygC4MHNluuem32zCQitJLG4NOayfnk3rnQUmcEbXolarYaFQQM/zsFgsYrVarVuIog50M/WClmEi8HYWpYlqATblXdvM7/I+NjKOypxrO5YtF7uVZmRbXnsUAmBQP30+n2fTeoeBCZzR9Qi6EIUNdDNpnUEQ1QLczhxfExmKglUqlfIFprCCS1ChI+jzkEql/LRE11rxcUNOY1tYOF1ZTvccRiUA6u5toVBg03qHgQmcsWwRdaBbEA3chKi0yjAEHta8HORY7SSAsKZh2i7O2gJB71c+n8disVg3FnreWjGP8jxwOePOAxM4Y9lCjJimxahYLGI+nw+18ATxgdsQhCzlbSl1KWi1LZ1WF3X6VztNsLbgrEqlUjeX9Le4XVwISuCm6nLZbLbuGlphyubgts4DEzhj2aJWq+Hw8LCStMSFOwhcKplFCRWxJhJ7cXLycGAC12nAUfpVEe0BWHEGQZnObRPA4tImZ2ex7n719+/DycnD1v1UAkepVMLR0dEGM3+Uz6Ep9ZF94J0FJnBG18NECjrSymazXbHwyMRKFcCmpqYaqn/ZiNHkw4/SPNoqTU2+ZhKu5DlwTY+KS5ukjmtE4DMzRzCR2Gt9/kSBQ2xSMzY2Vrdv1OO21RvgKPTOARM4o6tRLpeN5sRu99vpanD39PT4C225XG7QylSaUSqV0gZxDQwMYKVSafgtDDG0QlNTnWNkZMSvnEbnFJ8HFx942Oh2E6mR4CASo8vcii4gUye0pZrsi4HHLYMboXQfmMAZXQOVxqUiLtE83u1+O3nxF82ws7NLc5LNZp2uUdUnfHx83E+/UxFgWNKNW1Nzua8U8EXn1lljKAo9zBhdhCcSHERClIVIlWvG1qSGnoGZmSPY37/Pebw6FxATePehIwkcADYCwCIAPAgADwDAB2z7MIEvb6i0EBNxBW3gEXZMJpKam5vDdDrtN8OYm5sLdY6JiQmcmTlS1/1qw4aHsL9/n1/728XKUC6Xsbd3NyYS9/i587IpNpPJdIV51OWa5b91Akw+nzeeyxRt7yI82YQNsiJRxHmxWMRsNotDQ0O4sNDYpEbuhOZKuK5BmEzc3YNOJfBRADjn1P/XAcBDAHCWaR8m8OUN1SJoWsQLhYL/nWoBbjYYzSYYDAzcj319dzUslmFJnMbf378PN2x4yD93kA5hExMTOD7+CK5efbfRH97JxE1QXbNcq1wOVOzp6cFqtVr3LFSrVaM7xXSf6Tg2QcJ0jNlZxJ6eO5WCRX9/v7JsrdwJzZXAXdMgmcC7Bx1J4A0DAfgqAFxh2oYJfHlDtVDqiCubzRq1qijSwWyk2dt7J87MHGn4PZ1OO59DhdnZJfM5nVv0+8uRySIR9/fvq1v0E4l7lOMrFotd4V6QSVHVLUwWmMK4U0z7uApPNF6VFk8ErjPtFwoFHBwcVDapIR+4K+FGVYiI0TnoeAIHgAIA/BgA0qbtmMCXN3Qal7ywjY6O4vz8vLF5RhQFWXSaF8Ci1o8YZLF0rdlNRCamG2Wz2QZhBGCxzuxKkdEyKdg00ijRrKYnzpHcrxux8Z6GcaeYNGxX4UkF2d+8deuJurkQ68rrCsyI5O0yj1EVImJ0DjqawAEgBQD3AcBvaH6/HgD2A8D+8fHxmKaI0QnQLb6Dg4PKalX0f9U+UWgitsAiFYG7auBBa3bXajU/xUjnu6Z9iMhpPyIF6ufdygC/KEy1NFd07eJzoLqnQYPrTBq2q/CkGnN//z4EWKxLLRPnYmFhwXcDRXVPoixExOgMdCyBA0AfAHwLAP5fl+1ZA28t2pEPqjqnzUepWnxdtDXbGDzPM0YfN+MDt5llw2iStI/OdE7nbEVhjiiinek+pFIprFQq2myEZrVL21yHKT8rHm9m5giuXn03ZjKZBh84HSvKIjitLkTEiBcdSeAA4AFAFQA+4boPE3jr0GkVmXQLm6kUZRhNRL7uUqmkjTKfnV0i8TBR6K6BUUEX81qthvl8Xul28DwPC4UC5vN56zGb1ZybJXDxPpj80JlMJhKCUs01jblZjZ4C0kZHR31iVWUH2MrQcoGVlYlOJfBLAQAB4HsAcODU51+Z9mECbx26JbfaNM4wmoh4PF0hEd1xgpzPNO6ozM5BLBkyoopSDnsccX5MkeAqs3pUoPKoUfrUEcM1gqnVlkoGi2low8PDdYFyHFW+PNGRBB7mwwTeOnRLdbOoLQXidetIVmWyDep7tKUdyYtxEO1Lt62LUBZ1oY+wpnPKfSdBTJeLTd9HaSWS50Dluw4b1S5eo1ywSI7bECvy2fLbmcCXL5jAGYHRLRo4YrSmRfG6TVqffK4w0b/yuHUdyIIIKSZNzUUoa3elLtW1JhJ7cWDg/gYBaXR0NLLSsCJcosfD5pWbttflglMcgOr56um5kyurLXMwgTMCo9N84K2CeN06IaZYLDbMSRRR7zryDCJMmTS1IMeJMv0riFClGuNSY5B7cHh4GAuFgn9Mcc7laHsXP78Ncj4+wUVIEMdDbhVb9oCuIt9Sl7PFwCmNjOUBJnBGKHRK0EyrxyFGocvBYGLkMOLpxTzK/Ft5EXbxqYq50iqtlFLIWuEDb0b4E69VFmjIQkGQiU++T1T/PazgGdYHHnQe5Jx/Of1sdhZxzZq9yueL0tBc7lenvM+MYGACZ3Qtgqb4TE9PN12bXIQYmJZKpbBardb9TkQaZf6tvBjb8pQTib04M3NESxKiJaAVi3gz7hdxX5s5X2d6ls+nOncUMQVBrkU1Ltt2VG+AxqCyrLgGsa1Ui9pyABM4o2vhUmRDJk2x2xblZUdBXLYFOa78W1sevC3IStTUbOeJgtybCYDU+cAnJw9rt9e5L+h84v+b1aqDwDQP4lwXCgUcHh5uGI9scWjm/rjUHWDtvDPBBM7oWtjKXNo0nIWFpaIuUSzYKnIZGxvDNWvWYCqVQs/zIstLVp1blacsm1pnZ0/PD9UPz2QyVqEiSg1NdV/kJiRBNF6ZyFzOp9PAm/FrB4VuXKp8b4pTiItAbcIEa+edCyZwRtfCtDi7tpuketOqYwSFSC6jo6OYTCYbTJs607mLlhNEEyIykgmcfO8qH75ubKaUuaCkIhOCqglJlH3Iy+Wy1QcuR/gHjSwPO86g+d5xwfQedVPGyUoEE3iXgs1a5vzqIBo4tZgkTVSsDR4WAwMDWv+rHLxGi7mppnYYTcjkA9cF1qXTaWMgFUHU5IOSrhyFHaUApZqjcrmMhULBj1VIJpPKqmphc7vDQvUOx1VjwbRemJ6tbqn5sFLBBN6FWA5mLZWmFDRwiLRIMX2ISFBF7tlsFsfGxvwc6Gw2i2vXrsXx8XFlV6lm5pTywV3Sx2jcpq5WYTWhycnD2N+/r2FeTb5h+bqpzrjp3C5jiZuwdHNUKBSc7q3KB76Upra3Ze9WHBqvy3qhI3jWwDsbTOBdiG5/qZoxo5oWI5HYBwYGsFQq+YtSPp9vaHixYcMGHBoa8ufOFBAX1NoRRAN38dlHrQmZNF/RPD44OIjZbNZ3BVSrVb/zWaFQ8OcibAGTKE3GJoHJ5Ryq+ub9/fu0QXJxIA7hvJn1olXphYxwYALvQsRh1mqlSV5eUIIsMGG1LN1+qVSqzhwsghb/MAsqlfh08YG7+OyDLsK2+6myUNB1iRXlqHNbraZuhEL72AghSNBWlAFy4j0WYXtf2ll1Lup3sdn1wnU8TOCtBxN4F0JeqGo1ez9oE6KU+l1ednlBCbLAhNWybPuZArXCai/lchn7+/uNUehkttXV8xZTeYKYQbPZbF3KnOp+lstlTKfTDfdqYeF0RTnR1K6bo2Kx2FQTj6gISzdH+Xw+8D1sd9nYKBG3xS6OueIYHzcwgXchxIWqWq02aHkUuOP6AkT1grsKAnFo4CYt69ixY1pzNmnuOh943EE8tNiVy2W/frcpkC1MIBJdq2o+VfuJRUBEAcYkBNkW2Fa5fVRz1IyA2s3ETYg7ZiZqAl8OMT6tAhN4l4IWKl0jgyCdmKIiKZN5Wx571D5wnZZFvlxVHXCd71xc/KMmHjomwGJDmteGDQ81+OldFy6TBYHM4rr7KZKeXFFONLW3ypcaB8Km6akqvIXVDNupVbbi3FEJO90e49NKMIF3OVzJ1/QCRPXCBNHQoohCpzSkSqXSVKStCVG7F+hYW7eewJmZI3UE3kwREdNzIKao2aAKKiuVSn4JWp0P3AWdbBZ1fX7kbXK5HObzeeu1tFuAaQWiInBOXXMHE3iXw5V8bRpYFIuLyUcal/RMY69UKpjP531/89DQUGSLY1DiCZKSMzNzBPv79yFicwuX6Tkgi4yrwGKqq93JJNwMXN4j0/MtN7IJc3wZy8F8HwasgbuDCbzLoSJfsReyrK3qFpkoFuZarabU0KrVaqzS8/T0NGYymbpc8LDNQpqFSRhSEfRSa8hFRLQvXKoFXTT/68zvZAUJYnVQPQs2H3xYi0onwEV4Mm2jchUFPb6MlUrgK8FaERWYwJcBVIvnxMQElkqlhkV9dHTUmdjCkHo+n8disVi3T5zSs05ooPrarYaJhPv79+HMzBHlb4j2hUvXcUuMJdBFldO4ojD/q2IIoiyP2g4t3yY81Wo1Y6aAqkBPkOOLWE4R8GGxXC09UYMJfJmiXC5jJpPRBrjF5bMLs18YjY9gWhhNC2pcMGlak5OHMZHYG9hPr1vQVddeqVSMgXBhhSnTPNuyCmZnl1wFzQS7hdHog5CA7bzk/9cFQi4sLGVCBD2+akwmAmdiY4hgAl+moJdcRya2RhTNRhxHsXC6LHi2a4wKrtdk8nPTgrz0/0XnBVi3oJuCBol05HPozLY287ip9Kotr392dslVQOc1nSuMUKJCFIKk6hkcHh7G0dFR9DwPi8Wi3xSFOoaZEJR8bRYXNi0zmMCXKWzlOWmRDUOMMprRCnRjdC2gotu/mdadzSycqm2pZ3WzJtHZWcRkcp8fEZ5Op7FUKvnnpXuQTqedG7rYrq9Wq+Hw8DBms1mtaV6ngcuCB5UlNc2l6rkLI0xGEQhlOkatdrp4UrFYxOHh4ciJVH5OOLiLIYMJfJmCgrl0/mFahORFX9y/2cXfBSYtUve9rUhHLpfDubm5ujG6CBi0HeVo03ZB/fq686lqbavGIwcekia9Zs3d2Nd3V921joyM4JYtWxrmYGRkBOfm5pzujen6dPnzVPiG7oGoIZMPfGbmyKkgvaXVhBqriMVq6Dnt799X5xYQ50DOTadnwRQAFkUqki1ojTTxVpmybRaXqN0KjM4HE3iXw+Q/npiYQM/z6rQnWnhV5kExcttGzGL0c7FYrFsIgmgFQTVwKvEpa4km868LidVqp1tvEuEkEntxw4aHIousV3W7Us2r6vdKpVIX0yALX5R1IM+hi7Bguj5doSC57SiRiByF7nleXUMQXW15gEVfuBkeHjamstEYbBq4SlCIQgNPpVJtIT+TUB2XW4HR2WAC72K4kCwVOhE1OvpbR5zi8U3Cge68QTSdID5wOTXMRVBwtSRMTU35faDFvtCrVu1W7j82NhZpMBiRrRipThq77PZwWYhdNTPdeCh332QJsfmuFxaWmpWIPv9169bVbUcBbqJ7Yc2avc7Cmw6mXvEuqNVqfg9x0dfdTsKz3fdWuBUYnQUm8C6Gywspv/Rk3jSZ4xCXFkAy3w4MDAQyry8smHNiZegEBeroJVsPgggKrqZUcTsiTpspP4yP3VYxDWARt2490TAOMabB5b67ama26nm6dp+yAEOaM5nii8UiptPpBk1ank8KcJMD/KrVat0zUa1WG9wnMmTXQ1iy0rllXCquqcaisgqFNWOLli/XAEUCVzhbfmAC72K4vpCq6FpqEymCNEGd9jI4OIg9PT0N5tJa7XStbTJ35vP5pvNXXQQFmURoXGS2DaKB03ai5msy5evOLZqQXaqxLSws+Jo3EVkmU28JIN9xLpcz3vegmpluPCSAqUzs4+PjDS6EWq2xgtvIyEiDaV/XVCaRuMcvJZvJZPza9uI5TVHeMunGVdXOBbagwDirHrIGvrLQsQQOAJ8GgJ8CwEGX7VcigTfzQppMjKb88fn5eW1gHPkGaXHXEXitVqsre1ooFJQaiknLkBdF6lVN7gGARezt3a0M5FJpUyZTvs0HrrNy6BZwVVDY5OThOk00mTxW54t/1av+CbPZrB99rro/FJ0u+pzFOQvjDkHUB7mJ9QRcn8Vqtaqcz02bnvIr0ulIXqy2JxOefP5m3o1mNVXTuW3jChJwGSZNjn3gywudTOBbAeAcJnA9mn0hVWbyWk2f80vb6chj7dq16HkeJhL34OrVd2sLUYhBStVq1U/HKRQK2tzbQqHgm2YTiYS/uNEcFItFrFQqmEjsxfHxR/xz9/buxoGB+63+zFqthoODgz4Jiq08bVHoQciDrl+XliVaDgAWcdWq3Q1lUlUCwvj4OA4PD2M+n/d9+eK5s9msHxWuunZboJsqD1sMCnMlvYWFBUwmk8b5NB2Lxim3WlUF0YV9N5rVVE3jV/1WrVZ9YTZIvrso6FJdh0wmg4lEQikYi/twFPryQMcS+NLYoMAEboar6dYVU1NTWg2IyF63OI2Pj2M2m8VXveqfcM0aNYFPTU1hLpfzSVtV6lU0u6o0VjEimRZbut7x8UcwkdhbZ35evfoubbtRkVR157EJSuKibBKARD+27piTk4f9ubJVXCNhg4SvmZkjuGbN6Wunjmc0p+J9CGo61blNyC+tE+xUbW2p97luPnXPn3ys0dFR//6ojlcqlXxiKxQKmM/nnd6LZgLgarX6kquyX15+DsXnO4zgoHqOyMUhvyuM5Qcm8GUE8WUWNdsgRU16enqwWq0qzc6ksesWmYWFJd8wbUO5vSLElpQuC5ZtGyJPkVwWFhYayCqVShlJVUcaLqZNmZRNx5LJnr5LpVKBA81knzeZoYnAARZx9eq7safnzrrv5cpoLtDdB4oM17kNdAKlKBBks1msVCr+ftlstsEHrvKn28zSZOIPaqmigElx3K4paGKwJf2rspTQd+KzEsZ0HzROhLG80NUEDgDXA8B+ANg/Pj4ezwx1AURTWrFYdErB0hGSSEb0e7FYxP7+flxYWMArrrhC2xOaFhvSQCm3V4QoANgWLJs2K4+XzNLHjh2rI3DSFE2kGmTxVFk9ROJWEQZpi3EFHxGZTk1N1RWMmZiYUBZUca1NLl6zioxEgs7lckY/te6aZC21XC7XxUhkMhntc7AkmCw6PSOm+RPRjA+c9jUFihYKBf96xesK82zYxspR5ssbXU3g4melauCqhVXXNYlyvMNEydKiSoFiqlrqsgauWnjEBcekOZH24qIZ03jn5+e1AXiFQkF7XeQaMBWkEYUklbm2XC7XLcaydr127Vrr3Ae5x7q871qt5lc8k6+Jcq7HxsaUPngXX7h4TfPz81pLjc2NE2QeZLO0eH/E6HX5NxefOsVGpFIpP7CxGR847StbW+TzytvTdVIxIddngzXwlQ0m8C6H6gW25XiHjYSVF5uxsbEGjSybzWKpVNIuPGJesUlYICHAZaEXxzs4OGiMALcFOqn8h+IYwkYYi53R5PFSdLmcby9C3CeZTOLY2Fjd/RF94r29u3F8/JGG6yfTOVkjxCBBVYMOXcU6uh4StESoGo/oSo4GCaiam5urs/ws+ftPx1mYiM8kKKrM27rnwsWHTs+K6M5RPQ/y9nSu8fFHsLd3t3MMC/vAVzY6lsABYBcAPAUAxwHgCQC4zrT9ciNw2ayoq6qlImvdwkEaeFgTobxfrVbD9evX+xoMRaFPTU3VBWOJGBoaqgsWq1QqdQSmCwxz8RWL43LRJHVlQlOplB/BW6vV6qwNJuGILBSy8EDkKsMWLKW6DlVQXz6fryOjmZkjmEjsbYhup9z2YrFYNxemFpkmslGRvIm0XDRKFei8W7Zs8U30PT13nvL5Y12ddboPlLWgE9TkYEkaJ7khxLkvFAp1fmvbddAzo/KBkytF3v50rMLp63GtoSCO1RaFzlhe6FgCD/pZTgSuWyjFOuYiuau0IJlIRGIIayKU96PFXwz4ofQeWlBVwUuqKlvkh9ady3WMNohz6+KDd3VP0HgTiUSdH5iCu6anpxvGogsIJEFGpVXqKqMVi0Vl9y+q5AawiDMzRzCXy9U1BjHNs2iWt21LsM1pmHtI56X5mp1F32wuBysmk0mtVUd85mztUVXnN123DHp2VO+GaltVHX4xl5/BUIEJvANh02Jk0x9F6IoL1tzcnLYUqoqYxFxrV78l5V6L383MHMHe3t0NqUy0iOq0XlVlM7k4ispv28zc6qKNKchI5Re39aYmEhFbfqrIGxGN+fZTU1PKfG4T8cgEDrCImUx9rXEyrxNMhEv3ha7PJRrelEIlBjoGAR2frl1sCiPmto+MjPj3RoSKbHXvmPwc2ubIBFcXgTgWuf49g2ECE3gHwrZQqopjqILKTBAXF13LSJ3fWIyglRfC2VnEROKehhxwGmMul8PBwcFT2yxisVjEwcFB7O/v1wZVBS1wIUKuBifOrc6ETdHDqnMRkZDZX57vIASl08BXrdrdkPZFmrRJABKvmaLMZ2aOYF/fXXV58X19d/klWVUWhSUT/D0NpnSTa0Y2V6vMx3LxF1fQeXt7d9cJI5OThzGRuKdOSHUlW5XrYHx8HNevX9/wXKksT5SiGeZ9k/cRxyzXvw8SJxAEcR2X0VowgbcZqhfJpoHLC6Bs9nWJABa30ZllxchtMa9c9FmrNMKenh7cuvVEHXES8c3Pz9f1il5YWCqRSUFZxWLRNzXafNXyPKiuXSZwUevWRZ6LZCifa2HhdCvNZs38ogBBloqRkRHcsOGhU009GoWgZDKp9IFT9D1ZQfr67vItAKoiLmNjY75lQxZi+vruwtWr764TWohMVD5d8rdSkJfok5fnRiy/6go676pVu+sC1yiQbWhoyN82yD2hssEUw5HL5XB4eFjpoxbfA52waxu/bh/dmHWZE0HmT1XOWDWeVprsWXiIDkzgbYQpClunveiCb+hFMKWHib440eRuMuUuLDRGgovm7Ewmg6VSqW7fYrGoNP8uBdjc06BFrVlzd4MmlEwm/cAhF61KHiMFcskkqNK6ZQ1bpfnQXBBhme5fkAWJIu6pbKoYwKbygff09Gg7dclm++Hh4Tqzs5wXT+OktEAag0pwIAI0PUdi9LMtfz8oarWaHz8htidVNVVxvSdByJ5iOlyFySDn0Y3ZVD3QFSoCV42HGubEjSjeGcZpMIHHBBcp0/Rii+ZjsWSmqjkHvQBhJXnyZcu+YKpeJh5X9QJSbrjoT1elmA0ODvrtMsVAK+p/LY45lUr5mrDLQqsy5ct9pnVlSWUNe2xsTHmN+XzeF6JkM39YbUL2W4sLrioQ0NV3S24RXR69uL3oQ5+cPOyPZdOmp3wTtRzRbJtHU/6+a5aALo3RVhLW9Z6YBEP5GBQVHsYf7iqAymMO63tHND9XKpN9mOj3MGjWasWoBxN4DHCVMsNEQY+Pj+PQ0FBD8QnT8UxVyBDRN2uL5xkZGfG1Dbn4iorsScggk/TQ0JDfsEIslEL+ZVo4TGM2zYM8n7rjACz6zUHIb28K2hoZGcFkMmkleduC40oipoVWd1xbdzRE9O+dbu5oe5U/d3LyMK5efbe24p5pvmkMqq5jo6OjRgGUri9IkSHX/GwVdGSSz+f985BrwyZwNqOBR70fovm5UgXNtSr6vRmhhNEIJvAY4Pri2bYzaVtBfGmmOuAUdKbaj/yDoj/T8zzlAktESf5Bz/NwaGiormVopVLBTCaD4+Pjvg9cp6mNjY35wgBZIlSBY7QA6fz4a9bsxURirz9e3fnS6TTm83kslUqYSqUaCEGMDrflo4cxE9qIWzy2rZsX3ScytYvdqmjcZJnRtTa1VTdzsWRQkRpR0DO5gFyOq3oebMVnTHOpysYQx0waaX3g3N5A99bleVAJfLLvXeza53qNQX3gcWvDrIFHCybwGBAkEtb0YrschzQGnV9yZGTE14RE0EuzpF3oa0nTwksaui5yurf3TpycPIzDw8N+TWxVlG+lUqkbbz6fxw0bNtRtl8/ncf369ZhOp42dyBDRN/vquomZuj/J8QVyownxftjSx+jYYnCcGLFfLBYxn89rnxkTgYuL+8DAgF/pTtZuxbHIBXPk+RgdHcVEIqF9LsJah8QKYDqhSmVGp7gC03nFZ8a1+IwN4jhMx11y+yw27OOq9Zv2sVkddAWCXM6re65qtVqdoEqCStzaMPvAowUTeAxQSZm6+uG6F7tW09d/JtM51XFWmSpJ66pUKsqXZim1aLEuolcOOqNxISKWSiXfTC5rwKJPm1pa2jpyiajVasqa1DoCyOfzfiCTeF7RVE6EqSKEarWK6XS6Yc7JuiGfjyLjdVYKnXlXzs/P5XKhI7DlBU9VmESEXLKWtk2n09jf34+VSsVKljZNSTxuJpPxU9OKxSIODw8b3SM6AUR3XhJMRQFJnEsam46Amo1JmZk5gj09d4aKc7AhrCWuWa21XdowR6FHBybwGKCK2jZFPqtAmq+KFObn5516CNMCWqvVfFIngpT7Zvf13dUQ8UwLpklqloPFqKWljRxs80cLtfyCk29V7rC1adNTDWlrJiJyjZImwjFF6lMRHNtiGGRxpDlwiXpWHVe89zq/senYUURz66w1ui5duvOOjo4qrQ6q7AHVXOiOKT9fpmdWtC40qzGqrA+mZzEuvzFrw90PJvCYIJs9g0q64gIsv+zigmkjSl1BDTI3UlBOMpk8VUFtsW4/k1ZE309MTOCGDQ/hqlW7sVgs+h+TxqqbM5u5UD4uCRC63G3dImUqSar6zhSPQL5J2yLruuiKYzbdX5MpnywGpntnW8CbjebWxUu4mOdNz7x8HfR/sWqcCJfn16b9q7T9MNAJE83EBajO4arhsjbc3WACbwHCpJGYNDo5Kty0QOtMv+SHBlj0m0D09e3BNWv2NvjSTQs0mTJnZxE3bHjID55av359gz8xl8vh3Nyc8nrn5ubqgpJUC6ZKc9Z12NIREV3Xpk1PKfPPZR84aasqV4UYza3TZkW3iWsVMvGemrRb3aIrBoyp7l2z/lzTeOmYJNTIjUVsAqHu+KZ3iJ4tMSNDbBNrE64WFhb8QjTyPZZrx8v7qmCaU5OQYHp+XTVleVu5sQ1jeYEJvAWwLVi6aFhdAJd4PJ2J1GQWFFN8qtWqX9ZUTDkR/ck6k6dcqU3MO67VanVR6OvWrasrUiK7GExatxgBbqoap4oeJ4hmeSpasnr13b7vnfYRF1850jyfzyujv8nfbvOBiw1lTBDvWRgzJ12PWIlNRNRFO+RoaVOlsjBBWbZ4EPl+y8V6bD3l6fmi8YvR3kGLqdjul0uQnun5tQla8lojltVlLD8wgbcAtpdaR/BitHahUPAXMXmRFCujUW3xZDLpL+DysUWSnZiYaPAni8UcarWaVpgol8s+ARJR0DFNXZjk61Vdvxj0VywWMZlM+uORo8FzuZxfY121yNGYSqWSss64KWVKXDgLhQKuX79eqbWLEcMktIyNjYUyvZo0WlsKkWp+SJCQc5p1KUZhNHKxLKnOgiITfZC0qHK5rOwzrhKIRJcVCaO6iHx6vnK5XN0xXN0MMtoVkEYgAUHV2CbOAi2M9oAJvEUwLYyuQSpiHrIYha6r533s2DEslUoNAXRkUtRJ69SNq6enB5PJJI6NjdXlEpOQIC9sGzduNJqbdVqI/Ldq0RQjuEWyIMFlbGxMa4acmpry50EWVjZseMjvbCXvqyppayqkY1vsVfdU9VzYArlswY86E+1ScOGdWgIPG9RUq+l7iovX3awvl9wscnyHPD7RZE7XWK1WfQtNJpNpEMQ2btxYdxyTT940HzYNu5nGPC6gOZYJnFrLMpYXQhM4AGwCgDcAQEr6/k2m/eL6dDqBE2SNjghPJOFareaTpthfWmUOtZE/LXSiz5TM0PK+sj9ZZw6lxVC1GOdyOaV/lsYg1+yem5tz0siJxAi6PGdZkBHL0KqElYGBgYb7YvPVFgoF5b11CbQSycpEmCSkyGRl86Ob4hXoPDq/aNDrDXrdQYLXCoVCQzwCWRJs4xsYGPDTIsU0w1WrdiOivuiPOK9htWIXH3dUrXFV6CQfOAfIxY9QBA4AvwsA/wwAtwLAYwDwVuG37+j2i/PTDQSu81eLxS/m5+d9v5uKQGW/qq0qlxjNTseqVqs4MjKi9Q0ODw8jYv1iJAeCqQKDVOUzdZoskdHIyAieccYZdVYCEwlREJxLepWs+eiEFR108QM6X7spc0C2IsjzK1+D6TdTAJVLdL3oFxXHakqVM/nubQFmJJTYCruYYjlEN4I47zQ+2QdOaZFimuSGDQ9Zx9usVhwmyjxqiPe0v39fy7qMyWPgFLX4EZbA/4k0bwAoAMB+APjAqb+/q9svzk8nELhN4nTRVESftUma7+np8X2/8qIn9jSmY5Avm8je8zxMJpPK/SltRkX+tF02m/VbgNK16gQCXRodFZpJp9N1hUl0AUtjY2N+ARaXtC2RHHSBeAMDA9r7pvJFqywSNPZUKqVM26P7JLa9RDQTSZg8el28gimSWhyrqfGJXOlNhO45TaVS/vyaYilM1g6bH5rGJ8+JrsubabymyH5xjm1apUqAc3GRLSfE7etnLCEsgT8g/Z0CgG8CwH8BgAO6/eL8tJvAXSRO06IsRknTwmDSRE355URWZK5Tadu0ry6yWtQCZc1J1ZJzfHzcqMHprntiYqJOC9ZFKcspXiayUc3/9PS0smHL9PS0sYylOA5TbjtZNkx9sOVe02E0cDknWSQLsfIefUcBgC6CVblc1sYu0HMl9mmnZ6ZcLiuJWbxeUZAUx0blZW0Ci+5ek3CiI0NVoJ4qIM7V1x9Gq1yJZOYa18NoDmEJfAEAzpa+WwUAVQA4odsvzk+7CdzlJdWRpSoFyVRshHx+JoKnIC/q1y2TKO1retHIhC/uW6vpU3p0Wq6p8hZp4LLfU54rl5rmY2NjfmSxHC9AgWzkh6ea4kR6IiGJfmZxHCYBRQwwNJmTRbO1KaBJZ4qVCVSufS8TCo1P9XzJ1zM1NYW5XE7bzIXOJ7eKJSuEqhyu/LyJEN0ROmGU5l437/RcuJIhzaspS0KHsEQclPij9B27NsmJ+vwrUWhpB8ISeB4ARjS/XaLbL85PHAQeVfQpHUulpaxfv95Y81uX/oJo7lY2MTHh968m8664Le1rMyfKJTdtJKVK9dERiMo3PjIygoODg77wYTJDmvzRspXARAI6cqP7Rr/r5mpsbMz/TSfcTE2drtMt58DrApp0AY8m7VFeJMXgQdlELAorJKCYrAhTU1PWnGodbO4IVbnh8fFxTCaT2ngHEl5Eocf2vjZDLM1ola5rSdS+46AEHtX52QfeGnAamQZBH0DbwqD7nTRlHbmIUehTU1N15kKbbzCRSGgLbNCCaSq1ShAFCZNJc2BgoM6XrdJ2XaK8M5kMptNpX/sqFouYyWSUgUAkrIi56wSxGte6desCWQcoOp3mmYQInWmfCN9U956OK59P1+hGPL9NiKDnTBRWbDX4dQVPTCZmFxJTkZX8rKoEAXkeyuWyL1So4grkAjwu72szJBylVukadxH2HEH7zBNacY2M6MAErkHQB1nlFxYrb4Xx8Zk0IUKtVmvQQkXCkdPTxEheIluVdiaCgsCy2WxDoBYVB6FIW5NmLTekMM2JShvr7+/XEqMqz1VcQFS5vyq/vTh3RP7inOii/onwSfAiy4Pcq1p1PhvxiM+HjYBE64ktQ0F+7srlsm8NKBQKmEwmG54JmwZuuh4xfz+VSllLlIoav853TnBJDVNds247FVqhnUblOw5L4OL5xTmXqxIyOgNM4BoEfZFkc6TsSzUtHKoXOpfL4fz8fIO5lRZA0nYREQcHB/3ULh1RkW9YDJQzETb5M8kCIPa4Fn2IAIvY23s6ylenZZK2KwoLJu1X9X0qlWoQVuR2prRQqeZUrr5Fle7oXOI+YqWwsbExPyDLhUApRkGlgcjPgQuhiOc0bS8SgRyAR7+JFhx5sRazFKiFqvws6XzgNg1S5w4Snz1ZAzdp37KrwTXSu1kSjts/7CpguI4jqAmdzs8m8O5AWB/4a1S+bgC4BACKuv3i/LRbA3fxgZteCPmFpOAck/mWoqhV2qr4opGpWdxPF/gk+iZ1hVzK5XJDP25aKEgDlRcX1WKqqoE+PDysDaJSdaWS25nSOGwameg/F3tN6xYvIn9XAtVBNk/bMg3EZ0H3HKlaY5riI1RCpY5gh4aG/HuZTqdxenra90uTpcEWrHbs2DGtH5ueS9ncT8Kq6P/Xad9BffPtNu3aslFsxBmEXMP6wMPGOjBai7AE/nUAeJ3i+9cBwP/W7Rfnp9N94HRM14VDPn/QyG/xvDIhiH2+RX+1rCGarklFnJOTh7Gv7y7s67urYd5UFcRoXGS2zefzPlmpzOREFqr7Qj5w0XpgWiRlsiISPHasscQsXTeZEV0I1HRPRUuN7v6JApecQudSyYuyCMTnrVqt1hU9Ea9FR7D0/cTEBM7NzRndRKZnxhbBL1pddPe4Uqk0WJPIKqLT1OVo+E6Aba2wrRNR+qlVCGLRYLQXYQn8XsNv/6T7LcgHAN50qtrbwwDwh7bt2x2FbvOBN3v+MDnWBDJ9VqtVf/En4iRNXPzepQ0jXd+qVXtwZuaIr60nEvfgzMyRun0WFhaUQWgiEZF/XUdm+Xy+rmmIfF9IgHAJ9rIVnDFpxfJ9CaLBqcZEbT9tFhSxPr3LOU0atQjRwqO7ZjqfqSCPeLwgKZFkEXBxE1Auve7YovAmxx50Eok3a56Oyk9uQtxCAiMahCXwHxh+e1j3m+sHAHoB4IcAcAYArAaA+wHgLNM+nZAHbvKBNwvT4mnT4Eh7UeWbj46O4tzcnHJBIfO2fGzyRScSCdyw4Z+xv38f9vTcqe10RYvL+vXrfR+rqvmIiUTkACwVdP5sOXLZVlhGR/C2muAiVCRvEgzEYCFdcFcQwcFWQyDM9rb7Q2NT9QDXFf8hocwlUI9K0spjFJ/rVminUZjfmzlOK8iVfeDdgbAEvgsA3qv4/j0A8CXdfq4fALgIAL4l/P0hAPiQaZ92E3jcUrFqAdRFfJPpUPZB6zRcU79vVS32XC7n+yOpbCvAojKYjI41NDRk9dW79G02zad8D+RofFv+PM3V4OBgU9YU3eI3ODhojAo3jU1X7Ee3oAZ9HlVuBfn+yGZuIqC1a9ca23VSgZ5KpVJX7GVoaMg/vvh8m1wYJreIyZIgxqKEJU6dUNhqM70q4FCu8hfVedoZK8CwIyyB5wDgbgC4HQD+4tTnDgDYqyvwEuQDAG8HgL8W/v4tAPhvpn3aTeCtkIrFvGZdelgmk1Gm/9g0XN2iZ2rDKJvdK5UKTk4exkRibwP5rV271jo/qmYoojCiCmASIWvgtPjIZUxt2kWz1hSTCVingRKCmqB1MRZ0P0zby7At2ESycu0Al7K2KreALLjQHKuK1YyOjjZU40NEv5IfPYNDQ0NG4awZrdIUGNhK7dRF2GKsDDSVRgYA2wBgx6nPr9q2d/24EjgAXH+qkcr+8fHxOOfJijhNTiJxDwwMKE3eGzduxMHBQWXqEAX/6EhAZ4anBYsWWlGDV13vyMgIjo8/gps2PeULFIVCASuVirOvniK9dWZ200IlBomposhlotSRVbPWFNf9VSbtWq3mV7+j+TOZ301ZDnK2AZVibQblcrnBYuNyvTJhy7+brCf0r3yNqkI1IyMjDalv9B42K2SbrjNqYd2EbnETMOJHWA08AQD/FgD+GwC8DwBW6bYN8+lGEzpiPA++LjiO+miLmrFOE0qn05hIJJSpaBMTE1gqlZSVt4j46TpEX63JJy9bCBD15nFTepupkI1urk3BVs1q0K7701zK+8tkLZOYSQjUjWnt2rU4OjpqdI+IVoQohEqZyFzmy0bopmOI24r3Xef6yWQyymejWcHMNMZWRmjH6a5j33d3ISyBfwkAPn+KvG8FgE/otg3zOdUY5REAmBCC2KZM+3QCgQeFC+G7RP5SNyzTi03/XnHFFXWlWcXqaeLCSCQsRn671Bbv6VG3wlSZx0dGRnBoaMgfS7lcxsHBQf/8poAu0yLT7AKn0vRsaVvivtlstsHESR3WRAQhMdXCOjw87JuVTdcszk0Umpo8TheTriysueY2y0KHa2aGy7iDzoeJ3GyCZZSIUwPn6PPuQlgC/yesJ9vv6LYN+wGAfwUAD52KRq/Ytu82AneVdF0WKdrGRvb0coomeXmR0WlK8oute9HT6XSd1icSx9DQUJ0rQDbn6iKVZSIwadhEoKrzi1qcqXMWjYXGqmuxqQLNi7iQk++eoqh1x3Exk4tzK7pEdPejUCjUlc81td50hU6YoMhzsaucKqiN7otMdiohUnxO5POa0gFdx226lyoyFp8dOVVNFVAah/Yap5bcihQ1RnQIS+DfMf3djk+3EbirpGsiZVpgyJQYpLOWaQGUNQnyx8o+SpXPVbWwqbR8lXZClgR5PLLmZhJqVJXjRFeATlsUW0qK1xZUIzEtgLZcbpdzidcunkt1P8QCMGJp2Ewm0/Rib3JhiG4WXYEbHQmZSNBF87dlC7hqyDaSVB2nldprXJo+a+DdhbAEfgIAfn7q8zwAvCL8/+e6/eL8dBuBmxZ6mTxlkzf5wGmBmZ+fx5GRESwWi8roaZE4xsbG/Cj1ZDLZUNd6fHxcuYhSsxIRYu1qXV9qEjbEY4pkQkFatZq++hNVkaNKaLpFRifsZLNZpxas2Wy24fhBNRJTBLptkdWRsKi5inEBKkITtW2xHG8naYamOAWTdUXnmiEBU2XVCYswRLYctFf2gXcXmopC76RPtxG4yeQpEp2sYeRyOT+ATdy/XC5jMplU+pnlqNxcLoeDg4O+KZBImEyfOs1cjggnjVvWnGUiEUtl6haIfD5vtAjQ3NDxVcew+eURzYsskaS4TdCCKKqxBYn+FoU3lSm6v7/fdzOong/qMb+wcNovHoVW5aLxuZyH5sdUrEV3f1qpHYYhY1sMQ7dEdnfTWFc6mMDbBBOR6TQsRLM2Qgug+PLp8mJlMiYp26QJiwRHGjfV1zaZcnO5HCYSCb82t2o8FLCm2rdUKvn55qLG7mrCpH1lv7G8jajp0ja6kqSmfPSoFkASasTjLCyc7pdO3eLkqmeklVJketRBfQsL9T5vOq/LeWhudddmi29olXYYRlgI4xZgMJoBE3iLoAuIkb8TF0HTgmhbYMQgLFVTC1VOMu1rMwOLv09N1dcWN5mox8fHjYIHaehi8FcikVCmuKkWP13KnWjaHx4eVla0q1QqODY21kAUPT3qpiBxmUXF66f68eI46dx0v0y5/RR70GxnKRffsyx8qs5Tq9V8c7eurKqN7FqlHYYVFtrtG2esLDCBtwBBFgOZHHWLs8nvPD097fvNk8mkkwYpau9yy0uR5GTtnwhOJDyd0CFq/vI1pdNpZZ9pGynIcyx3+lJVI9O1O6ViIbXa6WIqiUTCWv7UBLkIjy3AyvSckCA0NXU671gXlDc/P4/j4+NYKpWUrhXXDmqI7nnfovtHZdmxBQaa+qi3A7I7Q46id8Vy8I0zOhNM4C1AEN9YuVz2/dCypiL2SKYANXkhLpfLdYs1kaJ87rGxMeV4aNEVu5IR8ai0f/o/XYeuoAiRjioti5qMUFESimCuVCrOi59qjnX76sZI5nkxBmHDhg0N5ChGrJsQtEOdTVMThQxZs6VYg7GxMZ9oxJruchS6rh+8y7hcAzBFomsmMDAI4iD/Zk33JrcR+5gZzYAJvAWgBUteXFRpX8PDw3WaqFhvXFcmVdQG5YYTpshu3YJUqVSM55JJTtQAVeUtTcUuZCsCERydQzb/igFyRLjiHIvQLZymxiAuFhAytdvgUoRHRE9PD27desJvAkP3ioiNhAwVgajutcmdIX8nCwOyq8c1/1qXKijen7hMyiYfdDOk3ux4ddkF7Wx32ilWDkZzYAJvAUhbVgVoySZeWwS4/D29hARaxHUESPtRapnKjKpbsMQiIuKimM/nMZFI+P7NoaGhumputFCRP9p2HiI4MmWTMKGKujaVGlX12hZNujaicYlqNyFopbBCoYAzM0dwdlbdmERn9tbda1dNV2xYIwtUYhobWWRUgX1UklcnvIn3J65gNFPsRjPnisJiIFpJ5DLDUQgvQdDs/NvIf25uzn//0+k0zs3NxXEZDGQCbwlqtZqRgEWETa8hkNYnmrZNL2sQ0zP5u2UNWDbb08KfSqXqWh6uW7eubuE3WSbEuSPBQOfTVlkFaIxDQ0MN0dImuGjgYl65CUE08MnJw9jXt8dvx5pI7MWZmSMNqWimIClXTVnUwHUBabLfXSUAUSyGS7CWPLYg5Wld4Uq0QQkzSotBJ/jDm7ke23oyNzen7d3AiB5M4C2C64trakiiIxNx8SO/q0iOYnerVCqFyWRSW55yYWFBWxFNFaSUy+XqWoVSH3A6ztjYGHqeh+vWrasrjykSsuqYohndpCmIc6jS2FXmdoJKU5AFAQqiU0Ws24KagvjA+/v34czMEZ/ASRMX5z+TySjJVk7jI4JPJBLKADcxt9wWoS5q52RJot/kZ9r2jMdttnUlpjDac1QWg06ISG9GiLCNX7dOpdPpJkfNUIEJvEVwNe/p0pxUHcOoqIsMavmoIkeqqCYSibywDg4OBkoTSqVS/oJABC4HXOVyOcxkMn6g1fDwMM7NzWmFhUwmY80JFqPNqZ65yfJAvcVrtVqDpkABgkT2RM75fL4ucNCmmaruhdwK1mS6n51FBFg0xi3I8+E6T6JPm74zWXZ02jlZSORnut3kpLrnqgqCYcYUlfARl/sgCJq5TzbyD+o2YjQHJvAWIUiAjSnNicyORAq6iGiT2Z5M2/39/dqxUiS86Bc1mfdJYxQ1yETiHpyYmMD5+fkGE3s+n/cbfOiOaVosdHW/ycwvm3fp2ovFIk5MTOC6dev8ubEtqi4ai7gAylYPsfiMOK9itzdaVGdnl7Rxm6Bkmw8bKbhkDdiahajM4jofeKugyupoN2HaxhhkLFEIEs0IEayBdxaYwFsI15fPpK3rtGr5WKYIdMrJJlO1anyiFppMJo2lTguFgu+zFX24k5OH66wM8n6pVEqrPVK+cxB3QrFYVOa90+IkXrs4N7ZFyUVjIaEjn8/j+vXrlaZrlWWDgsRMkf02C4hO09bBdi4KljM9P+KxZMLspOjmWs3eea5bEKX2HlYQYB94Z4EJvAOheknIl+xq/jJpULQtkSHlDItBRZRKls/n/TrrqoIg9PKWSiVMp9MIsIirVu32BQMiNp1FQeUnzuVyWK1WtYuFiVhUGqXYdGVgYACr1WpdgRYbUdnM8eK8FovFwHEMqVTKP48Y2S+b7k0BZ0EKxsjPUK1WX7uerklX7rSV/lpxjDbCIfeNuE+nad/NoN0uCgJHoXcOmMA7DHL6kNhZihZTlwAUMiWrIrPJpCt2ctLlfZOZlwqaVKtVX5igFDHRdLp16wmcmTniL5SqnHLS8CgATyYfMShO9nWbop3p+sT5US3iRI70nUupUVGT07VLrdVqfopZkEwCihVQPQsuNciDFoxxeYZUwgK5KVpNgK5ELBO47jmhVrxRjq8VVodOiGBndBaYwDsIpoWKCNmWjkaLCRFNuVzGoaEhZZoXda0ySfbkq7VptTrNUqd10jl1BUl0mjdtIxePoWI35GYgmMhePKeq65tsbjVpriQUmSwfuntHfnkdidvIIWjBGBdNTreNrgtb0DEHgW28RNzkvqG/bTEUURBtK7X8TtHAGZ0DJvAOgukFpd9UdcrFHGFVcJcu0ps0YNNCRwuxSfK3FTwx7SuTwtTUlE/CIgmQwEAQNWJVC1UqRhK0mIlKw1YFs5mCEtetW9fgjqA+6yQoiBaR0dFRv5ysmGqnyxKQyUGXRkb902W4kE5YbS8OQrONRUfgpvcpKuJrJakuN5eADq2yaCwHMIHHhDAPoWmhkgOPRM2PTLi6zlQqszJp6dls1thylLRMnU+XiNYmeKh+o+sTTcg9PT04Pz/vbBLWHZ9SwkwBb/J3pnQs+Vy6846NjRnHXqvVMJFINAgdGzZsUPZbn5ubU+bpk7AxOjqKyWQSFxbsRXtE2J7PsMQUB6G5HjOIDzwq03OrzdrLidxU17JShJSowAQeA8I+hLaFSjaP0wNPL4HOxyoGdqnGNjIyUlfcg76bn5/3/a4qk3VPT49PlKaSpaa5IDKlCGbSQNesWeMfO5vN4uDgoHLOTP7m8fFxZdS+XMxENNGbFmPR12w6r41sgggV8rYqc//o6Chms1lj2lfQBVDnA7cdJw5CC+sDp311KYXpdNqpKY0JbNYOB909de0+yFgCE3gMCPtSuy5UYpU1l9KZQ0NDPvGYNEciZVXrxFqt5pOrqqAMpQ+paj2LPmpTj2uV5loqlYzCjynlThRaxMBAuh4x8poC6XT3rVZbyuHO5XKYSqW0+dOmXG2CySIikowqgl+3wFFgYFQ+X7peVc66CS7Pvni9KnLVjSes5ql7r+SCRmHAGmM46J4Tl/eHcRpM4BKiMFE1o4W4pAOJPjyVdib6j6nQi6jdBomEFuGSxqaKiKYWnJ7nYTKZVKYmmQpAyOMS75GqsQb5k3X3QNYoaRFWaeu0GMvn0RUtcdEg5I5xunOqIvgpxU51XeRvl2MHwvh84xJCXeY6DpAAqtLEdcF+QY69XMzarUIzFizGaTCBC4hKmo5bA6ftVC+BquoZBVdlMhltJLSLJkTb6F48IrlKpVJXPGNoaMgnSl0qlmsJRtUcyalVJCToBAK5qIeYopfP5/0xigt+IpFoOJ4YiZ/JZJzrt4tCjilKXhd8qGsHakonC6rFNCOEmghNJ3yK1xEXVnKZz04TMkxZDmzRcAcTuICoFpUgRCwSnW7BVp2fNGp5e5MfdGFBHcUuRm2rCJHGTUKAboy6dDPSvvv7+3FsbMw3yWYyGZ9EXVKhdNcsz1G5XMZsNtugmW/YsKHB901mcVGz7u/vD6T5ymOQTfaqFqAuFhGblkJjGxsb889J91gstTs4ONiUBq5yQYQFXZPoBhKJJU4yDZput1zQiWZ+05g6TdjoZDCBC4gyAMf2EKqChGwtQ8VylTozpIkQRLMzEXQqlarLm1aNSy6VqKvGJs+fHDmvKyOKaO/cJXdZk+dZJkmqHidGa6vM26LQQdfu0oaTvhOj6eVCKCZLgdiRTXWubDarFSjXrVtXd10uEfwqV4QJcZm6RQ3cpSxw2MVcJURRsJ/uGbMdp11k0uwYOjXQTheF3u757iYwgQtoxvQd9KFTnctWAIQWHVOA1tjYmPIYYuUxWoQrlUpD0IiL5qUjTfmaxL9NQSsEUXOU/ZVyn3MaRxByUZV0FQUCOrar5itH08v57OL1qgQj8tXritYEvb6pqSmtiySbzTZsL95fXeCiLbXOFeK5stkslkolp6JEYYQHU9Da2NgYJpNJp5KzrdJcTetHFGPolgpunWgp6HQwgQsI8wCFfehUL1W1WlWWHZXbIZpeSNdj0KJOOcTysXXXJTaroDxwcS7Wr1+vrDFuIkWX+aRjib/bBC452E0VdEZzJY7R5J8jwYWKzaisCbVara6HtmjeVt2DUqlUF7hYKpV8YSCIcFir6RvYuMzz+Ph4QwGbKBZ/1blsUfOI8eSiy/u7+OuDnj8IbOtHFGPoVA1cRreMs5PQcQQOAO8AgAcA4CQAbHHdr11R6FEvMrlcri6gTLXI2RaoZDLpm2rJx65bKOVKZmQFUJ2D/NliapFIZHJktmhR0I15dHS0br51xWhEU7NoAdBdF/nB6bgiUcvHJc2YxqhaVKmfOZmuqfkLke78/LzyvGQmNhGhyuS9du3aOmFJdHuYnktXDdz23NL/xTmhsRSLRV9YcYHuXDbtPqzwYNpP3N9Gnq3QXG33IS4BqhM122avNUhDn+WCTiTwSQA4EwBubweBB0XYh05lUqUCI+LCPTAw0KA9VyoVZeEU+l6s+jUxMWH06YpBVmJaluq6VClb4+PjmEwmfY1cJFkx4nx+fr5hX1UBGRMpy0SnC6jL5/PKXHVVEBp1RCOBgM4hVrtLp9O4Zs2aujKounahdF5xfzLbBiGxTCZTNxZVXIKqdaculkD2gdueW5qbubm5hkI+dL2uBGCyvsShfbpq4Lbjt0IjtN2HqMbQDb5lk6BnG3fQhj7LBR1H4P7Ju4TAm3nB5Ch0at2pqpQmFz+RSV4V6WzSKEdGRvxSrHJwV61WU2pypuIlorlVp8EODg7WpWipzmHqDCZL2Koyo6aSsqogNKoCZ7on1EaVLA8qoUoUKEzXL4/VZPK2WS/k2AgiP9k6UC6XG55J3RyJGnixWMSRkRFtqV1XEjG9I3H4f00+8CAadis0Vxc3UDdoz1FAt07Ja5/q2ldqhgETeJOI+gXTvdBiRDV1vrKNS/TDioRPkeey5i9eg6x1zcwcQYBFLdmMj4/7pGDTgIh4VOSl8uGbtD0VAbgGoY2OjvqmbxN07VbFMVWrVf96dNcvmuApD14nsIjBha5WHppj0aIiCndiNzeVVp3P5xt84DariItm18w7EmUUehgfd9yaq8vcdIP2HBXk+6YSlFWCo2t1w+WGthA4AHwbAA4qPm8VtrESOABcDwD7AWD/+Ph4nPNkRJQvmGtwm2kBNC0KRKDivgsLpwO0dCkdq1btxr6+PcoFj4ibmnSYCGfjxo2+ECKXXa3Van6vcfIju5bwFGHyt6u6hNn8uSr/uxyZXywWfTI2CRCe5+HQ0JAfCb127VqlwCJaRVytPHQOk3tFDKiT/dpr165teIaPHTumtbxkMhljyqGIKIg46oW4U7TblUTQQRDEPela3XC5gTXwDgG9xHLjEZIi5friJhOmbsGnvtNUXpNg8tnLrRrXrLkbZ2aONJji8/m8r/GbcptzuVyD6Xd8fFzpIxeFjiA+P118ga7MqarHtbioplIprFarxmhqz/OwWq1aYw7ka5uamsJSqeQXdRGb1Jhy6HWZBabAMPrXZqGQ9127dq01gl8+l+3+uBBWKxZiJs/ORRD3pEt1wyhjFzoFTOAdANVibSugYSJd0wJdqzW2UjQ93DKBT04exlWrdvv5vJVKpYFgdHXCycxMxCMunul0GkulUt1iSoKG6VpVCzCZiOVGHLa0JdX9EAUAk9+YSLtWWyrNanMDyGTa09PYO10U4EhAIuuFKlbCFu1O/5osFKpAIMpWcHVVmFwSQUh5JS3EjEYEFeDEGJm4swc6BR1H4ABwJQA8AQC/BICfAMC3XPbrFgJXEY68UOmCyMTFK4wGLgco2SKaRUxOHsZEYq8vZIjjU51PbDlKxxN9u64BK6QVqq6VjiHmUafTaW3QlWtREt382XzBshCTyWTqNHjVfqJmbArgE8cvlpwUO6qpniXx2kkg0lkSqOmNnIqjG5tpvDoEIeVWpHExWo8gVo8wFpKVFNDWcQQe9tPJBC5qUir/pIoYTIuXTRJVlTsV+3uTOVkMcLNJurOzSyROL5NrkRa5aQmNS9SwZY2bQGZ3k4ZWKpUatEZTZLeub7l8n+TFwuQLpjFXq9WGwEGdSb1Sqfhm83Q6jVu2bFEGlpHLQ0yJEUldFfCki8CWS9Oq8tV1/mvV2NavX+/sAycEIWXWwDsHUbkaWuEWMVU3XG5gAo8Z4gNr0o5ctZtUKmX1G5J/lF44qval2zfMQinuY9p/YWEphYqCtiiX3PaSiWSqi7qnQDLXuRMjv+Xj2haWhYWlTAATYS0sNLZFrdVqmMvlGhqmqEzV1G6VTOVE8HJRChJGTFHfqtxZ8Z6qrD6yNi8fUzbjy4GOLgt7kGdtJQUjdTKivA+6+6+KQwkLF+VguYAJPGaID6xJ+5BfEJ021swCGdRn7urL1BUaUREH7asLdKPIbpcFgwjeNRVNrvXtOm9EsHNzc3UkJpdTJRLOZDINaXpyCVpXE19YLdR2T8XfW0mUQc/FQWbtR5SWEFt8ThRYSYIfE3jMEB9Y04ug8j2GWbxMC3dYn7kO4vjEPtoq87MsDNg6r7mMxyQIJJPJOguErSKTaWHRSfCilUBH5qr7FqQvddjFyDaHrhYU1XiaJVQm5e5ClLEIumdNLqikQ5AMBtt2y+E5ZAKPGeIDq1uMXXzQIkwPnu4FkXO/5ePFbSKTX06dPzloFOnc3Jy1hKKLMGIbt2nBMlWoU5nAgwbZhFlobPe0VjvdeKaZ6Pwgz8lyWDBXIqLUwMmlJD9D1WrVKhBEuU7JFkSVW60bwAQeM+SHThWdHUTjHBoaqvNDysFHugjjubk5f/FUVaYKu7jK+7kKI7q66kHmgzA3N1cXEHbFFVfUjculwYGLD1x3fpNGrRIqWlW32XRPxTHoBIp0Ol33XTML+Uoya3Yy4hAGgyKfz/spnjSGKITsIKBjdftzyQTeAtheGhcTlS4SmHLGZR+zC6maIo9VkIlyenpaa1FwMV+JudpjY2O+GVqs0iaX9rQdp1gs4rp165yiuU33ia7TFqGNiH5kuwg5MEfWsFvVOUn37Imk7Rq124wplSPK249myCpK60nYcURpyqdjmYLqusFaxATeAXBZ3KamzHnCpofYFqDlsoiqTNW6bmCm44kLATVSoZdkbm5O2UUsn89rXyCVJk/55LrrNeWD6iwYJtJXCVbyuHU+btscNbN4mBZK0Wqgi9qV56kZEuac7vajk4SoMM94HBq4rSphUMWk1WAC7wC4SKSqSl2I9gA12le3ny0liaAKFrMtyq7dw+i8YV5QW2627noJ8kKiK7dqCwAUj0P9ssXrswkO4nhaEY9gqx2tslQ0M7ZOIo+Vim4XolTWtqB9EsRj2coei9tSjwYXq2ArwQTeIbBJpAMDA9qHTQxQUx3HRQO3PZAqP6/puKKPlYJEbGTrusCI16gq8anaR9bAy+Wy3yZU1px1VdNUsI2ZFgNXH3cURCdGx8v54DQ22Q9PleNkk77KHRM2VqKbfY3LAd0mRKmevWb60quOryp7nMvl8Iorrqir7lgqlRqC3Toht5wJvE0IakLyPE9rqrVV13L1gYtNNWS/rEoDr1Qq2i5ppOGJC7ctB1RXa1z0JcvRo6qa6xQoKH4/PDzsS9HUL9tF+qbvbBq4bnu6Plcfd7NaEs1PpVLBjRs3Nix24qJj88NHTbochd5edJMQpRqrrbx0M+eiuJtUKoV9fX3KIFNaA01xIq0GE3gbEOZFIkIWC4mMjY35rTBrtZq2jSRJr6JEKZvNbZHRunSt6elp5aKs6o2tIzsyhZEGKJqpxHafomBgOl4mk6nTFHUtO03R4673xiV6PUiVqWa1JNpfJwyl02nnBbvbNDaGHd0iRKmevaDCreu1yu+wTlBIp9MNkfPtrq/OBN4GhFkYbXmLpmOqaoDL7ShdcpPlKPS5uTnteOl4LhW/VKYxCgKj/NByuYyjo6N1xzNp9FRYRldula5N9f3o6GigRU40WcsFXVz6jcvHchHudNqz6Oc3WTtc0O0+U0b3oqenB+fn5+ue8cHBQed107TW2FyMLmmhrrnrcYMJvA0IuzDqfDZkytE9dLpocdHMHKQ6mDgeHdGRRi+bqWu1Wl3DDxcffTabxWQyWfcdormusigQBClhayNc0zWTQEWmOFEACXI8m+ZgspbQnOjiDVwrXiGyBs5oHwYHB5XPOK0DNuuY6tmtVCq+IiMqQXK3QN16KSoz9C7ZelPEDSbwNqCZhVG3r6kYhy163VafW0cytohQXaCYbKKyEWylUlG2IdXVYJcjyU2me/FFHh0dNRKuSTu2uTCCHs8Ek0WBjik3UAmjNXSTz5SxvKAzY2cyGSfrmGpNETNGVIJ7rVbz1yxboSVSblTFtFoJJvA2oJmFMYg2OTo66vu6bQKDTqvTpX4NDg4q869VKWmqaFLxmLpgMtHnRH5p+Xhr1671g9PovPIcqeZ7bGwM165d22CCXlhYwHw+7x9fzFU35b3r5ljMEBBdEOvWrdMKTTZBzmYtIUtNf39/qIpXIrrFZ8pYXghjERSheh9pjaA4G/FZJoGehGPRRZXNZjGTydQdS7QGkrAcxFUWFZjA24SwC6OJjFXHHBgY8CVElY9Z3FblV9Wdz0Q+LgKJOFZTMRbx7+Hh4QYBpVQq4cDAQJ3JWGc+k1OqVMSeTqcbBBkKHJRN/4inhSeblcPzPOe+5TYN2bWWOsUN2ATFuEmahQBGUATtFyBDfrdLpZI2YwbxtHAQJrCVyD+Xy7X82WYC7zIE1d6pTKbcH7y/v9/pGKZAMVv+c1hNL51OKyupjY2N1V1DuVz2z+liWlddnyxIqEx3pnQ5WlRMGrjOxWGqrGdCkFrqrU4Vk8FmeEYYRNEvQEyrtVm76B01me5V2TuIS+2LE4mEnx20bt06Y4BvlGAC70IE0Wgo/UzcnshIhPgwi8fPZDKYy+UazLC2nMxmopVNQoOsQZP/mkzzIhlTFLqr1kf76nxn8rWS1E2R3SoXBgkirn3LXS0XYjqgrpa6C3nGHajGgXCMsGi2X4D47JkUDtFdqLLAjYyM1LnqRPN7rbbU1U+VRdMKEmcCX+ZQLeKmh1kX4CHmZQ8PDytTv1y7d9mgM4Fns1k//31oaAg9z8NcLucTtUvfbxOI7OVzmwQKOj9io2AlzrPOJCj62ykITQdbEJ0tPYbOKd6XuFPFOBWN0S6Iz57u/UulUlgsFnH9+vX+ujY4OOgLx2vXrtXWkaAAWFMMT9xgAl8BkBd3XZEPUzCWaGpSEZac/9xsxS65BassFY+Pj+P8/LwvRDTb07dWq/mme9cKUNlsFtevX68NXhHnUmUSFAUjl/nS3Zt8Pq8kdhfyZA08WrC/v3Nge/9E4ZfWDjHrplQqKVNhEU+TP1kFmwm4awZM4CsQJk3OtujrtKeoFy7xeLZCLM36WWl/Im/R5ZBOp3HNmjUNL38ul8PBwUGsVqva4iiqQBoxCl3uC2+D7t7ocr518ybXzmcfeDRYSdfaadCluureP1MgKxV8Ib+5iaBNJZmDVD0MCybwFQod4bpo4K3WnmyBdPKYZd+47iUS/cnk15IFB2ryoYpiRzztC3cJkmtWsNHdG1PkrMrHbusfz1Ho4bDSrA2dgmZcS6Z7pltfEJdceiQM9Pf3+7UnRL95qVSK/d4zgTPqoPOBz8/PhzJRB1m8Z2eXPjJ0L1mQcq2q1CnTdmJuPR3ftE+cC7XJVTE+Pm7MT3fp1rZSCDZusL+/dVAJ2iLk91HONhkbG9Nq19Vq1U8bVVn4VC69TCbjm9RTqRQODQ3VlYFOJpP+76Ojo5G9Y0zgywRRLsLisQqFAg4ODgaOlqbjuJoUa7Ua9vfvQ4DFhvHr/MfkAxdNWK5akCo6X9RMSUCQJXZ54ZAJP2roottJkBoeHlb67WmebfMRldmXhQDWwFsFl2dWfB9V2w8PD+Po6GiD+6lWq/natJiOKsbYkEVOXjsohkZco7LZLGaz2YaA37GxsUjeESbwZYA4fW+1Wk1rOrYtTK4L2uTkYUwk9iLA0lM3M3MEE4m9dWZ98YUpFAp++lY+n8ehoSFfwHDVgig/Xp4zKtggzp/OKiHOb1wLtWkOVYKF7DawPRtRkA77fpfA89AauDyz4t+m4E+5twRp5gTRHZdOp3F6etq4dsiZOOvWrQtd78EFTODLAHFJ/qYFyUXjdCXT/v59ODNzxCfw2dklEqfxuxyHCEwX0CXPhal2vEqDlK0SclW4oEFzrtqqyf+vMo/r/HUkhImlYWnfZs2+rHmeBlsi4ofpmVW9jzozORG3qF2L8SS1Wn2f8EQigcPDw9qsFFpTBgcHG1o3x+Va6TgCB4CPAcD3AeB7AHALAGRd9lvJBB6X7820MEepgdP4RR+4OP4gBOGqBYWdM1HTVVkmoq58prv2sbExZVpMqVTSlk9VndtWkMcF7PtltBKmmBiV4KTa3pQaRn5v2exNJnETIW/cuLHB3UgBbfK5lqUGDgBvBIBVp/7/5wDw5y77rWQCj0sDMi3MLjW15aYlOrKi8YsE3oyf1kULCjNntnG4lH8Mel7dOeWOa3QcKmbjmmEgtlgMa/ZlDZzRSoRZD1yLWSUSiYa4GsLCQn3DE/m3oaEhbUAppaStKB84AFwJAF9w2XYlE3jUvjebOVpVMcyUTymTSRiijzpIT9dX3XRcG1G5NGAIo63Wao091F2iy2WYzPHNzC37fhmtRtD1QN5eV8yqv78f169fb0zNTCQSyrVj7dq1xndsxUWhA8D/BoB3uWy7kgkcMTqCExfjIE1BbL5XkbxdiT4OyNcXJDXORr4uLRDDaqtywJqu93ihUNDOY5yaMvt+GVGhFc+Sbh2am5vDZDKpbH4ipo+Ja8e6devqYlJ0GngcaAuBA8C3AeCg4vNWYZvKKR+4ZzjO9QCwHwD2j4+PxzJBywlhTMtiFKbpZerp6cFqtWoM9BoeHsZMJhMqoj2qa22GxMJq4GJgXFhtVdzPtEjIpjpbND1ryoxOQiufUbLEkWYsCvGe5+HGjRud4kVSqZT/7ulaNy8rArd9AOBaANgLAP2u+6x0DdyGuIO7VD29xVQrVVCILqJdRb5BpHLTtTYTcBXWBz4/P1+3bVgNQwyg013DyMhInbAlCye2IDwGo51oVTwFFVfJ5XINrZbJGkgWLdH8rXvvFhYWsK+vD0dGRuqOl8lksLe3N7b3q+MIHADeBAAPAsBQkP2YwM1wfTHCvkA6nxJ125Lb8InHtQWsDQ8PO5vybdeg+02sD26CTbgYHBz0I1Xl7miuC5GN4G3ZAXQvJiYm/GpQ8vFNwhaD0S60IqOBBO1isajUmEdHR5VxOevWrTOujQsLC37/BEohW7VqVazvVScS+MMA8DgAHDj1+SuX/ZjAzXB9McL6qOXjuwSKqSLag6R86MjQdK0m/3EYKV83X7Yx6OZSJ8CIvc1NQX+iz31hYSlqVr4unbBFXeYYjHahFRq4WILZdD7xPSVN3GSBq1armMlksFgsYk9PDxaLRcxkMk21OLah4wg87IcJ3IygudRBo8TlIKuJiQkr8S4sNEa0q4gvqFRuu9YwEdw66M5l6v8dpDKazvVA3ZJU8QSpVMqfI1WnNJdgOwajHYgro0YsCy02KXEtEjUxMeH3IdBZFHO5nNKytXbt2nCT4QAm8BWCZl4ME0mpSJ62N70cuvNHoYHbrjVKKd+UNqIag6kXu+p4prHq4g6oPzmZA2VhRZcemEqlOJKc0XYEjXcJYs0aGRnxy6XWajWnQkb0DooxLqoMHdN7FReYwFcQwgZPuZYuJDO7qQ2fSBSq80fhA7dda5RSvqsJLp/P+2Y4k8QvH89mih8eHq4z2a1fvx6r1apP5qqSr0NDQw3zmc/n/cUs7JxwKhmjlVC9xyTA9vT0OFnB5ufnGwJPc7kc5vN5//kV38FyuYyZTMb3cVMKmalkapyWLSZwhhUuGqv4N23fTMqUKlBMjAhNJpPK1DZTaojtHGHgco0uKWC6ID5TyUeyfMgmQrp26pok75vP5xuIP5lMNmWV4BQ1Rquhe5eKxWKdgiFCFYeSSCRwaGjIN4uTAEzPr+o8qhoXuiC3devWxTMByATOcIDL4kySpud5dRpe0GIp8nlNeeUUfCamZ6m09bgjrINEjbsSvqi5q65HXmRcj60LpGs2+lcU2uh4xWLRN+czGFHD9sy6Kh5U/MhkSXMRTqenpxuCdnO5HE5PT0d52XVgAmc4QVyYBwYGlJodSb4LCwu4fv36usjpoASqehl0LTzp36mpqVhb97nCRo5iLrbL3Ijb61LxEN0WLJXm4LqvCVTIR1XEgrVwRhwIas0iH7jYs5taitqEAVeL3fT0dF0aWZzkjcgEzggBne9JRyxBMTc3p20KIB5TNJP19PT4n7jzSBH1L7RqbqLo+IVo94eb/OvHjh2rKwUpaxJBTOCqa+8U4YnRerQr9sFlHSqVSnWEmkql6txrVCehFelrcYAJnBEKolaYSqWwWq3W/d4MaVJ6lI2I26WBqxaOXC6HyWQSE4mE0l/WbMcvRL3GQUE5umsnjVsX1CNqLLaF2FQnIM6+x4zORLtjH8RnNpVK1bnZZIFVJvPBwUE/Lazd1xEWTOCMphAHaZqaAohm+rA+8GbTVExjy+VySmGm2Y5fNBZTapptEYrCOmHSVGwpcozlh07SXKempurKmJLASjUT5CC1kZERTCaTODc3h4jdmUXBBM5oCnNzc5jNZhtIc8OGDaFfAFNTADFFJEwUelBTcdAqa0TkIqJc0FSLjDgeWSMRryuKxdZmxu9GLYYRHq1yWSHaCVZ+/np6epRpYvRMkntLbPfbbWACZzQFCmgTSXNsbAyTyWToY87NzSmbAsgBIWEk5iAkpttWNkXXavUd2zzPUwoeZCWIWsp3vSYVwY6OjjoH07mcqxu1mJWGKO9RnBq4SxaKisTFNcMUfyJmznQrmMAZTSGu4gVzc3N1/ioycxHCantBIsJdqqypKjKNjIxgLpdrMNmFKUjjgnK57OxjFxe4bDaLpVKp7m9b3WbWsrsbUd+/uJ6HKAJl8/m8tYMYa+Ad8mECbw90gVFBXoq4NWndfrbFx5YbWigUtOUTVUVU4giwo2tQtUQ0gfyFKo3cNa0tLi27meOzBcCMODTmdlmVbKZ6ehd08SrkA4+z2UjcYAJnNAVdD2zXlyIqTRrRzfcmni9MHqk8NpOWLi9ocfgL5cAd8W8TOjV1phmNjq0DdrTSZ90MXMapq2lAmJqawlKppCyVunbtWlyzZk1XkzciEzgjApTLZT+obGBgINBLEYUmHWQ/xHqzuW2RsGkXrtHy5CePmjB1TVNsLgy6pk5bzJu5r50okHQaumWOdBkNY2Nj1poGBBLoSqWSvz6p3HHdDCZwRlthIpEgEadhtK0oFjNXX12xWIzFBx7WhVGr6TsxmZrNxI1mhIpOFEg6Dd1ipdCVEE4mk041DQjL3aXCBM5oK3Qk6tIZq9mXM6rFTE7d0uWBxxGF3gxpqYLfdHXWWwXWwONHN5AaleYVx0lV0+h3FtaYwBlthi61SVVrPY6FOOrFrNUk0uz5RHeCqc56q8A+8HjRDeSNaH+uWVhbAhM4o+2QF5VuLsnZahKJ6nydpNFwFHo8CPqsNBPbEvdYWVhbgonAvaXfuwNbtmzB/fv31313/PhxeOKJJ+Dll19u06gYYfDkk0/C4OAgJBIJ/7uXX34Zjhw5Ahs2bFDu84tf/AKOHj0Kx48fh76+PshkMpBMJmMfayKRgHw+D319ff53u3btgp07d8KhQ4dgcnISKpUKbN++PbYxNHu+HTt2QLVaheeffx6y2SxcffXVcOONN8Li4iLs2LEDDh482NLxMOLB5s2b4cYbb4Rt27b53+nu8Y4dO+Dmm2+GWq0Gl156KezZsweuuuoqePvb3w433nhjS8Zre474OQPwPO8+RNyi/FHH7J34UWngjzzyCD799NN48uTJZgUdRgvxzDPP4Pe+9z08evQonjhxAo8ePYrf+9738Jlnnolk+6hw8uRJfPrpp/GRRx6J9TxRQaWd6tIAS6VSXY15V62WNaPORRArSxT1HRjxA5azCf3BBx9k8u5SPPPMM3jw4EG899578eDBg0YyPnjwIB49erTuu6NHj+LBgwfjHiaePHkSH3zwwdjP0yx0xJpMJpULdTqd9sk7CCGzb7JzEeTexFVhkREtlj2BM5Y/7r33Xjxx4kTddydOnMB77723JefvhudMt3inUinjQh2UkDvJl84IV08ckTXwbgETeMwQm3p84xvfwNe+9rX42GOPtW08N9xwA27YsAFnZmb8z89+9jPjPs8//zxef/31eMYZZ+A555yDs7OzeM899xj3oev+l3/5F3zb297W8Lvue91xZPyP//E/8HOf+xwiIm7ZsgUXFxfrfj969CjeeOON+Kd/+qeIiHjLLbfgAw88YD1fGHTCc2aDqWKcaaEOSsisgXcOdDUKqKOfyR3SbIVFRmvABB4ziIC+/e1vY7FYxIcffrit47nhhhvwYx/7WKB93vnOd+If/uEf+lruI488gl//+teN+zTTjSzocS6++GLctWuX0Qd+zTXX4Fe+8pVA5z5+/LjTdp3wnNmgI9bR0VHtQm0q9qIrYck+8M5Bs8JUO6PQGW5gAhcQRwpKMpnEO+64AycmJvDQoUP+99dccw3u2LEDL7roIpyYmPDJ5eTJk/j7v//7ODU1hZs3b8YvfvGLiIj4b/7Nv8GvfvWriIhYKpXwX//rf42IiDfddBN++MMfxkcffRQ3bdqE73nPe/Css87CK664Al988cWG8QQl8IcffhgLhQK+8soryt//4i/+AqempnBqagr/8i//su66EREfffRR5YIhfv+Zz3wGr7zySpybm8PXvOY1+MEPfrDuOB/+8IdxenoaL7jgAjx8+HDDdczOzuL111+PZ555Jp5xxhm4a9cufOaZZ/Azn/kM/s7v/A7eddddODAwgIVCAWdmZvDhhx/G7373u3jBBRfg6173OiyVSnjkyBH/WB/4wAfw3HPPxY9//OP45S9/GaempnB6ehovu+wy5Rx0A4GbtDEqMSkv1LqGJ7lcDiuVirGEpWi2ddH4GNGD3RnLH0zgpxCX5rBq1SocGBjA+++/v+77a665Bt/+9rfjiRMn8IEHHsBisYiIiDfffDP+2q/9Gr7yyit4+PBh3LhxIz755JO4a9cu/P3f/31ERDzvvPPwggsuQETEa6+9Fr/5zW/io48+ir29vfjd734XERHf8Y534N/8zd80jEc2oV9++eXG8X/1q1/FUqmk/G3//v24efNmfOGFF/D555/Hs846C7/zne8gYnACn5iYwOeeew5feuklHB8fxx//+MeIiAgA+LWvfQ0RET/4wQ/iH//xH/vXIRL4e97zHkREvOOOO+qO+zu/8zv+fIsa+Ote9zq8/fbbERHxP/yH/4Af+MAH/GPNz8/7223evBmfeOIJREStq6EbCBwxuD+UCECVpy9Cp9WxNt5esDtj+cNE4D0tSmWrg+d5f+x53vc8zzvged5tnuepE38jxs6dO+Gmm26Cbdu2QV9fH2zbtg1uuukm2LlzZ1PH7evrg4svvhhuuummht9KpRL09PTAWWedBT/5yU8AAGDPnj2wfft26O3thVwuB7Ozs3DvvffCZZddBrt374YHH3wQzjrrLMjlcvDUU0/B3r174eKLLwYAgImJCTj77LMBAODcc8+Fxx57TDmmf/fv/h0cOHAADhw4AIuLi6Gvbc+ePXDllVdCMpmEVCoFv/EbvwG7d+8Odaw3vOENkMlkIJFIwFlnnQU/+tGPAABg9erV8Ja3vAUAzNdE+Z9bt26Fn//85/Dcc89pz3X06FF47rnnYHZ2FgAArrnmGrjzzjv939/5znf6/7/kkkvg2muvhf/1v/4XnDhxItS1dQq2b98OBw8ehBMnTkAymYQvfvGLxud9cnLSfx5pvxtvvBHOOuusuuNeeumlcOjQoYbzxfVOMdxQqVTguuuug8XFRTh+/DgsLi7CddddB5VKpd1DY7QAbSFwAPgYIk4j4tkA8HUA+KNWnPTQoUNw6aWX1n2nW5iCoKenB7785S/Dvn374D/9p/9U99uaNWv8/y8JU3qMjY3Bc889B9/85jdh69atcNlll8GXv/xlSKVSsG7duobj9fb2wiuvvNLU2AEApqam4P7774+dvHRj7+vrA8/zGr6XQdvo/g4CsQDMX/3VX8Gf/MmfwOOPPw7nnnsuPPvss6GP20lwed5VBHD11VdDqVSq22/Pnj0wOTkZ6hyM+LB9+3bYuXMn7NixAxKJBOzYsQN27ty54oqdrFS0hcAR8efCn0kAaEk5ONI2ROgWpqDo7++Hb3zjG/CFL3xBqYmLuOyyy+BLX/oSnDhxAp5++mm488474fzzzwcAgAsvvBA+8YlP+AT+8Y9/HC677LKmx2dCsViELVu2wA033OALGY899hh84xvfgMsuuwxuvfVWePHFF+EXv/gF3HLLLbGPR4cvfelLALB0zzKZDGQymbrf161bB88//zwAAGQyGRgYGPCtBX/zN3/ja+MyfvjDH8IFF1wA//E//kcYGhqCxx9/PMaraB1cnncVAbztbW+DWq3mpNXF+U4x3CBaTw4ePMjkvYKwql0n9jxvJwC8GwCOAsA2y+aRgLSNm266yS8deN1110Vm7hscHPS156GhIe12V155JezduxdmZmbA8zz4z//5P8PIyAgALJH7bbfdBq95zWvg1a9+NRw5ciQUYf7lX/4lfP7zn/f/vvXWW2H16tXwnve8B/7+7/++Yfu//uu/ht/7vd+D17zmNbB27VpYv349fOxjH4NzzjkHrr32Wl/AeM973gOvf/3rA48nCiQSCXj9618Px48fh09/+tMNv//mb/4mvPe974VPfvKTcPPNN8PnPvc5eP/73w8vvvginHHGGfCZz3xGedwPfvCD8IMf/AAQEd7whjfAzMxM3JfSErg+79u3b29Y9C+++GLYsWOHX8JSp9XF/U4xGAwDdM7xZj8A8G0AOKj4vFXa7kMA8FHDca4HgP0AsH98fLzBwd8JUeiM5Y9uCWKT0Yrn3fUc/O4xGMEBndzMxPO8cQD4e0TcbNtW1cyENAQGI07wc9Ycdu3aBZVKRamps8mXwdDD1MykXVHorxX+fCsAfL8d42AwGK0BR6szGNGjXT7wP/M870wAOAkAPwKA97dpHAwGowXgaHUGI3q0hcAR8W3tOC+DwWgPKFpd7FPN0eoMRnNoVx44g8FYQeCCIwxG9GhbGhmDwVg5oEA1l9Q0BoPhBtbAI0Bvby+cffbZ/uexxx7zS5+GwWc/+1l48sknIxyh/jzlcln52ze/+U04//zzYdOmTXD22WfDO9/5Tvjxj38c+5h0+MQnPgEvvvhioH1uv/12v0Qro/3ggiMMRrRgDTwCrF27Fg4cOFD33d133x36eJ/97Gdh8+bNsGFDS0rEN+DgwYOwY8cO+NrXvub7KL/2ta/BY489BuPj47Gck/Iae3rUMuUnPvEJeNe73gX9/f2xnJ/BYDC6DStSA7/88qVPnEilUgCwpAVefvnl8Pa3vx02bdoEV199tV+u9L777oPZ2Vk499xzYW5uDp566im4+eabYf/+/XD11VfD2WefDS+99BIUCgV45plnAABg//79cPmpwX/kIx+B3/7t34bLL78czjjjDPjkJz/pn//zn/88nH/++XD22WfD+973Pr/O+Wc+8xn4lV/5FTj//PPhrrvuUo79z//8z+HDH/5wXYDRr//6r8PWrVsBYKn06Jve9CY499xz4bLLLoPvf38pC/Daa6+F3/3d34WLL74YzjjjDLj55pv9/T/2sY/BeeedB9PT03DDDTcAwFK51jPPPBPe/e53w+bNm+Hxxx+H+fl52LJlC0xNTfnbffKTn4Qnn3wStm3b5gdB3XbbbXDRRRfBOeecA+94xzvghRdeAIAly8GmTZvgnHPOgb/7u78Le/sixa5du2Dz5s3Q29sLmzdvhl27drV7SAwGYzlAV+GlEz9R9ANHRJydXfpEhZ6eHr91J7XlpFabi4uLmE6n8fHHH8cTJ07ghRdeiLt378Zjx47hRRddhD/96U8REfGLX/yi3/97dnYW7733Xv/4r371q/Hpp59GRMR7770XZ08N/oYbbsCLLroIX375ZXz66adxcHAQjx07hg8++CC+5S1v8fsEz8/P4+c+9zl88skncePGjfjTn/4Uf/nLX+LFF1/st+IU8frXvx4PHDigvd5f/dVfxYceeggREe+55x7ctm0bIurbp37rW9/C9773vXjy5Ek8ceIEvvnNb8Y77rgDH330UfQ8D/fu3esf+9lnn0VExFdeeQVnZ2f9Fq3iHDz99NN42WWX4QsvvICIiH/2Z3+GH/3oR/Gll17CfD6PDz30EJ48eRLf8Y534Jvf/GaHO2iH6TkzVRjjdpsMBqMZgKES24oyoZPWfccd9X/ffntzx1WZ0EWcf/75kM/nAQB8H3k2m4WDBw/CFVdcAQAAJ06cgNHR0cDnfvOb3wxr1qyBNWvWwPDwMPzkJz+B//t//y/cd999cN555wEAwEsvvQTDw8Pwj//4j3D55Zf7ddrf+c53wkMPPWQ8/rPPPgtveMMb4MUXX4Trr78e3v/+98Pdd98N73jHO/xtfvnLX/r/V7VPve222+C2227za6i/8MIL8IMf/ADGx8fh1a9+NVx44YX+/l/+8pfhU5/6FLzyyivw1FNPwYMPPgjT09N1Y7rnnnvgwQcfhEsuuQQAAI4dOwYXXXQRfP/734eJiQl47WuX6gS9613vgk996lOB5zQIdBXGAE43CqECJgDgFzDZsWMH+4AZDEZTWFEE3i6o2mgiIkxNTcHevXut+69atQpOnjwJAAAvv/yy07GvueYa+NM//dO6bW+99Van8U5NTcF3vvMdmJmZgVe96lVw4MAB+PjHPw4vvPACnDx5ErLZrFZgUbVPRUT40Ic+BO973/vqtn3sscfq2no++uij8PGPfxzuvfdeGBgYgGuvvbbheul4V1xxRYMp2iRExQUbQXMBEwaDERdWlA/89tuXPrOzSx/6ux0488wz4emnn/YJ/Pjx4/DAAw8AQH1bTACAQqEA9913HwAA/O3f/q312G94wxvg5ptvhp/+9KcAAHDkyBH40Y9+BBdccAHccccd8Oyzz8Lx48fhK1/5inL/P/iDP4CdO3fWkQxFgKfTaZiYmPD3RUS4//77jeOZm5uDT3/6076f+l/+5V/8sYn4+c9/DslkEjKZDPzkJz+Bf/iHf/B/E+fkwgsvhLvuugsefvhhAAD4xS9+AQ899BBs2rQJHnvsMfjhD38IANASX7ONoLndJoPBiAsrisA7CatXr4abb74Z/v2///cwMzMDZ599th+5fu2118L73/9+P4jthhtugA984AOwZcsW6O3ttR77rLPOgj/5kz+BN77xjTA9PQ1XXHEFPPXUUzA6Ogof+chH4KKLLoJLLrlESyKve93r4L/+1/8K7373u+HMM8+ESy65BA4dOgRXXXUVAIDf83xmZgampqbgq1/9qnE8b3zjG+Gqq66Ciy66CF73utfB29/+9joBhTAzMwOvf/3rYdOmTXDVVVf5JnIAgOuvvx7e9KY3wbZt22BoaAg++9nPwvbt22F6eto3nycSCfjUpz4Fb37zm+Gcc86B4eFh61w1CxtBcwETBoMRG3TO8U78RBXExmAEhe45cwlS4zaaDAYjLICD2BiMeOBSYWz79u0csMZgMCIHEziD0SSYoBkMRjvAPnAGg8FgMLoQy4LA8VS6EoMRB/j5YjAYnYiuJ/BEIgHPPvssL7KMWICI8Oyzz0IikWj3UBgMBqMOXe8Dz+fz8MQTT8DTTz/d7qEwlikSiYRfSY/BYDA6BV1P4H19fTAxMdHuYTAYDAaD0VJ0vQmdwWAwGIyVCCZwBoPBYDC6EEzgDAaDwWB0Ibxuit72PO9pAPhRzKdZDwDPxHyOdoGvrTvB19adWK7XtlyvC6Azr+3ViDik+qGrCLwV8DxvPyJuafc44gBfW3eCr607sVyvbbleF0D3XRub0BkMBoPB6EIwgTMYDAaD0YVgAm/Ep9o9gBjB19ad4GvrTizXa1uu1wXQZdfGPnAGg8FgMLoQrIEzGAwGg9GFYAJXwPO8P/Y873ue5x3wPO82z/M2tHtMUcHzvI95nvf9U9d3i+d52XaPKSp4nvcOz/Me8DzvpOd5XRNJqoPneW/yPO+fPc972PO8P2z3eKKE53mf9jzvp57nHWz3WKKE53kbPc9b9DzvwVPP4gfaPaao4HlewvO8fZ7n3X/q2j7a7jFFDc/zej3P+67neV9v91hcwASuxscQcRoRzwaArwPAH7V5PFHi/wDAZkScBoCHAOBDbR5PlDgIAL8BAHe2eyDNwvO8XgD4/wDg/wGAswBgu+d5Z7V3VJHiswDwpnYPIga8AgC/h4hnAcCFAPA7y+i+/RIAfhURZwDgbAB4k+d5F7Z3SJHjAwBwqN2DcAUTuAKI+HPhzyQALJtAAUS8DRFfOfXnPQCwbNpsIeIhRPzndo8jIpwPAA8j4iOIeAwAvggAb23zmCIDIt4JAEfaPY6ogYhPIeJ3Tv3/eVgig7H2jioa4BJeOPVn36nPslkbPc/LA8CbAeCv2z0WVzCBa+B53k7P8x4HgKtheWngIn4bAP6h3YNgKDEGAI8Lfz8By4QIVgo8zysAwOsB4B/bPJTIcMrEfAAAfgoA/wcRl821AcAnAOAPAOBkm8fhjBVL4J7nfdvzvIOKz1sBABCxgogbAeALAFBu72iDwXZtp7apwJK57wvtG2lwuFwbg9FueJ6XAoC/BYB/K1n0uhqIeOKUazEPAOd7nre5zUOKBJ7nvQUAfoqI97V7LEHQ9f3AwwIRf81x0y8AwN8DwA0xDidS2K7N87xrAeAtAPAG7LI8wgD3rdvxLwCwUfg7f+o7RofD87w+WCLvLyDi37V7PHEAEZ/zPG8RluIYlkMg4iUA8Oue5/0rAEgAQNrzvM8j4rvaPC4jVqwGboLnea8V/nwrAHy/XWOJGp7nvQmWzES/jogvtns8DC3uBYDXep434XneagD4TQD4WpvHxLDA8zwPAG4CgEOI+F/aPZ4o4XneEGWteJ63FgCugGWyNiLihxAxj4gFWHrXFjqdvAGYwHX4s1Nm2e8BwBthKTJxueC/AcA6APg/p9Lk/qrdA4oKnudd6XneEwBwEQB8w/O8b7V7TGFxKtCwDADfgqVAqC8j4gPtHVV08DxvFwDsBYAzPc97wvO869o9pohwCQD8FgD86qn368AprW45YBQAFk+ti/fCkg+8K9Ktliu4EhuDwWAwGF0I1sAZDAaDwehCMIEzGAwGg9GFYAJnMBgMBqMLwQTOYDAYDEYXggmcwWAwGIwuBBM4g7GC4XneiVOpTgc9z/uK53n9p74f8Tzvi57n/dDzvPs8z/t7z/N+RbH/suwqxmB0A5jAGYyVjZcQ8WxE3AwAxwDg/aeKkdwCALcjYhERz4WlrnU5xf6fheXZVYzB6His2FKqDAajAbsBYBoAtgHAcUT0i/wg4v2qHRDxzlNNOxgMRovBGjiDwQDP81bBUu/xfwKAzQDQVU0dGIyVCCZwBmNlY+2p9pD7AeDHsFTHm8FgdAHYhM5grGy8dKo9pA/P8x4AgLe3ZzgMBsMVrIEzGAwZCwCwxvO86+kLz/OmPc+7rI1jYjAYEpjAGQxGHU71iL8SAH7tVBrZAwDwpwBwWN52GXcVYzA6HtyNjMFgMBiMLgRr4AwGg8FgdCGYwBkMBoPB6EIwgTMYDAaD0YVgAmcwGAwGowvBBM5gMBgMRheCCZzBYDAYjC4EEziDwWAwGF0IJnAGg8FgMLoQ/z+/MlsvjmxZmQAAAABJRU5ErkJggg==\n" }, "metadata": { "needs_background": "light" } } ], "source": [ "plt.figure(figsize=(8, 5))\n", "plt.scatter(X[:Klen, 0], X[:Klen, 1],\n", " c='w', edgecolors='k', label='Known E. Coli inhibitors')\n", "#plt.scatter(X[Klen:Klen + Flen, 0], X[Klen:Klen + Flen, 1],\n", " # s=200, c='r', marker='2', edgecolors='k', label='Iteration 2 molecules')\n", "plt.scatter(X[Klen + Flen:, 0], X[Klen + Flen:, 1],\n", " c='b', marker='+', label='Finetuned Generated')\n", "plt.xlabel('PC 1')\n", "plt.ylabel('PC 2')\n", "plt.legend();" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "id": "UhWJHYsJ5jC-" }, "outputs": [], "source": [ "idxs = []\n", "for Fbv in Fbvs:\n", " idx = np.argmax(DataStructs.BulkTanimotoSimilarity(Fbv, Sbvs))\n", " idxs.append(idx)\n", "nsmols = [smols[idx] for idx in idxs]" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "id": "RDIXRY0o9yOd" }, "outputs": [], "source": [ "showmols = []\n", "for i, j in zip(fmols, nsmols):\n", " showmols.append(i)\n", " showmols.append(j)" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "colab": { "base_uri": "https://localhost:8080/", "height": 1000 }, "id": "aA4ygwVJF3Fh", "outputId": "306174d2-5f22-420a-a483-c93fdaab8400" }, "outputs": [ { "output_type": "stream", "name": "stderr", "text": [ "/usr/local/lib/python3.8/dist-packages/rdkit/Chem/Draw/IPythonConsole.py:258: UserWarning: Truncating the list of molecules to be displayed to 50. Change the maxMols value to display more.\n", " warnings.warn(\n" ] }, { "output_type": "execute_result", "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlgAAA1ICAIAAADEmn35AAAABmJLR0QA/wD/AP+gvaeTAAAgAElEQVR4nOzdd1RU1xYH4D0zDEV6U0BRQQUBOyIiiA1LIiqKGDViiYoaFY0lGBPFmmASa4wJJlGxRuxYULGCDRRsgIqCJApWehsYZvb74+A8YsEp6AB3fyvrLR/MPXeD4/zuPfcUHiICIYQQwlV8dRdACCGEqBMFISGEEE6jICSEEMJpFISEEEI4jYKQEEIIp1EQEkII4TQKQkIIIZxGQUgIIYTTKAgJIYRwGgUhIYQQTqMgJIQQwmkUhIQQQjiNgpAQQginURASQgjhNApCQgghnEZBSAghhNMoCAkhhHAaBSEhhBBOoyAkhBDCaRSEhBBCOI2CkBBCCKdREBJCCOE0CkJCCCGcRkFICCGE0ygICSGEcBoFISGEEE6jICSEEMJpFISEEEI4jYKQEEIIp1EQEkII4TQKQkIIIZxGQUgIIYTTKAgJIYRwGgUhIYQQTqMgJIQQwmkUhIQQQjiNgpAQQginURASQgjhNApCQgghnEZBSAghhNMoCAkhhHAaBSEhhBBOoyAkhBDCaRSEhBBCOI2CkBBCCKdREBJCCOE0CkJCCCGcRkFICCGE0ygICSGEcBoFISGEEE6jICSEEMJpFISEEEI4jYKQEEIIp1EQEkII4TQKQkIIIZxGQUgIIYTTKAgJIYRwGgUhIYQQTqMgJIQQwmkUhIQQQjiNgpAQQginURASQgjhNApCQgghnEZBSAghhNMoCAkhhHAaBSEhhBBO01B3AYQQQtRjQ2amFo/XSEurr4mJumtRJwpCQgjhqCKJ5Etra3VXoX7UNUoIIRz1rKzsjydPEgoK1F2ImtEdISGEfCyIcOMGGBqCra16C5EgIkADTc2JlpbqraQmoCBUSSmWSlBSjuVPy5/aadmpuxxCSM02dy506QIZGaCjAxMmqLGQlY8fpxQXDzEzU2MNNQcFofLCc8KvFV/T5et20e2SVpZGQUgIqUpZGZSWwpAhAACTJqkxCPe9eBH+/LkmjzezUSN11VCjUBAqQyKR3L59O9I4cnOTzQBwT3QvrSxN3UUR8sEhYIY4w1zD/FbJrXY67YQ8oborqlUEAhCLK/6MqK4qrhcW/vzoEQB83bhxK11ddZVRo1AQKkMgEFhZWfFLaKgR4RAEnPzvZJd6Li/LX5ZgiYO2AwWhYgQCsLODH36AnBzw9YWSEtDR+cglPCopmZ2aKkYcY2HhQ/2ir9BHuZLq16/fsV7H1c9X78rZlSnOVHc5hHxwD0of2GjaTDCbMM9inrprqbVmzYLJk8HFBTZsgCZNQCT6mCcvKCjw6d694fPnXQwNp1pZfcxT13B0R6i8KeZTHpY9LJYWN9Nq1lanrbrLIYTUBp6ekJgILVvCixcQEQHDhqnS2Lp1644dO+br69uqVSsnJycDA4N3vVIikXz22WcJcXHlc+ZcjIvj83iqnLeOoSBUiY2mDfuDtoa2eish5ENrrtU8tSx1W/a2ImmRumupzT75BBITwdwc7t6FrVtVCcKlS5cuWbKkvLz8xIkT7CuWlpZOTk6Ojo7sf9u3b6/76ing3LlzIyMjTU1N9+/fr6elVQ0/SB3CQ/U9syWE1CKppakReRHNtZp76HkAgJHAiAccuKtISQE7OwCA+/ehRQv4919ISYGOHcHISMkGk5PByQmMjKCkBCQSePQILCyUaOb48ePe3t5SqbRnz54NGzZMTEy8c+dOSUlJ5dcIBAJbW9vWrVuXlZUdOXJEU1Pz9OnTHh4eSlZed9EzQkKIXCLzI2c9nrU3Z6+xwNhYYMyJFASAdesAACQS+PVXuHYN1q8HPT2YMQOUXo3F0RE6dIDcXGjbFsrLYedOJdq4c+fO8OHDJRKJh4eHpqbmunXr4uPji4uLMzIyIiIiQkJC/P39nZ2dhULh/fv39+/ff+zYMT09vRUrVlAKvhV1jRJC5HK56DIAuOm5qbuQj+vFC/jpp4rZDgcPwtdfg5kZPH0KFy9Cv35KtjlmDCQkPDMwiPb03HHgwMFZsxQ6Oisra+DAgXl5eS4uLjExMUKhMDEx0d3dHQCsrKysrKwGDBjAXikWi+/du5eUlLRw4cKUlBRtbXqC83Z0R1j7FBYW3r9/v6ysTN2FEG65XHgZALrodlF3IR+XmRnMmAGBgQAAenqQmwsAkJcHenpKN1k+YsRge3vr8+cnJyYeunDh5s2b8h8rFov9/PwePHhgb29/69YtAFi3bh1LwTcJhcJ69eodO3bM0tISALZu3ap0zXUbBWFtIhaLt27d2qxZMzs7u5YtW16/fl3dFRGueCZ+9rDsob5A30nbSd21fFwaGqCpCZqaIBDAuHGwciX88APcvAnvyB65mjQ3l9rbi8ViJycnUDCfpk+ffvbs2fr162dlZZWWlk6fPn3y5MlVvF5LS2vHjh2xsbEGBgaXL1++e/eu0mXXZUhqA7FYvHnzZttXC/VqaGgAgKam5uLFi0tLS9VdHan7jt446nbezTfZV92F1ABJSThjBm7erEobe/fuBQB7e3sAqF+/fllZmTxHrVq1CgB0dHQcHBwAoHfv3mKx+L1H9e7dGwDYXeO3336rStmIKBaLP//8cxMTk759+86dO3fz5s1Xr14tKipSsVn1oiBERMQzZ3DBApw3D1NScMsWzM5GRFy1St1lISJKJJLw8HD2DwYAHBwcwsLCdu7c6eXlxefzAaBVq1axsbHqLpPUcXPmzAGAhQsXqruQGmDPHgTADh1UaaO0tNTMzAwA6tWrBwCzZs2Kj48vKSmp4pATJ05oaGjweLzOnTuzEM1mn1Tvs23bNvZBAQCNGzeWSCSqVD516lQA4L0xDdHS0tLLyyswMDAsLOzatWvFxcWqnOUjoyBERMRx4xARS0tx0iRcuhSfPkVEnDpVvUVJpdKIiIi2bSum6tvY2ISGhpaXlxcWFrIe/9atW7N7RD6fHxAQUFBQoN6CSR3G7iciIyPVXUgNUFqKpqYIgLduqdLMmDFj3uyis7S09Pb2DgoKYnEii8a7d+8aGRkBQNeuXQHA2Nj43r17cp6oqKhIX18fAKytrQHgzJkzStf8559/AoC2tnZYWNjBgweXL18+fPjw1q1ba2pqvvaDCIVCa2vrKVOmlJeXK326j4aCEFEs/n/msSD85htctgz791djUVFRUR06dGBvqSZNmoSGhlbuAzly5Ah7TwuFQnd3d6FQCAC2tranTp1SY82kriorK9PR0eHxeFlZWequpWaYPBkBcO5cpRsoKSlh17jNmjX77rvvhg0b5uTkxP4hV6apqdmmTZshQ4ZYWFgAgJubG4/HEwgEx44dU+h0Y8eOBQBPT08AGDt2rHI1nz9/ngXen3/++dq3xGJxamqqbOaGo6OjQCAAAFNT08OHDyt3uo+JghAREceNw9xcvH8f585V+x3hzz//3L59e1kEbty48a3PD3JzcwMDA1nvKBs7w/or/P396dOKVK9z584BgKOjo7oLqTEuX0YAtLJCpW53pFLpyJEjAaBp06bPnz+XfV0WJ8HBwX5+frI4YZe5DRs29PX1BYBffvlF0TOePXsWABo2bMjj8XR1dZXoPbp/H/v12wcA8+bNk+f1JSUlI0aMAIDPP/9c0XN9fBSEiIiYmYkhIbhhA4pEeOECsge/J058/EKOHz/OOt/r168fEhJS9TMDRIyOjrazs2PDZ9zd3bW0tFjvymbVnuQTgohFRUUREREBAQF6enq6urrDhw9Xd0U1SMqQIdPbtj2uVF/xkiVLAEBfX//W+zpXi4qKrl69GhwcDADm5uYikejAgQNKnFEqldrY2MieFG7dulWhw3Nz0cEBAXDatBvyP2JMT0/n8/k6Ojq5ubmKl/xRURAiImJUFAJgr17qrqNiVFizZs3y8vLkPKS4uDgoKIhdOVpbWzs6OrIu0z179nzQUkld9fTp040bN3766aeV519bWFikpaWpu7QaZNmyZQAwYsQIRQ/ct28fn8/n8/kRERHyH9W6dWsAUOiQ13z33XcA0KVLFwDw8vKS/8DycvT2RgB0dES5P5YqdO/eHQD++usvxQ776CgIERFx/34EQB8fddeBv/zyCwCwZZACAwPlP/DKlStsTpKzs3OnTp0AYODAgR+uTlL3pKWlrVmzxsvLi03OYYOwnJ2dg4OD79y5o+7qapxHjx4JBAJtbe2cnBz5j7p+/TpbBfvnn39W6HQrVqwAgKFDhypY5v/dv3+f9Yvq6Ojw+fx///1XzgNnzkQANDPD1FSFT7p582YA6NWrt8JHfly1e4m1lBTQ1YWGDeHMGejZU4WG8vMBAPT1q6ku5RUUFAAAe/Knr0g9rq6uCQkJ33///cCBA/fu3RsXF8fikJCqnT9/Pjw8/Ny5c8nJyewrOjo6n3766aBBgwYMGGBubq7e8mqsRo0adezYMTY2du/evRMmTJDnkKdPnw4cOLCoqGj06NGzZ89W6HSjRo2aP39+REREVlaWqampEgU3b97cx8fHxsYmNjaWfT507tzZycmpdevWTk5O9vYthcK3xIFUCvn5oKUFBw/Cq2nMCvD19d2+Ha9eHfrwIdjYKFH1x6LuJFbJ7t0YHY2IOG2aag398gsCqH2+BCJ+88038GpwV0hIiHKNTJs2DQDWrVtXvbWpS25urqLP9s+cOePp6fny5Ut5DygtxdWrcfFiPHdO4fpqs4yMjAYNGrCPAmNjYz8/v7CwsPz8fHXXVQtkZGQYGxsDQL169RYuXBgeHp6cnFzF9PaSkhI2/69Lly4ikUiJM/bt2xcANmzYoELVePv2bV1d3TcXHbW3L3Fyws8+w6VLcf9+fPgQu3TB/Hw8cQJjYzExUfkzjhqFALh4sSpVf3C1+44QALZtg+hoSEhQrZUadkcolUpBwTvCNxtR+vAapaSkZNCgQUVFRZGRkWwC8ntdu3Zt0KBBBQUFmzZtmjt3rlynWbcOvLygXTuYOhXatlV+h53aJi4u7tmzZ6ampuHh4Z6enrJOUVI1kUg0ZMiQnJwcLS2t4uJiNvgFXk2ec3R0dHZ2ZjsCOjg4sA6eiRMnXrlypUmTJgcOHNBSajvA0aNHnzhxYuvWrVOmTFGu7KysLB8fn6KiIl9f30WLFiUnJ9++fTs5OTk5+f7Dh9qlpZCUBLt3AwCMGAGNG8NPP0H79qClBar0Lo0eDdu3w7ZtsGAB1NjNgGv9+97fH7p2hadPVWpkC+KdDh16Wln1raaqlJafnw8AEokEAKrYbFqeRpQ+vEZ5+fLlo0eP0tLSunXrduLEiUaNGlX9+vv373t7excUFIwcOVKB3qcHD2DOHACAdu0gNRWcnVWruta4fPkyAEyZMqWnSo8WuAURx48fHxsb27Bhw4KCgtLS0i5dupibmycmJj58+DAtLS0tLe3IkSPsxbq6uo6OjjweLy4uTk9PLyIion79+sqdd/DgwUZGRleuXLl79y6bLqUQsVg8dOjQ1NRUZ2fnrVu31qtXr1WrVsNebQtcUgJ37kBiIiQlQWIidO0KqalgZAS3bkH37srVW6FXL7C2hgcP4NIlVdZn/bBq96LbJiYVd3FNmqjUzrUnT35MSLhfAy5X2M2cWCwGuiMEAABra+uLFy+2a9cuOTnZw8Pj3r17Vbw4IyOjd+/ez54969+//5YtW9iVuFxsbCApCQAgKUmZJyG1FgtCNzeO7aykmivr1+/cuVNfX19HRyc/P9/HxycmJubgwYMPHjwoKSlJTEwMDw8PDg729va2tbUtLi6+evXqtWvX9PX1161bV1xcnJqaqtx5dXR02DzC7du3K3H4tGnTzp07Z2VldejQIbau238bhw4dYPRoWLECjh4Fds85fTocO6Zcsf/H58PnnwMARESo2tQHpN6e2cTExG3btil9+MWLuGgRIqKCI7Be5+/vDwBbtmxRqZXq0KtXLwBgS04ovRISGyZz5cqV6q1NjXJycthIWhMTk8uXL7/1NS9evGArEXfu3LmwsFCB1l+8wHv3cMUKXLJELZNH1aWsrKxevXo8Hu/FixfqrqX22LsXebxET0+3jh3ZP9WqH2Dn5OTExMSwf5J9+vQBgOnTpyt98vPnzwNAo0aNFF23bOXKlQCgo6MTFxcn5yE3biAiHj6MO3YoWubr/vkHly1DqRSfPMGaOQdHnUEokUjYpJZ+/fr9888/SrRw7Bj6+GBCAs6cqVIlPj4+ALB//36VWqkO7B8MW2L76tWryjXC8iApKal6a1MvkUg0ePBgANDT0zt58uRr3y0qKmLvpdatW8u5EvH/rVmDANivH/r64tGj1VZxjZeQ8E+zZo4ODg7qLqT2uH4ddXURAD088tq0cbezS5VvSsGhQ4cAoFmzZgBgamqq9I4xUqmUNXL69OmoqKihQ4cuWrRoz549d+/erWKczvHjxwUCAY/H27Vrl0KnS0hQZf2c//DwwB07MCYGa+b0ZjXfEYaHh8uWYA8JCZF/zQKJBCMi8OhRjIzE8eMxMBDLypT/22JdQ8ePH1fyeESUSjEyEsPD8X1rwVSNZViTJk0AQP5FdV/TsGFDAJB/nlBtUV5e/sUXXwCAlpZW5eUCSktL2YA6W1vbzMxMhdsdNgwBsEsXBEDFF6+qvdauRQCcOJG28ZLPkydobY0A6OaGAKilJbl4Uc5DxWIxG53bokULADh48KDSVbBVZsaMGbN48eLKfXtCodDR0dHPzy84ODg8PDwxMZF9nN65c4et1r2I9Z4pyN4eAVCVj0Zm9mwMDMTDh3H9enR0RD8/XLwY9+7Fe/eqIWVVp/7pE0+fPmU9kwDg7u7+3qm7UilGRGCHDgiA33yDUVEYHY0tWuD8+di5Myp6F3Tr1i0/Pz8ej1e/fn0HB4dr164p+WMsWoRRUXjjBk6apGQLiPgqw9jFgTKf6YiIyIbJ1PxljZQglUrZEBiBQLBx40ZELC8v9/PzA4D69esreenQqBECYJMmCIDx8dVc8Qdw9+7dLVu2VF6jUjmffYYA+Mcf1VIUB4wdiwDYpg1qairxi5sxYwa82jtiyJAhSleRmJjI4/H09PSsra3bt2/v4eHh7OzMFhF97bHX2rVrs7KymjdvDgC+vr5SqVSJ0y1digA4cqTS9VaYPRsfP8ZevXDuXAT4z3/duo1t3779qFGjQkJCDh8+/PDhQ1VPpjj1ByFz+PBhNiBQW1s7ODj4XdtURkRg+/YVv74mTfC335D90rZtw6ZN2VUaLlmC8mxyeePGjUGDBrF3j56eHps4LBQKv/vuO2Vm+cjyb+pUlGOrzHdhGdayZUtjY2PltlWSSqV8Pp/H49WK3U+UExISAgA8Hu+HH36YOHEiABgaGiYkJCjT1uPHCICGhsjjoa6uKn93H1pqauqaNWvc3d3Z36+JiUlKSooqDTZujAAqTRHjlvx8HDUKTUwQAL/+WtGj4+PjWb+ohoaGpqamcs9lpVIpG+cpW4xbRkdHp2XLll26dPH09OzQoYOFhcXx48fZYOD27dsr9tS8kvR05PNRRweVvq5+8ACfPMHVqxERf/sNIyMxIQG3bcOgIOzfH5s2xebNW1X+QZycnJQ8kwpqShAiYk5OTkBAAEumtm3bvnZzFhUV1alTp1atCgCwfn0MCXm9DzI3FwMCkMeruGiLj3/nonhJSUn+/v7snaSrqxsYGPj06dOioiLZip3Nmzc/J+fE6ufPcc4cXLUKJ0xAdsE1fjw+f67EvGyRSLR+/XotLS2BQHBC8SEbBQUFISEhvr6+bO6Erq6uoi3ULhs2bJANCq1Xr96FCxeUbGj3bgRAZ2cEwO7dq7XGaiCRSC5fvhwUFCTbmZn9vGyZLgsLixtsSIPiMjIQAI2MULVdWrkhNBSXLMH161EiweBg/OQT5brz2Hqhzs7OALB+/XolWli0aBEA6OvrX7t27dq1a2FhYXPnzv3kk08aN24Mb9DR0QEAKyurx48fK3Eumd69S11d92/fHqXEsTk5aG+P1tZ49+47X5Ofnx8bG/vnn39+9dVXvXv3/vLLL5WvVVk1KAiZ8+fPs250DQ2NoKAgkUh06tQpNg4CAHr2XLx2bVWP4aKj0d4e69d/YmZmHhgY+Np1UFpaWkBAAEs7TU3NgICA17ofL126xJ7S8Xi892x1m5WF33yDenoIgKameP48zp2LCxZgeDgOH448HgYEyLlCbVlZWWhoaOW3Mo/HGz9+vJxrGBYWFoaEhMhWXfr2228BwMDAQJ5ja7UJEybw+XwNDY2ePXtWMVKgaqvmz1/t5nZm4MCCVq3Kv/22eitUWnl5eUxMTGBgIOsqZ0xMTPz9/cPDwwsKCubMmcM+T42MjKLZ6koKioxEPh/79q322uucc+eQrRm9fXvFszJl+1p+/PFHAHB1dQWATp06KXr4vn37eDwen89/6w5/eXl5LBqDgoLYzA2WhUovUCWzZUsYAHh6eip6YHk5fvqpkqt1f2Q1LggRsaCgQLbTnuzzvX79+itXriwuLn7v4UVFuGzZVpZ2LVq0OH/+PCKmp6cHBASwhTNYBL7rKqmsrCwkJITtP9m0adM3b85ycnIurlqFBgYVXbQDBmDlTjmpFBctqniKYG1d9ShEiUQSHh7OOvFZn8CuXbtWr17NZvlYWFjs3bu3isNFIlFoaCjbrR4AWrduzeZdCASCXjVgJ40PasuWLTwej8fjsUU6Bg8e/N4tq96KDdNt06YNANSEHUSPHDnSs2fPyosh2NjYzJw589y5c7K+bjZZW1NTky3ZpaWlpeiA5z178PFjzMujB4RyCA2teHKclIRr16rSUkZGhkAg0NTUNDQ0BIDbt2/Lf2x8PPbuvZLP569cuVLOQ9j+GIMGDVKq2P8rLCzU09Pj8XhyDpGVmT5d+dW6P7KaGITMpUuXGjVq1LhxY319/eDgYPm3JWJiY2NZRwSPx2vYsCHb+llTU3Py5MnyDKe8efOmi4sL+yTy8/Njq1ay7kdjY2MDLa1yS0v08sLY2Lcff/s2duqEAFIeb/nMmW8ueskikG0lCAAODg5hYWGyT7oHDx706NGDfcvb2zsjI+O1w0tLS0NDQ62srGQJyrYZAwBzc/OFCxfW7ZlhERER7Jpm1apVcXFxbGxRt27dFH2TFBcXa2pqCgQCXV1dHo+n+vATFWVlZWlqarJLQEdHx6CgoJiYmDfHOEilUjZ0kMfjsQHPAoFAoZ1upk+vmHGk4rwjToiNxVWrEBF//RVjYlRsrF+/fgDg7u4Ocu9wi4hPnlSM6AoKUmAw17Nnz4RCoYaGxlO207gKRo0aBQCLFVkwdMuWSFNTiZYWKv3U4mOquUGIiGyhyODgYOUOZ/d2WlpaWlpafD7fz8/v/v378h8uFot/+OEHtjqtpaVl3759ZbenvXr1uv/e6erl5fjzz795ebHb2d27d7MvswiUrZBkY2MTGhr65sAWqVQaGhrKVocxMjIKDQ2V/VChoaGylcaaN2/u/Go9MBMTEyWuGGqdS5cusTtm2RsjOTnZ2tq6eZMmT3v1wmfP5G8qJiYGANjliJ2d3QcpVxHR0dHs3SLPzn9r165lkdmtWzcWiu/d2aegAMPD8ccfcdYs3L0bjxyhIJTPnj24dCn+/bfqLe3cuZNd5QBAq1at5DmkpAQ7d0YAdHdHRYfxeXt7A8Ba1W5kETEqKoq9M+/cuSPPKLyzZ88KhUJra88dO4pUPPXHUaODcOrUqQDwi2pTu6Kjo5cvX67ccxSsdHPGPnzd3d1Pnz4t/+FpaWleXl4sqPr3779p06b27duz/9ukSZPQ0NCqH25lZGQMGjSIvZ4tO5CXl2diYsIiULYylr6+flBQkEL7otVSt27dYkv+T5kypfLXHz58mO7hgQBoZ4fp6XK2xu6r2FXF2LFjP0C9imGjYbt27WpoaPjTTz+99/Xbtm1jd8Zdu3ZloRgUFPTmy54+xY0b8dNPUVsbAVBbu2K3lilTcPp0pK0mPqaSkhI2q2/t2rXydOZLpRW7NzRtqtA1XoU9e/YAwIDeqm4HKJFIWrRowfrV3jVhUSYtLY0Nwv9a8bG16lKjg5DNLwwLC1NvGRKJ5MsvvxwxYsSpU6eUOFwqlW7cuJE9FZA9evzzzz/fNUXkTa8tO7B06dIuXbrIJn4EBQUpvJZK7fTgwQMLCwsAGD58+FvWXnj6tGJujaUl3rxZRTv//PNPaGiot7c3SxH2m1y2bNkHLF0+7KKHPfljsyTfKyIigg0OdHNzY59TkydPZr8c2Ua7PXqcZI+zBQL09MSVKyvGst+9i0uWoL09vi09yYfSv39/gUAgFAo7duw4duzYH3/8MTIy8tGjt09vkEoxJAQNDPDWLWXOJRKJznh6Svh8VOR55FtdvXrVycmpadOmb05Y1NfXd3V1nTBhwurVq3fv3s26WPr161eLZnDV6CCsOSufqe7x48fsTm7hwoVKLLD09OnToUOHsrcdeyPq6urOmzdPgS33armMjAwbGxsA8PLyeudEz9xc7NYNAdDF5S3fvXkTlyzBDh1cXg0v0tTU9PDwYEt+WFpaJicnf9Af4b1YzLORovKPpDh37hy7zGrbti0LxbZt27LON8bBYfCAAfjXX/jmM9CDB1FDAwHwyy9pHsVHEh8f37Fjx9eyxMam1NAQ3d0xIADXrcO4OGzSBJ8/x4MH8cwZVOkZ3+TJyk18fBeRSJSYmFh5eOpr0ailpdWqVavatatljQ5CNhs0KkqZ+Ss1EPuA69y5s6urq3L3cPv379fT09PX1x83btyTJ0+qvcIaKzc3t127dgDg6ur6nnUGiotx/Hh88AB378bFi/Hbb/HRI/zqK7S1lS1lcbBPn2HDhu3cuZMtvlNQUMC6r42NjS9duvSRfqQ3PHjwAF4tKmRgYCD/coOIGB8fzzb3GTBggI6OjrW1Nci90e7hw6ijgwA4eLBij6AuXLgQExOj9MQVjsvNzb148WJoaOj06dN79+5nafmfxVZGjcJx43DWrIogVD81XP8AACAASURBVMmlS9W2YOg7ZGVlnTt3bsOGDVOmTLGzs3Nzc1P7NaWianQQsnGbse8amVnbsJEv7JpduYUeuLBqzJuKiorY1hNOTk5ZWVlyHZOdjbNmISI+eYLffFOxRKSZGfr7Y0TEm5/3bJ9Vdp+t0pKzKti6dSsAsOkcfRWf35eSksK2oGKPPP/880/5I+r8eba0jnTy5HXvfWcmJiaGhIS4u7uz1W38/Pzk7+QnVXj+HE+fxnXrMCAAt2/H2bPxr79w9myVgxARW7asngVD664aHYRsNY1ad3HxVrIMY1NilVv3j200WOdXjXnNr7/+yh6svjmN5J2Sk3HNmoo/T5qEBw/ipUtV9/3JVvTW1NSUDfF9L4lEcvLkyUmTJimxGNBr2LbjbC1K5dZHRsTMzEx2Q6nopdL169i//xLWY/Hm1YZYLD59+vT06dMrL/ugp6fHnkp+8sknRUW1Y3BgLTJ7Nkok2L17dQThsmXI5+Py5dVQVh1Vo4OQzZNTcX2gGoKtfMaGnhoaGirXSEZGBgBYWFhUb2013/fff6/YupolJThuHIrFGBPz/0R8H6lUOmfOHAAQCAS///57lc2XREVFBQYGsreohoaGhoaG/PH5Vqzv18nJCQCUjtW9e/cCQJ8+fZQ4Ni0tja3t4ODg8OjRI0QsLi6OiIgICAhgj1EZc3Nzf3//iIiI0tLS27dvs99Ap06d6vbU1Y8vJQXLy3H79urYEOXFCzx1Cr//HjdvpkfBb1Wjg1BPTw8A6sbEOJZh7EFOo0aNlGvk7t27UDNmvNUC9+5hSIgS//JDQkLYw/83pyJkZ2dv37596NCh7J3JNG/enI3ikW2IoYTCwkINDQ2hUMjmvCq9cwjbmkPpqbcZGRlsZQYTExN3d3fWjc84OTnNnz8/Li7utc6MlJSUpk2bAsDA+QMzyuS+ZSdySExEADQxUXj64OsKCnD8eCwvxzNnOLXRmPxqbhBKJBLWl6jQqIEa686dO6x/j11xK9dIXFwcADg7O1dvbeQ1mzdvZjMrpk+fLpFInj17FhYW5u3tzWa/MI6OjsHBwbKl4WUbYigXQqdOnYJX86xbt26tdOVsVV5VHnNmZ2e7u7uzYah8Pt/Z2Tk4OLjqxxMZGRmfTPvE8LqhzW2b+yIF1qwg78UmBFW50qIcrl9HWQ/H5MkqF1UH1dwgzMvLAwB9fX11F1I9WIaxFb1dXV2Va+T06dMA0KNHj+qtjbwpPDycxZ6+vr5sdLhQKPTy8lq/fv1bV+n77bff2Kz2wMBARa/eli5dKntAGBAQoFzNIpFIW1ubx+OpOK80Jydn+fLlM2fOlH9pruzybPd77hAPDW41SChSaj8s8jarVyMADhyoWivPn1dMn/jnH1S2t6Bu04Caij1UYyMt6wA2zkX22apKI3Xmd1KT+fn5mZqaent7s3Tp1avXgAEDfHx8WOf2W02ePNnCwmLEiBHr1q3Lzs7etGkTG0vyXpmZmfv27QMABweHvLw8thClEhISEkQiUatWrdjiO0ozMjKaP3++QocYC4xPND/hm+Z7Iv9Ej/s9IppFeOp5qlIDYUaOhK+/hmPH4NkzqPSgVhGpqWBtDe3awZIlUF4Os2ZVc4l1Qs0NQm1t7a+//rpyZ1StxnJdxSCsYxcHNVzPnj3v3bt39uxZPz+/yk/LquDj43P06FEfH5/t27fn5eXt3r27igPT0tIOHz68Z8+ey5cvS6VSIyOjly9fxsfHs15ZJVy+fBkAZAvvfWS6fN2IZhFj0sccyjvEA9714uvJouS+Bn2P5R8bbTJaLSXVAfXrw9ChWRkZuw4dahAQ4Kfw8U+eQLduYGsLhw7BiBEfoMA6gq/uAt7JzMxsxYoVrMuoDmA3c+wzrvImO0o0ovThRFHW1tajR4+WMwWZnj17nj592szM7PDhw/369WM9/DJSqfTKlSvz5s1r2bJls2bNZs6cefHiRW1t7a5du5aWlu7fv3/o0KEikUi5atUbhACgydPcYbPjiv0VKUgP5B1w1XVNLEm8UXxDXfXUDUOGnI2Onh4aGqLwkSIRDB4MGRmACLq6H6C0uqPmBmEdw27m2C6J1DVat7m4uERHR1tbW0dHR3t4eGRmZpaXl1+4cGHGjBmNGzd2c3NbsWLFvXv3ZBvtPnv2LDo6+vz582ZmZocOHXozPuXEglC2i7Va8IHfRqfNqfxTX5p92VyreXf97mospm4YOHCgqalpQkLCrVu3FDgMESZMgNhYaNoU9u+HutK19oHU3K7ROubmzZsAUFJSkpqaWnnwvTxycnJWr149YsQICsLawsHBISYmpk+fPomJic2bNxcKhexKCABsbGx8fHwGDRrk4eHBLowYFp99+vQ5f/58z549IyMjq3geybx48SIyMnLPnj3m5ubBwcEZGRmmpqayTS7VyFTD9In4iYXQQt2F1AWamprDhg377bfftm/fzva4l8eRdev6HznCMzCAI0fA3PyDVlgXqHu0Dlfs2rWLfep5enrKPzdcthUwAAwfPpxd7Cu0PSZRo6ysLDZhBqrcaLey9PR0lmS2trYPHjx462uSkpK+//57FxcX2XBWMzOziRMnAsCnn376YX4UxeSU50z7d1pwZvDh3MOLM+ntqip2r29sbHzixAl5hvLu27ePz+d/2qxZ2bFjH6G8OoCC8ONZu3Yt26aL7aZU9SJYhYWFa9askd0TODk5sakXIPcGPaQmyMvL+/vvvxMSFJhR8OzZsw4dOgCApaXlzVf7SUkkkmvXrgUHB8veBgCgo6Pj4uLSuXNnNu0PAPz9/T/Mz0HUKT09XV9f3/LVrinGxsbu7u4BAQFr1qyJiop69t+NCq9fv66rqwsA8mxpSRgKwo8qOzs7ICCAvZvd3NySkpLefE1RUdGaNWvYjjwsAtmyW+yTcTLNh+WAyhtiXLx4ERHZYtyMqampu7t7x44dtbS0ZF9s06bN0KFDObUaO0fk5+e3bt0aAJo1a+bh4cH29X1No0aN+vTpM3v27GXLlrGPjtGjR6u78NqEglANjh49yjbKEQqFQUFBsu0JS0tLQ0NDZdd9rVq1atOmjazvKyQkhJY25g6RSOTr6wsAurq6kZGRM2bMaNSokaenZ4cOHWTzK2Qrv9y9e1fd9ZIPQiKRsO2a7e3tc3Jy2Bezs7NjYmLWrFkTEBDg7u7+2pgDPT09d3f3d+7ZSd6GglA9cnNzAwMD2UIkrVu3jouLQ8Svv/5adhfo6uoqu/wPDg6uGwuuEoWIxeKxY8cCgEAgqLzstY6OzsCBAzdt2kTrXNd57DPBxMSkioEFUqk0NTX10KFD33//vbu7+5AhQ9LT0z9mkXUABaE6RUdHs62mNDQ0AgMDU1JS2rVrx/beAwB9ff2goCCl118mdYBUKp08eTIbZiXnRrukzmBbVAqFwlOnTqm7ljqOh4hv9jiTj6a4uHjBggVr166VSCTa2tpsMrWBgcHMmTO/+uqrtz4PIFwTHR2dkpIyduxYpRedIbXO5cuXe/ToUVpaynZ+V3c5dRwFYY1w48aNYcOG3b9/X0tLa9KkSd9+++1755ARQuqqzMxMFxeXzMzMadOm/fLLL+oup+6jIKwpCgsL4+LiGjZsyDpLCSHcVFJS4unpee3atd69ex87doy6AT4CCkJCCKkpEHH48OHh4eF2dnZXrlxRcSMRIidaa5QQQmqK7777Ljw83MDAYP/+/ZSCHw0FISGE1BS6urqampp79+6VLaNBPgLqGiWEkBokPT1dtkQt+TgoCAkhhHAadY0SQgjhNApCQgghnEZBSAghhNMoCAkhhHAaBSEhhBBOoyAkhBDCaRSEhBBCOI2CkBBCCKdREBJCCOE0CkJCCCGcRkFICCGE0ygICSGEcBoFISGEEE6jICSEEMJpFISEEEI4jYKQEEIIp1EQEkII4TQKQkIIIZxGQUgIIYTTKAgJIYRwGgUhIYQQTqMgJIQQwmkUhIQQQjiNgpAQQginURASQgjhNApCQgghnEZBSAghhNMoCAkhhHAaBSEhhBBOoyAkhBDCaRSEhBBCOI2CkBBCCKdREBJCCOE0CkJCCCGcRkFICCGE0ygICSGEcBoFISGEEE6jICSEEMJpFISEEEI4jYKQEEIIp1EQEkII4TQKQkIIIZxGQUgIIYTTKAgJIYRwGgUhIYQQTqMgJIQQwmkUhIQQQjiNgpAQQginURASQgjhNApCQgghnEZBSAghhNMoCAkhhHAaBSEhhBBOoyAkhBDCaRSEhBBCOI2CkBBCCKdREBJCCOE0CkJCCCGcRkFICCGE0ygICSGEcBoFISGEEE6jICSEEMJpFISEEEI4jYKQEEIIp1EQEkII4TQKQkIIIZxGQUgIIYTTKAgJIYRwGgUhIYQQTqMgJIQQwmkUhIQQQjiNgpAQQginURASQgjhNApCQgghnEZBSAghhNMoCAkhhHAaBSEhhBBOoyAkhBDCaRSEhBBCOI2CkBBCCKdREBJCCOE0CkJCCCGcRkFICCGE0ygICSGEcBoFISGEEE6jICSEEMJpFISEEEI4jYKQEEIIp1EQEkII4TQKQkIIIZxGQUgIIYTTKAgJIYRwGgUhIYQQTqMgJIQQwmkUhIQQQjiNgpAQQginURASQgjhNApCQgghnEZBSAghhNMoCAkhhHAaBSEhhBBOoyAkhBDCaRSEhBBCOI2CkBBCCKdREBJCCOE0CkJCCCGcRkFICCGE0ygICSGEcBoFISGEEE6jICSEEMJpGuougBBCPqS4OMjIgMGDYdUqGDUKTp+GpCQQicDHBzw81F0cqREoCAkhdZpYDJmZ8O+/8OQJSKVw5gz88QcgQkAABSFhKAgJIXVdcjIYGEB6OkiloKkJAMDjgUCg7rJITUFBSAip67p2heHD4Z9/gM8HHg+uXYMXL8DaWt1lkZqCh4jqroEQQj6YrCwoKYFGjeDuXbCxAR4Pjh4FfX3o1Qu2bAEeD8aOVXeJRM0oCAkhnHT9Ojg7g0AABw6At7e6qyHqRNMnCCGc1L49LFgA5eUwbBhcuKDuaog60R0hIYTDJk+G0FAwMcm6cMHUwUHd1RD1oDtCQgiHbdgAfn5H27Rp4+WVnp5exQsR8d69e1u3bp00aVKzZs3mzJnzsUokHxzdERJCOK1UJOrTt290dLSDg0NMTIypqansW/n5+bdu3bp48eKFCxeuXLny8uVL9nU+n4+IGzdunDBhgpqqJtWJgpAQwnX5+fndu3e/fv16x44dV61adevWrdjY2Li4uJSUlMqfkBYWFo0bNzY2Nm7UqNFff/0lEAh2797t6+urxspJtaAgJIQQePLkiZub2+PHjyUSieyLQqHQ1ta2QYMGEokkPT09IyMDAHg83vPnz3/99ddFixZpa2ufOHHC09NTfYWTakBBSAghAACLFy9etGiRiYlJ69aty8vLnz179vDhw8q5aGZm5urq6urq+uWXX5qams6YMWPdunUGBgbnz59v166dGisnKqIgJIQQAIDevXufOnUqLCxs//79hw4dAgANDQ07OzsPDw93d3dnZ2dHR0cejyd7vVQqHT58+J49e6ysrC5evNi0aVO1lU5UQ0FICCGQnZ3doEEDHo/39OnTCxcupKWlubq6tm/fXltbu4qjysrKvL29o6KimjdvfuHChQYNGny0gkk1oiAkhBDYsmXLuHHj+vTpc+LECYUOzM/P79GjR0JCQseOHc+ePaunp/eBKiQfDs0jJIQQ2L9/PwAMGTJE0QMNDAyOHz9uZ2d37dq1QYMGlZaWfoDqyIdFd4SEEK4rLCw0NzcvKyt7/PixpaWlEi2kpaW5u7s/ffrUz89v586dGhq1fGOfy5eBx4POnWHDBpgwAU6fhrg4EIlg8mRo0kTdxVU/uiMkhHDd0aNHRSKRu7u7cikIALa2tkePHtXV1T1w4MDPP/9cveWpQXY25OQAADx8CGIx7NsHwcHw3Xfw00/qruyDqOWXLYRw2/r16/v3729jY6PuQmq3AwcOAMDgwYOVbmHOnDna2tqtWrWKi4u7efNm9ZWmuEOH4PZtMDeHiROBr8Ktzu7dcP06xMZCQQGYmQEA6OpCeXl1lVmjUBASUlutXr161qxZmzdvvnjxYtWDG0kVSktLIyMjAcDHx0e5FoqLi3///ffi4mJzc3NEDAoKqtYCFZGSAjdvwsKFcPAg7N0Lw4Yp39Rnn8Enn0BODhgZQWYmFBZCejrU0WGx1DVKSG01YcKEli1bJiQkTJw4Ud211GInT57Mz893dnZW+sb6+PHjRUVFjo6Oz58/b9q0qTon1ycng6srAICHB9y+rXw79vZgZwcA8MknIBTCDz/Ab7/BpUsweDBkZFRPqTUJBSEhtZW+vn54eLiuru727dv/+OMPdZdTW6neL8paMDExAYChQ4dWV2HKaNkS4uMBAOLiwMlJ+XaaN4dmzQAAevYEgQAaNoS5c0EiAWdnCA6unlJrEho1SojcXryAP/4AsRhGj4Ya81hu165dI0eO1NLSiomJcXFxUXc5tUxpaamFhUVubm5ycvKDBw969uypq6urUAtisbhBgwY5OTnW1taPHj26ePFily5dlC9IJIJ//gFbWxAKlWzh77/hwQMwNITevaFxY6hXT/liXvPgATg4ACIkJYG9fbU1WwPQHSEhclu0CKZOhaAgWLpU3aX834gRI6ZOnVpaWurr6yvbJ4jIKT09PTc3V0NDY9++fYMGDRo6dKhYLFaohdOnT+fk5LRo0eLRo0cWFhadO3dWvprMTJg+HW7dgoAAyM9XspGSErh8GXbtAgcHOHdO+WLe1Lw5jBkDEgksX16dzdYAFISEyE0qBUND0NYGTU11l/Ifq1ev9vDwePTo0fDhwysvEk3ey97e3tHRsby8fOPGjebm5sePHx8zZoxUKpW/BdYvyuZdDBkyhK/KQM19+2DmTPDzg1GjIDJSyUZu3oRjxypuKGNjlS/mrRYuBC0t2LkTkpOruWW1oiAkRBFFRVBeDgreNHxoQqFwz549lpaWp0+fXrRokbrLqWWuXr3apUuXR48eGRoaGhoa7tq1KzAwUM5jpVJpREQEADx+/BhUe9AIAMDnA7uOkUhAIFCyETZYpqQEAODKFZXqeVPjxpJJk256eHxTB+ZKVoaEEDk9foyLFuGCBRgbi2FhWF6u7oL+48yZMxoaGjweb//+/XId8OIFxsRgbu4HrqsWePnyZcuWLQGgbdu2WlpaALBixQp5Djx//jwANGrUCABMTEzEYrFKdTx9iuPH47ZtOG4cFhYq2UhqKgKgmRkCoJERSiQqlfSGzMzMevXq8Xi869evV2/LakR3hITIrWFDcHODlBTw94cxY+DMGXUX9B89evRYvnw5In7xxRepqalVvbSsDB48gOBgkEhg5kzIyvpYNdZQpqamUVFRjRs3vnnzZqtWrfh8/rx58zZt2vTeA1m/qK2tLQAMHDhQpZXV1qyBESPAxQWaN4eNG0HBMTv/Z2sLDRrAy5dgaQm5uXDvnvIlvY2lpeXkyZMRMbgODR+lUaOEKGLCBPjrL+jaFWJiYPRoCAtTd0H/gYhDhw7dv39/o0aNWrZsWV5eXlBQIBaL59jY+CckQGEhlJVBUREAwPLl4OcHLVrA2bPw/Dl89pm6a1e/pKQkT0/P7OxsDw+PCxcuCASCPXv2VN3bOXXq1M2bNzdp0uTu3buHDh0aOHCg8qd3d4dLl8DFBa5dg7//Vmku/MCBePbsvx4eT0Qi6aRJXYYPV76pt3n58qWtrW1BQUHDhg1NTU11dXV1dXWNjIy21q+vgwgGBmBgALq60LAh+PrC8eOQlwcDB1bn+NVqp94bUkJqmXPnEACtrJDHQ11dLChQd0Gvy8vLMzU1NWNrYr2ytksXBPj/f0Ih/vgjJiQgIkZEYESEuquuKS5fvsymT3Tt2hUAdHR0YmJiqni9SCTavXs3j8fT09MrLi5W/sRPniCfjzo6qKODfD5mZCjfFOLmn3/WFAjYj8Du3qrdV1999WaaSExM/vM269QJly/HkycxORnHj/8QZVQXWmKNEEV4eoKNDTx8CK1aQWIiHDoEn3+u7pr+IyMjIysry8jI6OTJkxoaGgYGBgKBwMrQEAQC0NcHoRDYhnnZ2TBvHjg4QEoKrF2r7qpris6dO//999+DBw+OiYnp3LnzlStXJk6cmJiYKKg0dCUzMzM+Pv7ixYsXLlyIj48XiURNmzYtLi4WiUQ6OjpKnnj/fpBKoVUruHoV3N3BykqVn6JR27ZlEklOTg4AXKn28TIAAFBcXAwAQqHQ2tpaU1OzXr16AoEA2WhqDQ2QSgER7O3h0SOYPx8AQF8fSkpA6d/Ph6buJCaktpk/HwHQ3R0BygcOVL29Vasq/rB6teqN4cqVKwGgS5cu7dq127Zt23tefecOLliAf/1VDSeuQ7Zu3crj8fh8ft++fe/du5ebm3vy5MmlS5d6e3ubm5tX/vwUCAROTk5sY/quXbsqf1PYqxcCoJsbAuDPP6tYf35+Pp/P19LSEgqFAoGgoLr7LW7cuCEUCnk8XuVfRT2h8D+3gwA4cCBOmlQxpmziRJRKq7eMakR3hIQoyN8fVq78l8/f5ea24tSppCdPlN67h5GNa6l6gIuc2PrREonkxo0bBQUF73n1/fuwdCk4OsIXX1TDuesKf3//x48fz58//9SpU15eXhkZGZVnFlpYWHTq1MnV1bVz584uLi76+voZGRnu7u4xMTGfffbZ/v37FR0yk52dfbi8/FMXF/OUFAAAFedgAOjr67ds2TI5OdnS0vLJkycJCQmenp4qtilTXl7+xRdfiMXi6dOnz5o1q6ioqKioKD8/X1RYCIWFUFwMOTlQVATFxWBvDx07QlAQ1KsHPXvCf4OzZlF3EhNS+wzo1g0AOnXqBAArV65UsbVx43DZMly2DL/4QtXCCgsLtbS0BAKBoaEhAKSmpr7nALEYGzRAAKxDQ+Gri6+vL/uQFAqFjo6OAQEBYWFhiYmJ0rfd2SQlJbG1Rv39/d/6giqw4akdOnRoYmi447PPqqX4sWPHAgC7afvkk0/Kq2+qzw8//AAATZs2rfYbTTWi6ROEKMxryBAAYHcJ27dvV7G1evXg22/h22+rYVTdqVOnSktLHRwc8vLyHB0d2bD+qmhogJ8fAOTuPaXqueucPXv2nDp16sCBA0VFRUlJSaGhoaNHj3ZycuK97c7G0dExMjJSV1d327ZtCxYsUOhEbA6Gjo7OP3l5qaqslF1JaWkpALB708jIyG7dut25c0f1Zu/fv79kyRIACA0N1WMPm+sGdScxIbXP8+fPhUKhhoaGsbExANy6dUuV1g4dqpj0rPrgzUmTJgEA6webPXu2PIe8vPbQ1anA0rKmLQ9QKx05coRlz2q5n/cWFBRoa2vz+XxTU1MASExMVL2Me/fuaWtr83i8kydPHjhwwMrKCgC0tLTWrYsuK1O+WalU2qtXLwAYN26c6kXWKBSEhCijf//+AMBGCfr6+iraG1bZpEm4YQMi4syZqlbVpEkTAGjRogUAnDp1Ss6j7O0RAE+cUPXsBBG3b9/O4/F4PN7WrVvlef2WLVsAoGHDhuwvTvUCpFJpz549AWD8qxkLubm5gYGB9vZtNTVLW7XCK1eUbPn3338HAAsLi6ysLNXrrFEoCAlRxt9//125Z6Vjx4579uyRKLicVVERZmfj7Nk4fz5mZKgahLdu3QIAc3NzNq1NJBLJeeCSJQiAo0apdHYis2LFCgAQCoXHjx9/87vl5eWJiYlhYWGBgYHOzs6so5XdRwYFBal+9t9++43FVXZ2duWvR0cXt2iBACgQ4FdfKbyCW2ZmppGREQDs2bNH9SJrmo8XhFKp9Pfff+/WrduCBQuq8cktIWpx9OhRADAzM/vpp5+sXs36srW1XbNmjTxj6LOz8auvsHVr9PHB2bMxJwdnzlQ1CNnnr7u7OwD4+PjIf2BaGpqb49dfq3R2Utns2bMBQF9f/9q1a4j45MmTgwcPzps3r3v37q89WtPS0mrdujVb4HTQoEGqdC0gYkZGBourvXv3vvnd4mIMCkINjYrJ7r/9hoh46RK+ePH+ln18fADA29tblfJqrI8UhFFRUR07dgQANi+1c+fOycnJyjX1/PnzvXv33r9/v3orrL1Yr1rlP5CPoHfv3gDA1vYsLS0NCwuzf7VVaf369YODg3Nyct56YGYmDh2K5uYIgBoaaGqKX32FiLh1K06ciEOG4Hvn/r1L9+7d4dVY1tDQUIWO/eYbvHwZEVWfw0YQEaVS6eeff87uC1m3Z2XNmjUbOXLk2rVrr1y5UlpaiohxcXEsIOfNm6fKeeWJq5s30cUFN23CNm0wOhp/+QXPnsWoKLx0CW/exNRUfPkSi4v/8yxx9+7dAGBgYPDo0SNVyquxPmwQSqXSAwcOtGvXjv31N2zY0NfXl63Urq2tHRISotBi7fn5+SEhIcbGxoaGhvr6+mFhYR+u8lpk2rTX/0A+tOvXr/N4PH19/cppJ5FIIiIiZHvE6+vrBwYGZlRaKyslJWXo0KH16j3V1kZtbbSywiFDcP9+fPkSEVEqxdBQBEAeDxcvVnjycV5eHhu/Y2BgAAD//vuvPEdlZiL7ZPvqK5w8GcXianhOSZiysjKnV0NA9fT03N3dAwMDw8PDnz179tbXHz9+XCgUAkBoaKRyZ5TF1ePHj6t+ZXk5vniBy5fjhAm4ahUGB78+Fd7Ozo/P5xsbGzdu3Lhly5bsTfX7778rV1jN9wGDUHYXyK6RQ0JCWJdRbm7u+PHjWc/4yJE7bt9+f1M5OTnBwcHslp99xLA/+Pr6Pn36VNHC4uPj27dvr6+vP3ToUOVXgsjLwwULcMkS3LRJyRaqyZdfVsxCGzlSvYVwyLRpt1xcPp07d+5bvxsZGcluztgFn5eXV2xsrJubm56enqurq5/f78ePY0nJK/4vEAAAIABJREFU21sODa3oufLzQznfm+Xl5ZGRkb1799bQ0GjcuPE///wj51OcmBi0tMROnVAkwlmzMD4e16yhIKxOZWVle/bsuXDhgpwPj3fs2OHh8bumJm7erPC5srKy2AI3GzdulOf1L17g99/j9evYujVu2IBeXujqiq1bo60tGhtjs2ZelW9hzc3NtbW1X7JLtrrogwThuyKwshMnTjg7exsZSYVCDArC0tK3N5WTg8HB2Lv3dNaal5dXTEyMVCoNDQ1lFylGRkby9wLFx8cPGjSIZTD7X3t7+wsXLijzQy5dimy2cnAwynf1/YHQHWGFO3cq3kY3biAiPnuG+/ZhdQxGf839+ygQoJYWPn5c1adbQkKCv78/e5t17do1PDw8Pz9fnvaPHkV9fQRAf/+7VV/nJSYmBgUFWVhYsH8dbEK3k5PT1atX33uW1auRLYnVti3OmIGzZiEifvstBgbKUyORy+rVq9/VQ/4u69dXLIp+7Jhi5xozZgwAdOvWTZ6njMXFeP067tqFiPj99/jWG0ixWJydnZ2enn779m3W3/7NN98oVlPtUZ1BKJVK5YlAmaIiDApCPh8BsHVrfO0fL4tAQ0MEwIYN0/v27fdaYmVmZso2Pfn000+r7ry+deuWn58f+1TS1dUNDAxcu3Yt24qTx+MFBAQosEpCWRnevYtTplRM/goLw0uX5D32DWlpaSo+79y7t6KQujiYSxGLFlU89J82DfPzccwYTE7GxYvx7NnqPU9AAALgxInvf2VeXh7bymDHjh0KneLWLezT54WWlkGTJk1u3rz52ncfP368Zs2a9u3byy7Y7e3tg4OD9+3b5+DgAAAaGhpBQUGl77i6LCgomD17B+uD9fREgQABMCQEETEnB6OiFKq0zhGLMTUVi4qqpTHlRkJ8/TUCYL16ePGivIf89ttvPB5PS0vrzp078rx+3jzU0UF55nfcu3fP0dHRzs6Ox+Pp6uoq0QNXK1RbEEokEkdHR9mzwF9++UXO0dtnzqCtLQKggQHOm4elpfjgAS5fXhGBAOjlhVXcs4WHh7MLYUNDw9DQ0Devht6MwMzMTJFI5OTkpKGh0a1bN01NTQCwsbE5ffr0e39IDA/HFi3Q2hr//BMPHkSxGCdOxHv3cMAAVDDPnj17FhQUxFbFHTBggNLdDnPnVizWzPVOrUWLcP58XLYMBw7E06dx925ExMJClG9euZyePkVtbeTz8d699784JCQEAHr27KnEiV6+fMnmxevp6R08eBARi4uLw8PDvb29ZUtZGhsbBwQEsD4SdlRJSUlQUBAbktaqVav4+PjXmr179y5bG8XTc2/nzhWPJIOCqn0b89qptBS/+AJ37MBJk+T6C67S8ePHlVtpQSrFMWMQAHv0qOplbOz9jRs3SkpK5s6dy7oEYmNj39v+jRsoFCKfL9cFfElJCRvVwe5wvmIju+qcagvCU6dOaWpqCoXCX375peRdD0DeobAQAwNx9WocNAh//BEvXsQffkAeD93d8cyZ9x/+5MkTNlYKAPr16ycbJvDWCGTfKioqmjZtGp/PBwA7Ozt2Hc1uDd/efyUW46ZNFYkNgC1b4t27uHs3/vADJiXhuHEVl3CrVsmzPkdGRkZgYKC2tjYA8Pl89rFlaWnJPu8UNXcuLlyIDx9SEFa6I0xIwF9/RURMS8Nly6rxJN98gwDo6/v+V4pEIjat4oSyM9VLSkrYyEM+n9+8eXPZFj/a2trDhg07fPhw2TuWCbl06ZKdnR0ACIXCoKAg2csOHTrEHrTb2Nh06bIbAE1MMFLJkRl10enTFd2FT57gggUqNrZu3bo1a9Yod6xYjN99h8eOVbx5f/qp4utpaThhAiLiihUrFixYgIh//vlnXl5edHQ0e0CooaExZ86conff0YrF6OyMABWd4fLYsGEDG+nK5/O1tbXr5MDRagvC6OhoAHB3d1elkdmzcdEi3LYNd+9GeQbRVBYeHs42IzUwMFi4cOG7IrCyixcvsiHv7NaQTeVp2rRpVKXuIYlEEh4e3q19e6mxMQKgrS2GhuJrg12zstDfvyIj3dwk7+4PYXeB7BONx+N5e3vHx8enpqb26NGDfcb5+fk9f/5czh/5zBmcNw/nzsW8PJw6FWfOxLt3Ue5Z1P9RVFQUFxenzJE1x48/Ilvwgs1KXrAAly7F6dNR7t9n1dLSsKwMnz3D6dPx2rX3vz40NBQA2rZtq8rMMKlUyp6Fszdzp06d1qxZI0/nQXFxcVBQELvUa9u2LbtvYEuPdu7cuV69elZW1j17Pn/4UOnS6qIzZ3DnTkTEzEwMDlalpczMath06PBh9PHBW7dwxoyKrxQXo64uikR4//796/9dJ539jbOrahsbm5MnT761zZ9+ErOPMfkn1JeVlbF3jqurKwBMmTJF+R+ppqq2IDx8+DB7VqdKI7NnY2EhenpWdGspKjMzk90assveKiJQpvK7p1mzZqx3l8fj+fv7P3/+fNOmTc2aNWMRddLPD7dvr+qGLzISra0lfH5PZ+fg4ODXrtbfGoGy77LhP2wiUf369d87MyQmpmL/MgAcORIlEtyzB4cMwcaN0ckJ5egd+T+RSBQaGmplZWVqairnaI5aQyTCn37CHj2qZRnNCRMquqBln0pVKC8vZ+uc/f3336qcNCsrCwC0tLR4PJ62traiK1HExMQ0b94cXs1WunLlipdXxWhAf3//Ku4bOKqsDMePxx07cPJkvH8fCwpwyZLXr3rlM3AgWlvjezf/qNrhw3jiBE6Y8J8RTNeuVVXRjRs3nJ2dZVfVr10zpaSkWFs37dQp7B0p+U5sf4wmTZpoaGgIhcL372pS21RbELI1+EeqNoSfDfeIipLrivtdRo0aBQDOzs7vmq/zpkuXLrHeUT6f7+Liwm4N2ZU4ALRs2XL79u1yfQbl5h6bP59dvLu4uLD1c6uOwMoePnwo+5zy9vauPAVN5vz5B56eFRFoaorLl6Ps6XhUFNrZVUzTDgp65wB9maKiopUrV7IeFXa3UdeWKZBKK34jSvU5v2b2bAwOxvR0uYKQzeiytbVVaKbsm86ePcsGgrK3tBIt5OXlTZgwgb0n2QWitrb2H3/8oUpVdRkbLFNcjM+eYY8eCIBffKHczV1ysqoXYIcP45kzeOYM2tsrcJRYLF6zZk29evUAoEGDBrKratmS2WPHjlW0kvLycja00M3NDQC+UH3DsBqm2oJw/fr1qt81//QTGhnhkiUqVRIcHAwAvXr1srW1lf8ffElJyddff81uDd3c3Jo0aWJlZdWgQYPQ0FBFP8tOnDjRuHFjdiHfsmVL2bNAPz+/2+/r8K1iZkhMTEyvXr2EwnrW1mJTUwwOxtzc1w8vLsY5cyrGATo6ll++/PbEld0Fsghs27ZteHi4ims71VCrVlUMuFLZ7NlYUIDTp+OMGditGwYGvn3QOcOuylWfgLxu3Tp4tWqaKkv+nzhxwtzc3NbW1szM7IrSiy5zR3o62tmhoyPq6iIAqmnaQFJSxT2lEtMKHzx4wJbeZlfVjx492rhxIwCYmZnJ//Clsp07dwKAlZWVpub/2LvvsCiuLQDgZwtt6VUQQUFUQGwgRVFsqFHBGCOxxJJEgx2N0WBsWF+wE9Qk+Hwq9hBLRBENWGJBUIooKha6gEjvbXfv++PihijC7uwiZc/ve9/7zDJz5wLLnplbzlHkcDhiLk9tK2QWCLds2QJS5wdavZoAkE2bpOrJkiVLAGDw4MEAIOlkdVxcXL9+/UJDQ7/99lsA+IVp1rLy8nI6Q6OoqNj4U2CDMjMz3d3d6Zt47Nixhw8fpt8OAOjq6u7Zc7vxIczISGJtTYYM2fr+zhA5CoFUYWHdZ5mkc87/biM8vG7x6R9/kEmT6p7IlZXJ3Lnk5ct3j//rr7/ozTjzdA1v0ffhoEGDAGDXrl3SNEX/QhcuXChll+TCmzd1JTn69iWKigSAiPfDr6mpyxNUUECqq+v+XVzc9PBMg06cqNtBweyXJhQKf/31V3pXraGhQXfy/M5s2okQgUDQp08f0W2ZlIN/rY3MAuEPP/wAAD/99JM0jSxcSACIv79UPaGlmekj/OHDhyU9nQ6BfvHFFwBwki4hYyooKMjLyyuM0c4soVB44MABWmecPqfq6ur+5z//EXMar6qKrFmznq6z79at282bN+UuBIrMnUsAqsRfJPdv5eXE2ZkoKPwzb11eTu7dIxMn1m2B5XCIl9eO2NhY0Sl0AErKvwWq5NNPUwYODB471sfePkLsskoNomv/5s2bJ32v5EJSEjEyIgDEyYmw2cFDh56g62ga9eQJ6dmTlJURHx+SkFC3O/PIEcmm7UVOnCDbt5OLF8n48UxOp7KysiZOnAgAmpqa9vb2zBsi5MyZM3QRg5KSEpvNfn+Ha9tVtyFJekVFRfB2EoKx4mIAAE1NqXpSXFwMAHw+HwA0JW+LRh3aCIPT6/Pw8PDw8GB2LovFmj179ujRo8eNG8dms7/44otFixaJcss1SUkJNm3ymTDB7euvv3706NHQoUMVFBRo0WoHBwcfH5+xY8cy61ibU7No0e4HD7YfPJjs4yOa9xVTbS1MmgR37kCnTuDoWPcijwf29nDmDCQlgb8//PVX4t69P/j7C52dnWmel6tXr2poaMybN0/arguF6levqpeVddHUdC8uBhsbaRqjs9SVlZXS9kpOmJvDpUswZAjExASMGzfvwgXFiAg9PT2abP0dtbUQHw9RUWBhARMmwPbtda8/eADHj8Pdu/A2H7vE9PXB2Bh4PKbfBYCRkdHixYtv3ryZl5f3+vXrmpoaunOagc8++8zOzq6wsHDgwIHBwcH9+vXT1NSkz5o8Hk9LS0tNTY3H46mpqWlqatIX37x5M2fOnB6Mv/+PRlYRdfLkyQAgzk1TI9zcCAA5f16qntCtCL179waA60yzitCFwhFSpIxpJWpqauqHz/3798vFU+C/0cyf/hIONfD5ZPJkAkD09UkjEyKvXr3+/vvvRT9kmt5BJoXlyMuXBIAYGtZ1Qjq0gOLkyZNl0DH5ce3apoED4e1UC4/HE30mpKWlnTt3Z9ky4uxMVFTqRstXryb795OtW8kXX5CEBOLtTVJSyK5dzJ8IpRkaJYQIBIJly5ZpaGjExMTQgc19dH8tU2lpaTU1NSNGjKA7c8RhYWEhq62HtbV10SExkcg276nMAuEnn3wCACEhIdI0MnPmusGDPW/dSpamEVtbW3hbpLv+gJVE6BKpx48fS9OTVoKuH6OJ7SXNddA+nD59mr4lxL8JEAqFS5ZsNjev0tIi/96v1bDi4mI/Pz8jIyNFRUULC4vGN+2I69w5AlC3/1nq9T7nz58HgPHSjLLJpfPnz3M4HBaLRWdbVFVVR40aZWRkBACamp1ZrLrsPFZWZNYscvAg2b+fVFURS0sZDI2WlNRNLoq9/v1f3rx5M2LECF1d3dDQUPJ2YNPIyEjKbTNHjx6lN3wZGRkFBQXJyckJCQlRUVFhYWFnz549evRoQECAr6/v2rVrv//+e319fQCYO3euNFcUqagg5uYkKoocPCjWX6X4ZBYInZycAOCO+NnxGkIf4x7QpMlM0Z1/tAYY4/0u9I3e4AaGtqWmpgbe1r9WVFRs6e60DD6fTx/UPrTL+H3Lly8HgE6d+t6503D2lgbdv38fAKysrAghr1+/9nq7/ys5OVn8evH/2LCBABC6XUbq1FZXrlwBgJEjR0rZjhz67bffAIDNZtO7SUpPT2/cuHFbt5ZfvkxEibX5/LqMFhUVhM+vS1laVcVsL6JUgoODLS0t9fT0Dr4tjyMUCuli5n37GOa7IYTk5uYaGBgAwCHxVrI+e/ZMhlsPKyrIjz+SOXPIf/9L7twhN27IIGsBJbNASPfhJUiX7J/uOkiRLt2Frq4uvJ2tzKepRiRHJ1TKxM++0Frl5uYCgLa2NgAYGBi0dHdaxsmTJwGAxWLR7T3379//lRbn/oBNmzbRZ2hJRzhoWokxY8a887qjoyPNZJuVlbVv3z5avykiIqKJpHo7d5Ju3ciAAQRA+mpfNPfToEGDpGxHPq1fv57Gv6FDhx49evT58+ct3aMPqq2t9fLy0tfX19DQWL9+ff0vXb0aev78kPh4E4FA7BoD/zZt2jQAGDZsmPiDK7QsBoPNi++rqCBr1pDISDJwYF0NRRMT4u0tbeICIsNASO+4m9wn1zi6OKWgoECaRuhdG13zwmw7s+gpqh1Mp7148QIATExM6NhgS3enBbx48YKukbG3t+dyuf/9739/+eUXOlbz5s0b0S715ORk+m7Zvn07ff8EBQVJeq09e/ZAQyszMzMzaaahgICA6dOnz5w5Mzk5+dSpU01c4vlzsmUL2b2b3LnDcHSsHvq02r9/fynbkU+vX7+myX1af/alCRMmcDgcFRWVxYsXv//VxMTB0dGQnb2FQcuXLl2iE6Uv398z9GFJSUkKCgpKSgqvXkmVxzwtjZSWkp07CSFk2TKyZQsxNa2bmmWzyciR5PhxcUt4vk9mgbBz584cDsfU1JTZbgFCiEAgYLPZLBZL0jxS9ZWVlcHbBXJqamrMGnnz5g0A6OrqMu5G61EeF5fl6Bg3alTckCG3pk9v6e58bJWVlbRcEZ3gUVZWjouLe/LkSXR0NCEkPz9flHfD39+fpiIyMTFhs9nbtm1jcDk6oNrIxonIyMjIyMhRo0YdP3587dq1jQVCPp/MnEmqq8mjR+Tf9/XMPHr0CAB69uwpfVNyiG4++fTTT1u6Iw0rKyujCwMfPnx4/fp1CwuLKVOmNHhkSUl4dDTExWnx+ZI9b5SVlZmZmQGj/axHj66OiemenNxwl8SRl0fMzMiwYf/KHCwQkL/+ItOm/bNYSUuLzJ1LfvyRJCQQoZA0Ou7zL+Ku/GnSnj17LC0t09PTR40aNX/+/NLSUolOf/To0cSJE1ksVrdu3ejDHDN02wNN2sl484NM9k60Erz8fKOoqL45OX3//nvQ69ct3Z2P7fqmTXFxcWZmZjQM/PLLL3379rWysqKTJTo6OjNnzqRHLl68mE5+aGlpCYXCtLQ0BpczMakcMcK8e3fzDx3g6Ojo6OjYrVu3adOmidLpNSwnB7p2BUVFsLEBWfziZLV9oppUFwmKakntg8oH0veqrTh37hwAfPbZZy3dkYaVl5ffunULAJ48ecLhcP7++2+a8/J96uoj1NWHCQRFOTk/S3QJb2/vlJQUe3t7Ly8vSbs3efICFiujoCCosjJe0nMBQCCA6dMhJQWyssDJCe7fr3udzYaRI+H4ccjOhsBAcHWF4mI4fRpKS2HvXhAK4flzsa/BOES/r7a21tfXlybq7NixY3BwsDhnxcbGiqrGKykpbdiwQZo+XLt2DQBUVFTS0tJyaVEeSYSEhJw+fZoOItna2krTk9bizBkCQOztxa0e1J4cPUoAnru42FtbA8CsWbPEOenp06dcLpfL5TJYM/z0qX10NJSVNbHrhu5EzsvLa2w1VnU1oWvt8vNlUlIxMzOT/mFK00hYSZhXhtdP2T/dKL2xPksGz6ltQmEhcXGZqa2tw7hoaHPLyclxdXXdvHnz5MmTb9682fjBpaW3o6MhKWmS+O3fvXuXzWZzuVzG6/DT072io+Hly4kMzv3uu7oNRPr6BICsWPHBIx8/JufPk++/J1evkv/9T4IVZrIMhFRCQoKDgwONsh4eHo0sV2mkXiBj5eXl9HFQX19fosT/YWFhdO+gkZERHQYZMGCAlJ1pFQ4eJABk4EACQGbPbunefETPnhF1dfq9V1lYeI0aJf7SJ09PTwCYMGGCpNd88EA/OhpqamSxd4IQEhpK1q0ja9ZIP0FI3hay0NLSkqaRb1K/ERABIaSYXyw/gfDIEQJARo2SQQ2TZpKTk7Nx40ZCyKlTp5oMhISQioqHJSXXX71aVVx8ucmDq6qqaFmetVLUaKypyY6N5UVHs8rKJNtKcvr0A0VFoqhIrK0JABkxoukluPS+8bvvWjQQkn+nPzc0NDx37tw7BzRHCBSJiYkRZX8YN27cq0ZSIxNCCAkJCRFFbn19/eHDh9MEQkOHDpVVl1oSzTo9eLBktTjbuooK0qcPASAODgSAqKoSSR7vcnJy6PoautRTTAJBWXQ0xMYqE9Lq1lgVFRUtXLhQXV2dx+N5eHgwWPQYWx57seji7NS6eym5CoSffkoACNPEwx9DUVHR8ePHCSE3btwQc8VicvIUQoSECIqKgnNz/1dQEFRcfKW09FZZWUxSUlJOTo7oxnHt2rUA0KNHDyl3IWdkrHjwQL+w8Kz4p8TExKioqPTuvdDVdbu5eXWXLqTxYb7KSvLiBTlyhBQWkqwscuGCuBdqlkBIvXz5csiQIaJHQzqq0KwhsL6goCC6Z+CdGg71iZ4CAUBXV9fZ2VlUKcLR0bGdFGL29yfa2nV70aQbdm5L6GCKhQXh8QgAaaq+4/s2bNgAAA4ODuKvHK6sfBwdDQkJ3SW9VnM7efKkoaEhAHC5XJpeS0FBYcGCBdnZ2eKcXi4o937lzY3l6sbrHso7tDZr7e8Fv0eWRcpJICwvJzweYbNJ299U/C9FRcGpqbOLi/9KTBwYHQ2i/92+rVZ/7kxDQ4PD4bDZ7Fu3bkl5RT6/mM8vysrakJW1vrq66U/XvLw8ujyHfkp36NDtwYMmInFMDAGoy5cuUdWyZgyEhBA+n79z5046S6+np9ezZ09RCFyxYoX49QKZycrK+vTTT+mvc8yYMenp6aIvvRMChwwZIk69wDZJKCSHDpEtW8jff0tQlLqte/OGjB9PzMwIAJkzh0EDFRUVdM+J+InXi4pCoqPh+fNRDC7XTJKSkmjKJwDo1avXZ599lp6e7unpSRMs8Hg8b2/vQtFu8IacLzpv+sgUYoAby12WsaxUUJpVk/Wo4lEtqX1Ty6SaT5sTFEQAiLNzS/dD9gSECFNSZmRnb0lJ+SopyeP585GJic6RkUNouS7e2wynpqamslouW1X1/NWrHwkhAkFpVtaG16935OYG5OefLCoKTk39Ozo6OjExMT09vaCgoKamhibLtLGxoTV8xPlL/PtvAkB69SIARKIRveYNhFRSUtKwYcPoXGuzPgU2KCgoiG6x19TUDAgIEAqFV69erT8Q2m5DIHXgALlyhQgEZO5cwjS9QFuSkEA2byY7dpDSUuLnR2xtCdOEUgcOHACALl26iJkUpqLiUXb2TyUl15hdTrZqamr8/PzofLmWlpaDgwO9B6WfJk+fPhUNzOjo6Pj6+r5fMSojI2PW8lnKccoQAw6JDnEVMk1p1XYcP07Mzcn27S3dD1nLyfF/9WpVScn1Ro4RCoUFBQUyTbAlzMnZnZLydWlpRP3H0Oho2LLF5Z2FnFwu18DAgKbMXNHICpl6QkL+SUro5iZBtz5GICSECASCdevWeXp6Njlj1xyys7NF655Hjx6dmprq6ura/kMgNX9+XRqiwEAiXQK8NkAgIDNn1hUZp8VUayRIkPZeYwK6B3HHjh3iHJ+U5FFT87q2tnnHOcRx+/Ztm7elKhwcHOiNoIqKio+PT/2gHhUVJard2qlTJ1ENaj6f7+fnR9OIjz4yes+bPXSBjLzJziaLFhFCyMmT5PXrlu5NuyAU1giF/JKS8Ddv/DMz12RkLEtN9UxK+uLFi3H798+xs7Pr1q2bsbExndVSUFDo2bPn69evV69eLebm8lOn6gpnAZAPbKRs2EcKhK3BsWPH6CeCgoICzT4jZtX4tm3r1rrSCatXN1ZSvX3IySGihW2yyPMbGhpKn6jeXzcvEJSWl0fn5QWmp3slJjrn5gZkZW3MyFhWXZ3eYFMfR2FhoZeXF60M0LlzZ3o3DQBDhw5NTExs8JSwsDDRYZaWltu2bROtHXNzc6s/oSBXKivJ06dkzBhy+jT56Sci3nQqakJNzeusrM1ZWRv5/CYS9BQXF9OMm2LehlIHDtSNYwOQb7+VoGNyFAgJITk5OePHj+dyuRwOx83NjfGemLaEFgnduJEcO9bSXWl+tbXkm28IIeTNG7J8uUyaHDVqFAB89913+fn5YWFh27Ztmzp1qrv7iOhodv2BnZSUWYSQ2tr8tDTZJNpnYNWqVTQngJKS0pAhQ+iO3g4dOgQ2tVZIKBQGBQXRgi10uWyXLl0uXrz4cbrdemRmkuBg4u1NnJ2JsjLZsYP4+5P588maNRgIW0BYWBiLxVJRURF/kbOf3z9r5CVKUy9fgZC6ffu2lFUyUOt16xbx8SEbNsiqXtn58+dZLBZdXSKioKAQFaWekGCdkjIjJ8evtPSWQFCalbU5I2NFYWGjebSbzf379+mcX+/evTt37kwHPObOndv4Wpj6ampqZs+eDQDW1tZSVuppK0pKSm7duuXn5+fh4dGr1xiapov+j8Mh331H/P1JSgoxNSXZ2TIrdIDERxN2jxv3mUC8sflNm/6p1yLRpkeZVahvQ5ydnVu6C6jZDBoEgwZJ34xQKLx27dr+/fvPnj1LCGGxWIqKivb29v3e6t3bhsNRqH+KkdFq6a/LGF2DbWpqunjx4m+//bZXr16//fbbwIEDxTz95s2bs2bNosXLzM3NedLURG8LEhMT58yZc/fuXaFQKHqxd+9aMzMFR0dwcoL+/UEohJcvoUsX2LsXLl2CU6cgOBiUlVuw13Jn165dr18rR0Vt/O03WLCg6eOFQuDxgBAAADW1po6uj0mYRqj9Kiws3LlzJ61qCQAqKio0P4ODg0NLd60x0dHRAGBraysUCgMDA2skXCV0/fp1AKBFzEeMGNFMnWw9Ro0apaCgwOFw7OzsvLy8AgMDExISPrRntKyMGBsTADJpEpGiIgBiIji4LiWGmLWWnjwhoaGkoICcPi3BVTAQIlQnMTHRy8tLVVWVhkBjY2MfH5/c3NyKigoej8disVpkzbOYHj9+DG9rAjNw9+5dAKCZtJzb46a5+gTr5LAfAAAgAElEQVQCAc0wcO/ePTFPefSIaGsTAJmswUKS+eILAkCGDxdrdDo4mLi4kLw8snSpBJeQWfUJhNoooVB44cKFkSNHWllZ+fv7l5eXOzs7BwUFpaamrl+/Xk9PT0VFxdXVlRASEhLS0p39ILoXqKqqSprTa2trQRYVKlq5W7duvX792sLCwt7eXsxTbGzgzz9BWRkCAmDr1jyxzhEIoLQU1q+HTZvg6FHm3ZV7+/aBgQFcuwaHD3/wmFev4NAhmDoVioth4ULw9ZXsEvI4R4iQSF5eXr9+/V69egUAGhoaM2fOXLRoUY8ePd45zN3dPTg4+MKFCzQfdyskZZWl+oGQcTRtK2hNpc8//1yis1xcICgI1qyJ2rbNTUVlbQPViPh8ePYMYmLgzh24fRucnKBrV5g+HSwsYM0ayMwEY2NZfQtyRU8Pdu+GfftgwIB/vV5RAREREB4O4eEQG1s3NdipE4wbB+bmEBQkwSUwECK5pqenZ2JioqKiMnv2bE9PT7qT933jx4+fO3fu1atXy8vLRWOnrQpNk8s4ENLTq6urpWmkTSCEMC4u6O4OOTkJnp75y5Yt69Sp08SJE9PT06OioiIjI+/fu/f306es/Px/jlZQACUloJPN3bpBRgYGQsamTYNRo2DAAIiLg6NHgc+Hc+fgzh2oqak7QF0dhg+HkSPBxAS0tcHTExISJGifRWgYRUhe5ebm6unp0b0HjRgwYEBkZOSff/4pSmDbqlRXVysrKysqKtJgJqnc3FwDAwMdHZ2CggJDQ8Ps7GyZ97CVuH//voODg7GxcUZGRpO/9AZt3rx57dq1XC5XU1Mzv17kK+rTR7OgAExNgcOBwkJ4/hy2b4fu3WHkSJg/H7Ztg3ZR67ulFBTAqlXQoQMYGkJ2NmzaBBwO9O0Lrq7g6gouLqCoyLxxfCJE8k5fX1+cw9zd3SMjIy9cuNA6AyGtHVZTUyMUCmlmGYnQoVEaRNv30Ch9HJw4cSKzKAgAa9asycnJ2bt3b35+vqamZrdu3Xg8XklJSYKOjnN8PGRk1B2noAB2dvDiBfj6wvz5GAWl16kTKCvD48fwxRfQpw8MHw4fGMGRGD4RIiSWhISEXr16GRgYZGdnM4g0H4GqqmpFRUV5eTmDXYACgYBmXBIIBEpKSu04FlpZWSUmJl6/fn3o0KGMGxEKhZqamjTtgOjFbU5OK16/BicncHQER0fo1w93HcpQQQH88gv88AP07w9//AHvzeNLBZ8IERKLjY2NhYXFy5cvo6KiBrwza986KCsrV1RUVFZWMgiEHA6Hy+Xy+Xw2m11dXc3ssbL1S0hISExM1NPTGyRd1oXs7Ozy8nIAUFVV7du3r52d3aBBg1xcXKBDBxn1FL3r6lXQ0IDaWrh8GXR0ZNw4BkKExOXm5ubn53fhwoXWGQhFC0dLS0tp7QhJTy8tLVVSUqqsrKyqqmqXyWXOnj0LABMmTHgnZx6DdgghY8aMuXDhAofDkVHvUGO2bIH4eDAxAckXOTWtHd70IdRM3N3dASA4OLilO9Iw0VZCd3f3kSNHxsTESHR6enp6cnIy3UGRlyfeVrm2hvF60Qbb+fLLLzEKfhyxsRAfD7q6MHZss7SPgRAhcQ0ePNjAwMDIyKiioqKl+9KAsrIymmj7wYMH4eHh9vb2U6ZMefHihTjnCgSCQ4cO9e7dm8/nGxgY0MQr7UxiYuKDBw/U1dVFVRiZyc/Pv3XrloKCwthm+lRG7zl0CABgxgxQUmqW9jEQIiQuBQWF9PT0sLCw1jlsuHjxYgC4du0aALi4uCgrK//+++/W1tZz587Nyspq5MS4uLiBAwcuW7asrKxs3Lhxly5dUpRmKXpr9fvvvysoKKioqChJ92n6559/8vl8V1fXD+06RbJVUwOnTgEAfPVVs12DQeY3hFDrFB8f7+HhQf+0dXV1HRwc6GQYj8fz9vYuKCh45/iysjJvb286vmdmZnbp0qUW6fbHERcXp6mpCQArV66Upp1x48YBwP79+2XVMdS4M2cuDR26esyY5Oa7BAZChNqbO3fuDB48mIbDjh072tra0j1zOjo6W7durayspIcFBwebmJgAAJfL9fLyKi0tbdlufwTh4eH0YXfnzp3MWigpKVFWVmaz2dlYq/djGTNmDADs2bOn+S6BgRCh9iksLKx37940HHbt2rVXr14AoK+vX1JS8urVK1GmTTs7u+jo6Jbu7Mdz5MgRFovFZrNPngxicPqJEycAYMiQIbLuF2pYZmYmh8NRVFTMzc1tvqvgHCFC7ZOrq2tcXFxQUJCZmVlSUtKjR4+sra3nz59/8OBBKyurM2fOaGlp+fn53bt3z87OrqU7+/HMmDHD39/f2LjLmjX9Ll+W+HRZrTtFYjpy5IhAIJgwYYKenl7zXQUzyyDUzlVVVe3du9fX17d+YsypU6fu2rWrXa4OFceaNWVbtqipq8O1a9C/v7hnVVVVGRgYlJWVpaammpqaNmcHUR2aCSg0NPSTTz5pvqvgEyFC7ZyysvLy5cuTkpJWrFihpKSkq6t75cqVEydOyG0UBIBNm9S++QZKS2HMGEhMFPeswMBAmqyAQb4CxIBQKNy4ceO0adNGjhzZrBfCJ0KEkDzi82HCBAgJAWtrePgQGtwZz+fznz17dufOndu3b8fExDx9+hQACCGDBw++cuUKzWCA2gEMhAghOVVRAV98Ad9+C5WVMGUKXLoEo0dDTg7ExNSV183LK3vw4F8Pf0pKSjo6OtnZ2e7u7mfPnpUyVRtqJTAQIoTkWkwMLFgAR47A//4Hr1/D0aP/fElREaytnfr1s3Z0dLSzs/vxxx/Dw8NNTU1LSkqKioq+mz9/1759wLScE2o9MBAihORaTAw8fAiRkaChATo6sHUr2NuDszPY2cHAgaCr+8+RJSUlw4YNi42NtbKyYhcXR+jqanz6KWza1HJ9R7KBgRAhJNdiYuDZM9DWhu++g5gYUFVt7ODXr187OzsbVFWFdu+udfs28PmwZw8sWvSxOouaBa4aRQjJNSUlMDGBMWNg0qSmK+kaGhr+deXK37q6WjdugIMDsFjg5fWv4VTUBuETIUJIri1aBH/+Cb/8AuPHi33Ow4cwZAgUFcGAAXD3LigqwtOnYG7ejL1EzQmfCBFC8osQOH8eMjOhUydJTuvdG86dAyUluHsXBg+GXbswCrZp+ESIEJJfERHg7AxdukBysuTLP//8E6ZNg4MH4fPP4cAByM+HCRPAxqZZOoqaE26CQQjJr3PnAAAmTmS0CWLCBEhKAiMj8PWF0aOhd2+YMwd++625qseiZoNDowgh+XX5shAAJkxger6REQBAWhr06wccDvTqBWlpMusc+lgwECKE5FR8fHxSkv7o0b84O0vXkI4OZGUBAKSkQMeOsuga+qhwaBQhJKfOnj1bWVlgZvaILeUTwfLl4OcHbDaMHg1qarLpHPqIcLEMQkhO9erVKyEh4cqVK6NGjWrpvqCWhIEQISSPXrx40b17dy0trZycHEVFxZbuDmpJODSKEJIjlZWVsbGxUVFR/v7+AODu7o5REGEgRAi1c1lZWaKagtHR0dXV1fR1BQWFzz//vGX7hloDHBpFCLU3hYWFUfUUFBSIvsTlcnv27Onk5NS/f39LS8tBgwa1YD9RK4GBECHU3kyZMuX3338X/aeRkZHdW4MHD9bS0mrBvqFWCIdGEULtjYuLS2ZmpqOjo5OTk6Ojo4mJSUv3CLVq+ESIEEJIrmFmGYQQQnINAyFCCCG5hoEQIYSQXMNAiBBCSK5hIEQIISTXMBAihBCSaxgIEUIIyTUMhAghhOQaBkKEEEJyDQMhQgghuYaBECGEkFzDQIgQQkiuYSBECCEk1zAQIoQQkmsYCBFCCMk1DIQIIYTkGgZChBBCcg0DIUIIIbmGgRAhhJBcw0CIEEJIrmEgRAghJNcwECKEEJJrGAgRQgjJNQyECCGE5BoGQoQQQnINAyFCCCG5hoEQIYSQXMNAiBBCSK5hIEQIISTXMBAihBCSaxgIEUIIyTUMhAghhOQaBkKEEEJyDQMhQgghuYaBECGEkFzDQIgQQkiuYSBECCEk1zAQIoQQkmsYCBFCCMk1DIQIIYTkGgZChBBCcg0DIUIIIbmGgRAhhJBcw0CIEEJIrmEgRAghJNcwECKEEJJrGAgRQgjJNQyECCGE5BoGQoQQQnINAyFCCCG5hoEQIYSQXMNAiBBCSK5hIEQIISTXMBAihBCSaxgIEUIIyTUMhAghhOQaBkKEEEJyDQMhQgghuYaBECGEkFzDQIgQQkiuYSBECCEk1zAQIoQQkmsYCBFCCMk1DIQIIYTkGgZChBBCcg0DIUIIIbmGgRAhhJBcw0CIEEJIrmEgRAghJNcwECKEEJJrGAgRQgjJNQyECCGE5BoGQoQQQnINAyFCCCG5hoEQIYSQXMNAiBBCSK5hIEQIISTXMBAihBCSaxgIEUIIyTUMhAghhOQaBkKEEEJyDQMhQgghuYaBECGEkFzDQIgQQkiuYSBECCEk1zAQIoQQkmsYCBFCCMk1DIQIIYTkGgZChBBCcg0DIUIIIbmGgRAhhJBcw0CIEEJIrmEgRAghJNcwECKEEJJrGAgRQgjJNQyECCGE5BoGQoQQQnINAyFCCCG5hoEQIYSQXMNAiBBCSK5hIEQIISTXMBAihBCSaxgIEUIIyTUMhAghhOQaBkKEEGoDhELhn3/+2dK9aJ8wECKEUBswa9aszz77bNeuXS3dkXYIAyFCCLUB48ePZ7PZy5cvP378eEv3pb3BQIgQQm2Ah4eHr68vIWTOnDm3b99u6e60KyxCSEv3ASGEkFi8vLz27Nmjq6t7586dHj16tHR32gkMhAgh1GYIhcJJkyadO3fOzMzs7t27HTp0aOketQcYCOskJyebmZmxWKyW7ghCCDWmsrJyxIgRd+/e7d+//40bN1RVVZs+hxD4738hLw9MTGDGjObvYxuDc4QAACUlJYMGDXJwcLh37x6D0ysrK7du3frpp5/KvGMIIfQOFRWV4ODgbt26RUdHT548mc/nv3sEnw+PH8ORI7BkCQwaBEOHQmgoqKvDqlVQWAiMPuXaN25Ld6BVePbsGQBER0cPHDhw3rx5mzZt0tbWFudEoVB47NixNWvWZGRkAEBkZKSTk1Pz9hUhJPf09PRCQ0MHDhwYEhKycOHCvXv3JiQkxMTExMbGxsTEXK+o4CUk/HO0igo8egSffw4A4OAAjx+Dg0NL9bx1wqHROiUlJRs2bNizZ09tbW3HjqY//fR8xgylxgdKb9/OXrLELTY2FgBsbW137NgxbNiwj9RdhJDcu3fv3rBhwyoqKrhcbv3nwsRBg3o8fw6dOwOPBxUV8PIlbN4M6uowYwbs3g1DhoCtbQt2uxXCQPgvz58/X7x4cXX1gr///tTODvbtA0fHBg+DNWvgzBlhjx4OJSWv161bN3v2bA6H89H7ixCSa6dPn548ebJQKDQ0NDQzM+NyuUVFRT/q6k69ceNfxx07BlVV8Po1WFjA5Mkt09dWDANhA37/nb9sGTcrC9hs8PSELVtAR6fuS7m5sGED7N8PtbWgrg6bNiV9+60Rj8dr0f4i9I/MzMy8vDwbGxu8M5MTJiYmmZmZ9T/Jv+7Z82BZGdjZgZ0d2NqCnR3o67dgD1s/DIQNKy2FjRvh55+hthbGjwczM/Dzgx074NAhePIEOByYPRs2bgRcuoxaG19f3x9//NHLy+vnn39u6b6gZpeXl2dkZCQQCAwMDOzt7e3s7Ozs7BwcHHBbhURwsUzD1NVh+3b45htYsQJmzYKTJyE8HDIzYcUKOH4cdu6E3r1buosINeTOnTsA4NjgmD5qd06fPs3n88eOHRsSEtLSfWnD8ImwaRERkJ0NV64Alwu//NLSvUHowwghBgYGeXl5qampnTt3bunuoGY3bNiwGzduHD16dPr06UzOz84GPh9MTGTdrzYGA2HTaCC0soJhwyAnp6V7g9CHPX361NraumPHjpmZmS3dF9TsKnNyuvXtm19UlJOTo6GhIfH5v/4K1dWgpASlpfDDD83QwTYDN9Q3rWtXsLUFa2s4fPijXreoqGjatGnJycliHb1tG2zaBMuWQV4erF9f9+KGDc3WO9QaxcSkcLnKAwcObOmOoI9B5Y8/0nJz782axSQKAkBcHCxdCvPnQ1KSrLvWxuAcYdM6dAA7Oygtha5dYcyYj3RRPp/v6Oj4/PnzioqKpqtxJiYCmw1r10JaGvzyC7x5A0VFAAB5eR+hq6j1uHFjrKJi5YgRhS3dEfRR/P47RyDoJf32ZbkfF8QnQrEoKUF6OmhpffAAupuVECIQCGRyRS6X6+7urqioePfu3ZiYmCaOzssDIyMAACMjyMuD0lI4fhyOHwcZdQa1FbdvQ0UF2NmJlRcJtW2vXkFEBPB4MG4cwxacnGDrVti9G2xsZNozCeTk5CQnJ5eXl7dUBygMhGLh8YDLheHDP3jA0qVLAeDx48cHDhxg0P7Jkyff+QcAbNu2zcHB4c2bN6tWrWri/D59IDwcXr+G/fth1CjQ1ISFC2HhQsCdZPIkPx+ePwcVFejTp6W7gj6CP/4AoRDc3EBNjcnpp09DdDRoaECPHvDNN7LunLjmz5/ftWvXK1eutFQHKAyEYlFWhtpa6Nnzgwfk5+dHREQ8ePCAWft0yTsAREREiF5ks9mnT5/u3r37/fv3r1+//sGTN2+GoiLYuBEuXoR+/cDNDUTrx5gtJENtU0QEEAIODqCo2NJdQR9BYiKwWODhwfD0kBD49Vc4fhzGjYNDh2TaMwlUV1cDgJKSUkt1gMJAKJaSEuBywdT0gwcIBILq6ura2lpm7dfW1m7ZsmXLli3FxcX1X+/QocP27ds5HI6Pj0/DZ27ZAmvXwogRYGQEc+aAszMAgCjxN24mkyf0boq+BVB7VlsLv/0Gpqbw11/g5sawkYcPAQAKCwGgBbdF00CorKzcUh2gMBCKRU3tDpd719DwgwcYGBgMGzbM3t6eWfsKCgqrV69evXq1pqbmO18aP378559/HhcX18CSmaAgWLsW2GzYuhW4uO5Jrp0/D+vXQ0gIYOL39m/nTnBwAG9vOHYMmJVQFQjg6VNgsSAtDQBacI4QnwjbEmfnGwYGMxuJNXPmzHn27BmPx/vss88YtO/wtipKg6F079691tbWW7Zsqb/pU3jrFsycCYTA7t3A6KKImQbKv0khIiJi5cqVP//8s5Q7ev384OxZMDSErCxZdQ21VmlpYGsLXC706gXp6UxaePYMKiuhUycoLwcTE9DVlXUXxYWBsC3p3Lkzm93Yz8rPz8/Ozm7s2LEGBgYM2p85c+a8efOGDBmSUL+K2FtcLjcoKCgtLe3gwYP0laSkJOfZs0t69IC5c8HLi8EVETO1tbXjx49fuXKlTFr7448/xowZs23btqVLl/bp0+fIkSMMRterq+HNG7C1hXv36nbNoHZOSwtevwYASE2tWy4uoZznz6stLEjHjgAtOS4KAPr6gVZW0UpKH15/8VG090CYkgJeXrBpE2zbJk0znTt31mpk8wSAoaFheXm5vhQp3pOTk2/evJn0gZ2tnTt33rZt25o1awQCQW5u7ujRoyNfvFjUvTvs28f4ikhSAoHgyy+/DA0NPXz4cI50SYaKioqmTp36xRdflJSUdO7c2cjI6NGjR7NmzerWrZu/v7+Yq8lfv4atW8HCApYsAQBYsQJ27ZKmU6iNWLEC9u2D9eth5EhQU2MwCOB//77yy5cjVVSmWVqGu7g0Rx/F9PKl1dOndkpKLVzAp70HQn//uuUkFRWQmcl4X118fDyXy62srPzQAaampgDAML8DAAB06dIFAIRC4YcO+OqrrwYOHLh9+/YJEyYkJSXZ2tr+evgwbpD4aAghCxYs+OOPPzQ0NC5duiRNdv+IiAg7O7tTp06pq6sHBASkpKSkpqYGBgZaW1unpaUtWbLE2Nh4yZIl2dnZH26hZupUMDWFlSvh1StISQEtLTA2hk8+ATU1CA5m3DXUFujowKZNsH49jB8PJ0+CjQ2sWydRAw8fPgSA0oqKk4mJeY0sAmx+1dUAAC09MgpA2rd58+r+4e9PHj8mn31GZswgOTniN/D8+XMPDw82m83hcLp163blypUGD7t06RKLxZo6dWqDXxUKhUFBQdra2srKyqtWraqurn7/mHPnznE4nE8//bSRziQlJdGHzk6dOmVnZ4v/Xbzj4sWLf//9N+PT5ZO3tzcAqKioSPOjq6mp8fHxocPsNHNQ/a8KhcLg4GDnt+s+lZSUZsyY8ezZM9EB1dXVQUFBAwYMGDp0FQDhcIibGwkL+9cl5s4lAGTLFsZ9RG2KjQ0BIMrKJDVV/JPojbuJiQkAPH78uPl61yRDQwJApPgwk432HgiDgsi+feTJEzJzJgkNJUpKBIBoa5N9+wif3/ipeXl5S5YsUVBQoB9/dD0njXa0DGZ9cXFxPB5v+fLl77cTHh7er1+/+jcfNjY2169ff+ew3Nzcjh07jh8/vsHOlJWV+fr6qqurs9lsNputoqLi4+PTYEBt3P37911cXLhcLpfL9fDwyMjIkLQF+URr+ykoKFy8eJFxI0+ePKHvBC6X6+3tXVNT86Ejb926RW+/AIDNZru5uV28eHHVqlWisfcePazXrBG+etXAuRcvEg6HsFjkyBHGPUVtR34+GTiQ8HikXz8iFIpzRmFhIYvFUlFRYbFYSkpKjbwPPwItLQJACgpasAuEyDwQvnr1at68ed7e3lFRUS378/3HvXvk999JTg7p0YOYmJC+fQkAASD9+uVFRTV4Rk1NTUBAgJ6eHv0Y8vDwSE1Nramp8fPzU1NTAwBVVVUfH5+qqirRKa9evdLU1Dx48GD9dhITEz3ebnft1KlTQEDA5cuXrays6Ctubm5paWn1j+/bt6+bm9s7neHz+QEBAYaGhjQMjxs3buTIkaKAeuPGDTF/DKmpqVOnTmWxWADA4/FogNfU1Ny9e3dtba2Yjcinw4cPs1gsFot1+PBhZi0IhcKAgAAejwcAZmZmt2/fFueshISEWbNmKSoqAoDu23V9dnZ2hw8frv/ee99vvxEAoqBAwsOZ9Re1KSUlpGdPoqz8ZM6cJo9NSkpavnw5/TABgN69e3+EDn5IWRlZu5Z4e5PCwhbsBSEyD4TW1tast/taeDyes7Ozl5dXUFBQbm6ubC8ksZQU0rt3XQi0tyedOgkMDDppaMyYMeP169f1DwwODu7atSv9FkaMGBEXF1f/q69evZoxYwb9avfu3S9fvkxfr6qq0tLSioyMpP+Zl5fn5eXF5XJFUbOiooJ+qZGAOnbs2HHjxtW/XFhYWO+3a7rs7e1v3rxJXw8PD28koL6jtLTUx8eHbllVVFR0dnaeNm1aRkaG6Bvp0aPHX3/9xfAH26a8eUPoE93ffxMx79POnTtHf4+7d+9mdtGUlJRxb7NBzpgxo7S0VKLT09PTx4wZAwCdO3e+c+eOmGd99x0BIKNHx7fswBf6SKqqHnTr1k1bOzY29v0v5ufnnzp16ptvvjE2NhaNS9HxBk1NTWZD/Xw+f//+/du2bRN9sjHw1Vfk2DFCCFm6lHEbsiHLQPj777/TUcSJEydaWlqy6u30ZLFY1tbWs2fPPnjwYGJiogwvKoHaWvLzz0RTkw6p/+zmRmODlpaWv79/bW1tVFTU4MGDaYctLS2DgoI+1NLVq1etra1FcSg1NZUQoqam9urVq+rqaj8/PzqOymazZ8yY0eBkXoMBdcmSJcOGDaMHPHnyRPTpaWJiEhgYKPz3uMf7AfX9kdLa2tqAgAC6rIPFYtnb2xu+TQqQkJBACAkPD7e0tBR9I+np6dL9iFu7+HjSuzdJTSWrVok1GnP16lW6w2nz5s3MrlheXq6urg4A+vr658+fZ9YIzcTo6Ojo7Oz89ddfi3OKQECWLr0JAF26dJFmOhm1FXw+f8qUKaampvTGms/nR0dH+/r6urq60uEfSl9f38PDIyAg4Pbt2/Tjjs1me3l5STSAR2/QFRUVuVxujx49rl69yqzP339PvvuOFBS0o0BYXl5OK2Lv37+fvpKbmxscHLxy5crBgwerqKhAPTo6Oo6Ojo0P7zSXvDzi5VXUty+bxTI0NOzzNj+xjo4Ojdx6enp+fn5NjhbSOEQ/43g8no+Pj5GR0alTp8zMzGiDrq6uDx8+bLyRdwLqsWPH+vXrl5mZ6enpyeFwAEBbW9vX17eysvJDLXzoCZUQEhYWZvM2YYS1tXX37t3pv+3s7OoPqIoTUNuN+Hiybx9ZsICsWkU2bCAqKsTSkowaRb79lmzaRE6cOHvz5s3U1FT624+KiqI/lkWLFjG+YnBwMJ3TfWfgQSI0h62FhQUA9OnTR8yzKisraWFCW1tbSR9DURu1aNEiFxeXoUOH1t/upaSkNHz48K1btz548KD+/XRtbe3atWvpR83XX/9PnNU2d+7cES3mMjQ0pNumWSzW7Nmz8/LyxO9nfDw5dIh8/z3JyiIrV5KlS8nNm6S8nMF3LBsyC4R0TZ2dnZ1AIHj/q7W1tQkJCQEBATNmzKDxUlNTc+vWrbK6uqTu37nTt29f+uvs2bOnaOZszZo1En1kpKenT5o0ibYjuu3q16+f+LdI1dXV//nPf1RVVWkc0tHRof9WVFRcsmSJmO+tdwJqSEjI0KFD6X927tx5wIAB9N90nrLBX1D9kdJ3Amp7Eh9PDh8mp08TOzvi6Vk3Uk7/x2IJRbdrXC7XxMSEboaZNWuWULw1CA2ileINDQ2l6TbdR0EnrSVqKi8vj94ADRky5PLly2FhYXfu3Il+Ky4uLqmeN2/eSBOtUWsQExPDZrPpB5q5ubmnp2dQUFBxcXEjp9y4cWPkyOlstkBLi3x4FIw8eUKmTClWV9cAAAMDgz179tTU1NTU1Pj6+tKhNW1tbT8/vyIrqQYAACAASURBVAY/XupLTyeenoTDIcrK5NtvCSFkzx7y1VdETY106kROn2byXUtPNoHw+fPnSkpKbDZbNEnWuLlz5wLAqlWrZHJ1Zvh8/p49e7S16yq36enpMV5Cee3aNVNT044dO2prawcEBPCbWo/6vszMTBqH6H2cq6srHboUX1VV1ZYtW+hyDPr/Ojo6Q4YMaXCe8kNCQ0O7detGfyAODg7SBIDW6cEDcuECIYR89RUZPZqoqBAzM2JrS5ydiavr3gEDBvTq1cvQ0JBOnxgaGlpaWkq5kqi2tpbuvWnyA6IRfD6f/ZakTb148UJVVbVTp04gBg6HM3nyZMb9RO8QCARnzpwJCws7ffr00aNHAwICfH19161bt3z5ck9Pz2nTpk2YMMHV1dXKyqpfv37vryRn4LvvvqM398nJyeKfVVREpkypuyOcMYO88yzw6hWZM4dwuQSAjBq1a926dSUlJfUPePny5ejRo+lbaNCgQY8ePWrwKvn5gu+/J8rKBIAoKZGlSwk9sLaWhIeTfv3qOjBxIvn4i9llEwjpZP63NL6LISAgAADmiLHGqbnl5OTQ4aO5c+dK08769esBwNvbW5pGPv/8cwBYvHgx4xbS0tK6dOlCF9zTUQsul7tgwYI3b96I2QIdKaWjJUePHmXck1aopITo65Np0wgdkh8w4F9PhFpa/xSzVVdXP3fuHP1Akf66dMGn+L+CBtGNE/S+TaKmHjx4wOFw2Gy2g4ODra2ttbW1paWllZWVlZVV9+7dO3XqZPKWjo4OjbUf+iBDkrKyshIziyaHw7G0tGRwD11feXm5jo4OANy/f5/B6b/+SlRUCABxdSV0WV5kJFmzhvB4dYuQFywgjQwZBAcH0/stLpfr5eVVf2itvLzc19fX3NxRXV3IYhEPD/Ly5bun19aS3buJujoBIEZGxX5+ez7manYZlCw4c+ZMaGiotrb2li1bxDyFLt+QMkmVTBgYGEybNi0iIoIrXfUGQghIXUzEyMgIAESTeQyYmpo6OTmlpqZ++eWXdnZ2d+7c2bVrV69evcRv4ciRI4WFhX369ImNjZUmY1wrtH8/5OZCZmZdGouICCgrg7Q0SE2FV6+Eqalz09PT09LSUlNTNTU1x4wZo6CgkJiYWF5eTgerGevQoUN+fn5OTo40P88OHTrk5uZqa2sXFhaK3xQhZMmSJQKBYOnSpV27dl28eHEjB69evbq4uHjv3r0rVqwIDQ1l3NU2TSAQhIeHi55vpHHp0qWnT59yudzhw4dramryeDxVVVX6Dx6Pp6WlpaqqqqKioqGhUVFRMW/evMTExJ9//nnZsmWMr3jkyJGCggJnZ+f+/fszOH3ePBgyBGbOhOnTYdEiuHIFzp2DvDyoqAA3N9i1C96OFjXM3d3dxcVl3bp1+/bt8/f3P3PmzO7duydOnHj48GEfHx86RzBv3s25c4e8nZX6Fy4Xli6FyZPB2xvS09cuXep/8OB/f/31V/qg0uykDKQVFRU0N9ivv/4q/ll3794FAAcHBymvLhN+fn4AsGTJEmkaWbNmDQBs2rRJmkbmzZsn6U/yfXTO8o8//mA2Fjd8+HAAoHs2xN+k2PrV1BBTUwJAQkKaPpiOCdNZ5IiICCkvPWzYMAAIl25P34gRIwCAru0Sv6kjR44AQIcOHQoLC8+ePevq6urq6uro6Gj3Vu/evc3f2r17d35+Pn2kaK+TxI0TCASDBg1isViMl0GKCIVCWklm4sSJjf8dPXr0qEePHjTTAo/He/n+s5LY6C3vyZMnGbdACBEKSWws8fcnS5YQb2+SkkI+sN36g+7du2dnZ0fjC52mAYD+/fuL/74NDQ01NzcHADab7enpmZ+fL/G3ISFpc41u3rw5NTXV1tb222+/Ff+sDh1MBw7c07HjWimvLhO0qo6UT4StsJHGy2V8iEAggLcpT6XsSaty/Dikp4ONDYwZ0/TBdK2Bra0tAMTExEh5aZmMf9BG6HIeMZsqLS2lVTK2b9+upaX12WefhYWFhYWFRUZGitbLxMfHixbLLF26VEdHh656W7ZsmWyrTbUJbDZ7zJgxhJA5c+aImff8Q86ePXv//v0OHTqEhISMGDEiNTX1Q0caGRkVFhbGxcUNGDCgoqKCTjAxuOL169cfPXpkZGQ0ceJE5v2GuvqG2trQty/cugWGhvC2Rpy47O3t7927FxAQoKSkpKqq2rlz54CAgKioKHozJ45PPvkkISFhzZo1XC53//7927dvl/CbkJhUgfDly5c7d+5ks9n79u3jSJL9uUOHjhERiy5fZlpbWaZaYQxrwUbo6e0sEBJCLlxIY7FgxQoJ6pgOHjxr6NDbGRlSfayATAMhXZksZlPr1q3LyspydnaePn26+Beig6hPnjwJDAxk1tU27YcffujXr19KSsqmTZsYNyIUCjdu3AgAFhYW1dXV06ZNo8NmDdLV1d21axcAJCYm6unpXb9+nT7HS2rPnj0AMG/ePJqKSBpKSqCuDrNmga4uw7q/9EkuISHh4MGDL1688PT0lPS+XEVFZdOmTfHx8VOmTPnxxx+ZdEISUgXCOXPmVFdXf/31105OThKdyOOBmhpUVUFJCfOrP3sG//0vAMCBA5CYyLyd1hB+Wk8j7TIQhoSEnD3bxdl53tSpEpxlaely44bzlSsdpby6DAMhJU5Tjx8/prene/fuZUnyYaaoqEhjwOrVq0tLSxl0tU2jjyAcDmfnzp2pDx4wa+TEiRMPHz40NjaOiopSUFDw8fFp/Pgvv/zS3d29sLCQbhVdtmyZpO+W9PT0CxcuKCoqenp6MutzfdbWwOHA+PEwdqxUdSEsLCzc3Nzqb+eXlKWl5cmTJ6Wp6iMm5oEwPT395s2bbDabTo9Jiv5dS/PhIBRCZia8eAFZWfDh4kVNaw3hp/U00i4D4datWwHg888tJfqT7NMHuFx4/BiqqqS6ugwDIY/HW7lyJZ10bNzixYtra2sXLFjQt8GVCY2aMmXKwIEDc3Jydu7cyaSvbVz//v13/fhjhq1tl2++AcnHhwUCwebNmwHA1NSUz+d//fXXopSNjdi7d6+6unpkZKS9vX1BQcHSpUsluugvv/zC5/M9PDxEqaOklJEBFy8C0zuBtod5IDQyMtLV1RUKhQsWLGAwnSB9IASAjAyIi4OMDKkaobNiEg3tvq81xDCZNEJPl8nPpJWIioq6ffu2jo7OnDlzJDpRRQUsLYHPh0ePpOqATAJhcXExAERHR9MNu40/q504ceL69esGBgZ0gE5SLBZrx44dLBZr27ZtGVL+dbVNXj/+aJifD3FxIPmtwMGDB589e9alS5eoqChFRUUxh/VMTU1p+ExPT1dTUzt16tT58+fFvGJ1dfWhQ4cAoPFVwRJRUwMAKCuTVXutHfNAqKCgcO/evQ4dOoSGhs6fP1/S0w0NwcAApJuQBltb+OILsLWVqpHWEH5aTyP1A2H7eCL86aefAGDhwoWZmZkpKSkSnUvfWrGxUnVAykBInzBWrFihqqqan5+/YcOGUaNGaWtr9+zZc+bMmfv373/8+HH940tLS3/44QcA2Lp1a/08WxIZMGDAxIkTKysrmxzWa594PNi/H1gs8PGRaN6lpqaGvt86dOggFArnzZvXyOzgOxYtWuTs7JyTk0Mf4hcsWEDvfpp0/PjxN2/e2NraOjo6it/VxmEglICZmdnFixdVVVUPHDjg6+sr/ol8PvTsCTk5oKkJ6ekMr25gABYWAAB9+oCBAcNGQKbhpx08VrazoVGhUBgXF8dms7t27Tpy5MhBgwa9EzYaN2wYuLtDR+lmCekygZcvX8ZKHlHT0tKGDx++du1aPp//5Zdfnjx58rvvvnNycmKz2U+ePDl69OjcuXNtbGyMjY09PDz8/PyioqLoni17e/uZM2dK0+1t27YpKSkFBgYy6HZ7MHw4zJgB1dUwbx6IvYwzICAgJSXFwsLi3r17KioqdAmumNhs9oEDB5SUlCIiImxsbLKyssScddq9ezcASDqa2jh5C4QyyCxz4cIFDofDYrGOiF0JtLqaODmREyfIkSMkOprhdTMyiLk5ycwkO3YQaaom0KREu3btYt4EIXRhnvg/gQZ98sknABAaGipNbjO6l5ZZaglCCJ3PoBkiUlJSGHej9aBbmlRVVek/tLW1xS9mtGcPoTnkN25kePXQ0FAjIyP6BwIAzs7OwcHBYv5+g4KC6COdoaFhaGho/S9VVFTcvHnzp59+cnd3F5UqpBQVFdlsdkxMzJMnTxh2mhChUCgUCulnq5WVFeN22ra8PGJhQfbuJeJtya2oqKB1jug7jVmeqXXr1gGAubk5XWNibGzcp0+fHj16dO/e3dTU1NTU1NjYuFOnTubm5mZmZt27d7ewsGCxWIqKio2k5mfg3r1iZ+fk6dPlJceQbFKs/frrr/QvsMktk0Ih+esv8vgxWbmSLF5M9uwh0dGEWbWDjAzi40MWL5YqEFZXV7u4uIDU+d7Gjx8PAIcOHZKmEVdXVwAICwtbtGjR+4USxUTHVeLi4o4dOyZmAdj6aEp0muOmfdSv5/P5s2fPpu9POnakqqoq5obxjRvJwoUkK4swSLdQUVHh5eVFg5OLi8u8efNEi99sbW1PnTrVSD6twsLCadOm0YMnTZrU5IbipKSkwMBALy+vvn376unpKSsrz58/n81mn2aaw/jYsWMuLi7nz5+nj7PtL+usuGprydGjZPVq8v335NatuhcLC0lmJnnxoiA29saNG6GhoUFBQQcOHPj0008BgNY1U1NTY5ZUr6qqauzYsX/99ZeJiQkAKCgoKCsrKykpKSsrq6ioaGtrm5qaOjo6fvnllz/99NOVK1devnzZsWNHkHof/TsePnwIADY2NjJsszWTWfWJJUuWAICmpuaHEhWWlpKAAGJjQwDInDlk5UqSkUFsbMj//keMjUlgoATXysggs2aR0FCycyc5epSMHUtu3iQ//kjKyiTrc3BwMF2vTNNyDh8+nEEV0/z8fG9vbwUFBQMDAwMDg0CJvpN6wsPDDQwMVFRUpkyZQnN6aWpqilMQqr6SkhJ6T3rs2DFNTU0WiyVpQD127Ni2bdvoQ0ZWVpbk30drJBQKaVVuDodDi8goKio2Um+SEFJdTcLDycaNJDmZLFlCliwhhw+TCxeImBHh3r17NFWesrKyr68vzfJTUlLi5+cnKo5qZmbm5+dX/l7tmfDwcPpErqGhERAQIOk3Sz+O6bdpbm7OoNhZSUkJ/WyldUvs7e0lbaFdobfIQiGZM4eMHVs/Qe2f720119XVXb169ebNm3fs2CHNNR8+fEgTrM+cOfPw4cP3799vJKweOHCAvp1kWNguOTkZALp06SKrBls5mQVCgUBAMxq8Xwj0+fPn3t4FtCAuADE1Jbt2kbNnCSHk5EkyaVLd666u5OnTJq5SUkJWr65LAjtkCNm5kxBChg0jrq4EgJiYNFZGpL6oqKhBgwbR9665ufn8+fNpZim6yqtMvIhaWVm5detWWoOXw+GIsut+8sknz549E6sfhBBCEhISxrzNd0Kn5YyNjUXZAi0tLcPCwppsRCAQBAYG0sXTampqCgoKjo6ONPepRAE1PT19xowZLBaLzWZnZmaK/120fnQam8Vi0TEADocjqp35juBg0rUr4XDIokWksJAEBhI3N6KrSwCIhQXx8yONjELV1tb6+vrScS0bG5v4+Ph3Dqiurg4MDLSysqK/X319fR8fH1pvq7Ky0tvbmz6EOTk5Mcu29fLlSzo6Ske5d+/eLWkLNN2ljY0Ni8VSUVGRqI5Be8Pnk4UL6/49bx6ZMIEAEE1NYmREzM2jPv988ODBo0eP9vDw+Prrr+nNR+fOnaWv/uju7g4A33//vXh95Pfs2RMA/P39pbyuyJs3bwBAT09PVg22crKsUF9RUUETpNrZ2ZWVlQmFwrCwMA8PDw6HM3ToTwDEzo4EBpJ3PpAFAhIQUPcpo6BANmwobvBtVFtb+7//FXfoQEvHkS++IElJ/3w1JoY4OdUF1KFDSSMljNLT00VpDnR0dJydnTkczoEDB/Lz8728vOhql44dOzb+YCcUCoOCgmg2PABwdXUNDg62tLQMDAykReMUFBS8vLzeKVbyvtzcXC8vLxr81NTUfHx87ty5I1r61bdvX1GZ38bLx4eEhIjqETo4OLi7u9MZqU6dOokfUAsLC5cvX07DuZKSkqenZ+Odb4t++eUX+qunn1ksFuudopgREf9UpejZk5w6RWpqiFBIrl4lu3fXZSsFIJ06kYCA5Pd/vykpKbTqN4vF8vLyauQOXSAQnD592uHtI4WampqbmxutgaWgoPCf//xHmkIEdEiWJozV1taWqGLq48ePFRQU2Gw27cxGxrOj7caiRSQykgQHk59+anwWh8/n0z83KRMX379/n8Viqaqq5uTkiHkK3Wthbt6purqx0oPiq6iooOMZMmmt9ZNlICSE5Obm0r+fLl26iCrb8Xi8ZcvWNV6tvaCAeHkRDofY26+ncaj+tERYWFjv3r0HDfoKgDg41JUIeYdQSAIDib4+jYVBXl5e75SjLC0t9fHxoQ9JioqKTk5ONCGsgoKC6K89JiZGlCVn2LBhDRYFjIyMFNVotrKyunDhAnk7nEUIqR9QjY2NPxRQKyoqfH196aQRl8v19PQUDWDSZztRQHVxcRGV7X2/fPzjx4/HjRtHO2Nqair6ud2/f1/0Idu7d29ROboGA2pNTU1AQICo2LSHh0f7WCbToBMnTtDHNUdHRxoUQ0JCCCFJSUlffjlTT+8NAOnQgfz227t3bISQmhoSFETs7AibTczNx2loaHh5eYmemwMDA9XV1QHAxMTk2rVrYvbn1q1bdDyA3rtwudxoxuvH3iooKKAjHDRd6rJly8Q/l2Zdp+MlXbt2le0SjDappoZcuEDES0AfHx9PbyPEX5D1PrpWYPXq1RKd9dtvs2JjjTMz1zK+bn0pKSlcLpfL5U6fPj04OLimpkYmzbZaMg6EhJCXL19qaGjQfHcdO3YUDfuIIza2VPQ8NGzYsMePH8fHx48cOZK+YmFhcfp0WeOTNPn5ZPnyYgUFZRqHTp06RQipra0NCAig27lYLNaAAQNE8zTvl8AVCoWBgYG0zM07D3apqal02JAOGvj5+Ylu23fv3l1/PD06OvpDAZU+TYp2F7m6ujY4q1o/oBoaGtq+3SzZp08f+pyRmZnp6elJD9DW1vb19X3nM+udgOro6EhTNmtoaOzevVtUmyIsLIyOqwDAgAEDpC+20PqFhITQe6D+/fvPnj27oKBA9Cg8YsTi1atJ40/yQiG5ciWfjq/Su+apU6fSDy8A8PDwkDRZvlAopH8vLBaLxWLJZKaH5ik2MzNjs9mKiorPnz8X56yTJ0/StxMd8Kc3eUgiNNG5jY1NNaNFgLdu3QIATU1NSd9FZWWR0dGs2FjVmprspo9uVHR09DsZagwMDBYsWHDjxg1p6ku3ZrIPhISQy5cvz5s379y5cwyGdwQCwYEDB2gcomVC6V/mjh07xH9jRUdHiwKqra2tKMVR7969RdX+7OzsGimPUlBQUH+kdOfOnd7e3vSzksfjeXt7v/O4eW7q1L9VVesvpaBx6J2Aeu3aNVFIs7W1bfK5oX5A7du3r7m5+cKFC2mVS/rwoaCg4Onp2chEOg2oopLr9Fl21KhRhJD79+8PGTKENt69e/fGF4+0M7du3aI7E0xNTWm1WzabPXPmTIkWysbExMyYMYO+STgcDrO1LRR9ZKf3ajJZrFtdXU0XgtHZikmTJjV5SmlpKb1BpGtk3N3dpe+GHKqqqqILR5mNKtM/SWYF3V6+/Cw6GtLS5jM4V+TKlSt0pGrEiBEBAQEuLi6iOSD6AODp6fl/9u47rqr6/wP46164bBEVVMQJbsCFKCruXWaappajXFhplCvt58CVkTMzNSwtZ+beI0fmHuACJ24RQbbsce/n98dBvuaAO8ALnNfz0R984XzOeeP3cl/3c85nHD9+vJgNJC6QIDRcXFycr6+vo6Ojg4ODj4+P9vfKc+R07GxsbBQKRZUqVaQdv6T3vnXr1mnzf+T58+elHeCkXqBCoRgyZMjrh5D06iWsrMQrH+Kio6OHDx8u5VDO4rOVKlVavXq1lp+t1Gr1L7/8kjOWp3PnztLcBgC9evUKDQ3V5iQvBmq9evVWr1794oNSf39//T69FmnBwcH29vbSA1pDusI3btwYMGBA586dDdnYXZp5VqtWLQCG3xqVbNiwQXrnkrq/x3NG/7/B+PHjAdSuXVuhUJibm2vZiaRXHT16VPo31HUUurQfsr29fZ7DC14rNfVGUJBpUJBpaqqeU0hXrFghvU198sknGRkZgwcPlt40XFxcWrdu/eIqORUrVvT19S02iVhIg1Dy8OHDsLAwQ85w5swZKXjWrFmD5wNSUlJStD/DsWPH8Hwwp4eHxxuPa9xYmJuLNwwWfXHx4po1a+oxqCynhyp1Gjw9Pf/991+dzqBWq5ctWyYFqo2NjXRPb8KECfHx8boWU2z8888/33zzjd4zXvLRO++8g+cTsfdos3ewFjQajXQDQBq/07Rp01zes27duiWtYirdMvHz88uXGmRLWtjWy8tLp3uJ0nN9Q6Ze3L8/PDi4emKizhOINRpNznJ6EyZMkF4qx48fHzFihPR4Jeftq1WrVjmPlgCUKVNGj1lnhU2hDkLDBQcHA3Bzc9NoNP7+/npMcT169CieD8Br3779G4+ztRUmJuINH7o3b94MQHoU16dPH11ryCGt2NSpUye9P4VFRUU1adLEysqqfv369+/f17sSyl9jR4x419l5UpcuPzZrdnnDhvw67enTp6UpEBUqVBgzZkwuTx/37NlTpkwZKTgrV6786uxG0kl8fLyUFkuXLhVCHDx4MCAgwN/f38/Pb/z48T4+Ph9//HGPHj06dOjg6enp6up68eLFrVu3AnB0dDTkHz8rK16tTg4LmxAePiMjQ9teRHp6urQ2lqmp6S+//PLSTzMzM/fv3z948GDpIYLEzc2tU6dOpUuXNjExadq0qd4FFxJFfjHJ3OUsvKlQKHRa9++lM0h3EXNbSlQIqNV48ADPpye+epKcp3p6lCGR/rRq1aql0w5zL7K3t+/ateu5c+d69uwpLSJDhcE8OzvcvYuKFXH6NLp3z6/Tenl59e7de9OmTbVq1fLy8tq5cycAa2vrnL1bTU1NpZdluXLlFi5cOHLkSACLFy+W7qaS3kqWLLlo0aLevXtPnDixW7duP//8c+67SURHR0+fPh3ApEmTDPnHNzEpmZZ2CxCOjlMAJCUdt7R0NzHJbe31xMTEDz/88MCBAzY2Nn/99Zd0c+JFpqamnTt37ty586+//irtG7xjx46QkJDo6Og9e/Y0a9ZMy8XBCzO5BKGBZ5CC8I3nSU+HSoXKlREdnctJcsbHG1hMYVjam/KZtC2ZtLizgZuT/dd33323c+fO4ODgPn365HmwiYmJt7d39/xLYjnr1atXz549t23b1qVLFw8PD2nKstT/UCgU6enparVarVanpaWlpaX16dMnPj6+QoUKw4cPN/C6FhY1zM1r3L8/yMHhi5s3WwEwM6tsaVnP0tI9OblJVlbNmjVr5vz5P378+N133718+bKjo+Pu3bsb5bqVj4mJSYcOHTp06JCWlrZv376EhIRGjRpJj5MTExOlT1RFVDF/N1RqNNXs7MwN6IRplWHm5ti+HQkJ6NgRUVHIyoKjI65fR/XqUKm0PYnWxRSGzZ4on0mj1TMzgXwOwho1amzbtm3KlCk5Y/+SkpIypQsBmZmZSc+3GEhMTLSxsZG2MqB88fPPP+/fv//GjRvXrl3L82CVSvXll1/mdNb1ptGkly49QKVyfPbsH2trz9TUqxkZDzMyHiYk7N6woc28eUfNzc1dXV3r1atXpkyZdevWRUREuLm57d27V1rdVBsWFhY9e/aUvnZzcwsKCrp06ZL0KLqIKubvho0yMu7Gx8OALtS7arUAoFQKa2u1tfXrD5o/H9WqoWJF+Pqib18kJKBnT6xfjzFjUKoUgM4q1YPmzcPLlCnZsqXi+ZhPPeTLNoEMwsJI6hGmpgL5HIQAunbtmrOGH71NFSpU2LFjx7fffuvm5mZlZWVra1uiRAkrKytra+uSJUtaWVlZWVnZ2dlZWVlZWFjY2tq+tJGIfjSaxJiYPwBluXKjHR2/FUKdnn4nNfVKauqVkiVjnJ0f3rt378KFC9LuWtbW1tLq6npvXenh4REUFBQUFMQgLMSysgAYEoTZZ1AoFMnJpmr1648JDcXYsQCwYQPS07FlC65fx8mTGDNG+nn5xEScOlXZ2xsnTqBePb1rmahWTwSEYRnma2vr07KlSt/XPRUIKQilfefzOwjJiDp27JizJMjbYWrqUK7c+Jz/qVCYWFjUtLCoWapU78mTMXkyEhMTg4ODg4ODZ8yYER4e3rp1a19f3+HDh+uXZNJQ56CgoHz7BYxBHkFoSHJIZ1AqczuPENBooFQiORlmZujVCz17Zn+6f/EkEkOKycwEoDDsGWHlp09x/Dj69jXkJJTPKlXC7NmwsoKFBZ7P+CQqCCVKlGjevHnz5s2vXbv2008//fvvv8eOHatevbohQVjUd29mEGp3BmmU5pvOM3Qoxo2DtTW8vGBmBukuv5VVdnxqeRJtSF1SA+9qGv5vQvnO1hZVquDxYzg4YP161K9v7IKo+JOGxmRkZMCALp27u7uZmdmNGzeSkpKkCcpFUXF/NzQ8ObTJsCZN8MrOZPj225dPIjG8GAZhsfTvvwgIAIBz55CWBgsLYxdExZzUmXv8+DEM6NKZmZlJ8yAvX76csxtBkaPM+5Aizd0dCxbg668B4O7d7G/mfKGN6tXh44PmzfHhh69JOy2pVP97Tmn4A0sGYbEkzZ0AkJX1v3sJRAWmTp061tbWYWFhtra2cQcGqAAAIABJREFUYWFhERER+p2nGDwmLNZ/b2lpmDoVjRrh779x9iwWLMj+vk4DxJs1Q9myKFkSlStj4EA9K/H1xfbt6NQJ+/bhu+/0PAmAnj0xbx66dAGAJ08AICUFus5m9fBAr154vjETFRY9euDbb7FoEZycYPAYeqI8mZiY1KtXTwghLSJ68eJF/c7DICzczp9Hp05o3RpTp2LTJsTFYfFiLF78v4/e2vjnH9Spg8mT0bs31q3Ts5LTpxEaismTcfEi9H214eZNrF+PGjUwdy5SUjB7NgAEBuLAAR1OEhuLx49Rvz6uX0dCApYtA4BDhxAYqGdVlF/eeQdTp2LAgP/cVCcqSFKGSbtu6ZdkERERDMLCzdIS0mThxERYWaFkSXz6KT79FDqtTxYdDWnmX4UKb1o4Jm/nz6NzZwDo3Fn/yNm4ERMnont39OyJo0dx6xZWr9YtBQH89BO++AJTpiA+Hnfu4MkTZGUhLg7PZ1WTMVlaIj9mkhFpScowaYEFXZNMrVaPGjWqUaNGJUqUUCqV165di4qKKpAqC16xDkIPD9y4gfnzMX06hg2DUokSJaDrOkDe3ti4EU+e4Lff0KmTnpW4uEBaWuLqVVSvrudJTE2zVx7JyIBKBScntGuHXJdEeo2nT7NvilaqhKdPcfo05s/Hzp16lkRERZkUhOHh4dAxCJOTk3v27LlkyZK4uLjBgwdrNBoLCwupZ1kUKYRO9wmLotRUWFoCyJ7q9+IXWrpzB//+Cw8P/Qe1C4EFC5CSghIlskfu6OHRI8yYgaZNce4clizBmDFYvBjHjiEiAlosI5ltwwZkZaFHD/j6Yto0rFyJadOwZQvKlEGbNnoWRkRFk1qttrW1TU1NLVGixLNnzyIjI8uWLZtnq5iYmO7du586dapUqVIVK1YMDg4uXbr0kiVL+vXr9xZqLggyCMLiRK3G06fZt2pTUmBlhawsaDS6ja3Yvx/Xr6NHDzg64soVNGmCO3dgYYEX9hgjIplo1qzZmTNn6tWrd+XKlQMHDnTK677X7du333nnndDQ0IoVK5qamt6/f79atWp79+6tXbv22ym4IHAMfZFiYoKcpUqlvVr0mAXRpUv2uFMge0KIi0u+VEdERY6Hh8eZM2fq1q27a9euypUr537wmTNnunfvHhUVVadOnadPn8bExHh6eu7atUvaMLzoKtbPCImIKFfSUJcNGzZ07dp12rRpd988zXrr1q3t2rWTNve+f/9+TExM586dDx8+XNRTELw1SkQkZ5mZme3bt79w4UJycjIApVLZokWLvn379urVq7y0OxgAYOHChePGjdNoNN7e3qdOndJoNMOGDVu2bFnx2MeGPUIiIvlSqVTHjh2Ljo7euXPnwIEDraysjh8/PmrUKCcnJ29v70WLFkVGRgKwtbUVQrRo0eLEiRNCCD8/v19//bV4pCDYIyQiohxJSUm7du3auHHj/v3709LSAJiamrZv3/7dd9/dvHnzsWPHzM3NV65c+fHHHxu70vzEICQiopelpKTs2bNn9erVf//9t7RDhVKptLOz27ZtW6tWrYxdXT5jEBIR0RvFxcVt27bthx9+sLGxmTdvXtu2bY1dUf5jEBIRkaxxsAwREckag5CIiGSNQUhERLLGICQiIlljEBIRkawxCImISNYYhEREJGsMQiIikjUGIRERyRqDkIiIZI1BSEREssYgJCIiWWMQEhGRrDEIiYhI1hiEREQkawxCIiKSNQYhERHJGoOQiIhkjUFIRESyxiAkIiJZYxASEZGsMQiJiEjWGIRERCRrDEIiIpI1BiEREckag5CIiGSNQUhERLLGICQiIlljEBIRkawxCImISNYYhEREJGsMQiIikjUGIRERyRqDkIiIZI1BSEREssYgJCIiWWMQEhGRrDEIiYhI1hiEREQkawxCIiKSNQYhERHJGoOQiIhkjUFIRESyxiAkIiJZYxASEZGsMQiJiEjWGIRERCRrDEIiIpI1BiEREckag5CIiGSNQUhERLLGICQiIlljEBIRkawxCImISNYYhEREJGsMQiIikjUGIRERyRqDkIiIZI1BSEREssYgJCIiWWMQEhGRrDEIiYhI1hiEREQkawxCIiKSNQYhERHJGoOQiIhkjUFIRESyxiAkIiJZYxASEZGsMQiJiEjWGIRERCRrDEIiIpI1BiEREckag5CIiGSNQUhERLLGICQiIlljEBIRkawxCImISNYYhEREJGsMQiIikjUGIRERyRqDkIiIZI1BSEREssYgJCIiWWMQEhGRrDEIiYhI1hiEREQkawxCIiKSNQYhERHJGoOQiIhkjUFIRESyxiAkIiJZYxASEZGsMQiJiEjWGIRERCRrDEIiIpI1BiEREckag5CIiGSNQUhERLLGICQiIlljEBIRkawxCImISNYYhEREJGsMQiIikjUGIRERyRqDkIiIZI1BSEREssYgJCIiWWMQEhGRrDEIiYhI1hiEREQkawxCIiKSNQYhERHJGoOQiIhkjUFIRESyxiAkIiJZYxASEZGsMQiJiEjWGIRERCRrDEIiIpI1BiEREckag5CIiGSNQUhERLLGICQiIlljEBIRkawxCImISNYYhEREJGsMQiIikjUGIRERyRqDkIiIZI1BSEREssYgJCIiWWMQGkeaJg3AldQrxi6EiEjuTI1dgOxEZUV98/ib2ha1K6kqBaUEza8439gVERHJGoPwbfsz9k9fB9+GVg0BBKUEGbscIiK5463Rty1dpFsprYxdBRUad+/ixg1jF0Eka+wRvm3v270/L3Jev1L9lPwUQosXQ6WClRX++gt+fsauhkimGIRvVWh66K74XRPLTXyc+djN0q2aeTVjV0RGFRKCgAAA+OwzY5dCJF8MwrdqXuS85dHL72fcX1xpMYBSJqWMXZG8hYdj1SooFBg6FDduoGZNlCuHLVvQq9dbKkCIl78goreu8N6dmzwZAK5dw59/Zn9n92783/8BwMyZRqvKEE+znq6JXaOE8guHL4xdCwEA/Pzg64sRIzB1Kq5cQWwsABw9+vYKaNcOU6fi++/RoAEA/PwzoqLe3tWJCEBh7hFGRGT/l5yc/Z2kJEREIDAQMTFGrUxfi58uTtWk9rTrWceijrFrIQCAqSmsrWFtnd0hCwiAg8NbHbrSrx9SU5GVBZUKX32Fn37Cxo04dAhmZm+vBiLZK7xB+Pgx9uxBWBicnP73TR8fBATA0tJ4ZekrOSt5WfQyAGPLjjV2LfRcZiaysqDRZAfhiBGoUwcREW+1BktLxMaiY0fcuQNHRxw/Dh8f/PHHW62BSN4K761RFxcMHYoePQDg7l2cOwcAJiYYMgRHjhi3NH38/svvTvOdPs74uIVNC2PXQs+NHYsZMzBrFiZMgIsLbG0BZN+lfJvs7ODggOhoWFrCygqrVmHhwrddA5GMKURhfUofFAQPD8THIzYWKhUOHUK7dihRAqVL49gx/PMP+vZF7drGrlI7arW6Vq1ad+7c2bZtWw8p26mQ+OgjXLqEnTtRo4Yxy0hMRLNmuHoVTZrg/Pm4hg0DZ8/u2Llz7o0yM3HjBtzdERaGUqUQGQlnZ8THQ6NB6dJvp26i4qDw9gg9PADAzg7OzlAqYWWFKlWy/7z//RfTpqF/f2RkGLdGbW3evPnOnTs1a9bs3r27sWuh/3rwADduIDrayGWUKIHt21G6NM6dO/PeexWDgz/s2/f69eu5N0pMRLduCAvDrl24dw8//wwA587h5Mm3UTJRsVF4g/BFZ85AqURqavb/HD0aNWrgwgVMmWLUsrS2cOFCAGPHjlUqi8Y/uIyUKgUAcXHGrgOoXh2bNm1t27b5rl0NPD0TEhLefffd6FcS+vFjHDyIBQswbBgOHsRHH8HfP/tHFy9i0SJs3/62Cycq6grvYJkXvTSty8YG69ahRQvMm4dOndC+vRFKunMH48djyxYsXoxPPgGAJ0/w9CkeP0ZkpIiI+PbJkyeRkZHh4eERERHJycklS5YcOHCgEQql3NnZAUB8vLHrAAC0axd37574558LFy7UrVv32rVr77333vTp02/duhUSEhIWlnHq1MoXI9vKCmXLokED/PUXWraEuzuGDSuST9CJjKtoBOGrPD0xeTKmTRM//bS0YcOPSr/1RyKZmbC2xurViIvDlClYvPjFHyrs7JbHx//vHcva2joxMTEwMLBly5ZvuU7KQ6EKQmDo0KEXLlxYunRpeHi4qanpmTNnOj9/UqhQKG1sVpQpo3B3R926cHeHmxuOHkW/flixIru5tTXMzZGebrT6iYqiwjtYJk9qNQYNGr9+/bxevXpt3rw5z+ODglC2LCpVwunTaNbM0KvfuIFjx3DtGgDY2+OHH1ChAsqVg6MjypdHlSoBpUubly1b1snJqXTp0hMnTly/fn3FihWvXLlSqhRXkylErsyf/2jXLtvevVuOGmXsWrJlZWV16dLl8OHDJiYm5ubmDRo0cHNzc3V1dXV1dXNrWa7c66cYLl+OWbNw8iQqVXrL9RIVfaIoe/jwoZQrK1asyP3IzEzh5yeGDxdCiK+/zodLX78uAgLEkyfCyUnExr7xsIyMjKZNm5qamrq6ugLo3bt3Plyb8s+cOXMAjB8/3tiF/MfVq1cVCoWZmVl0dLQ2x2dlifbtBSA8PERyckFXR1TcFO2xG5UqVfrpp58A+Pr6Xrhw4caNG8eOHduwYcOiRYvmzLn56afo2hX16qF8eZibQ61G27bYtCl/Ln3kCOrUQfny2LoV1tZvPEylUrVt2zYrKyshIcHGxmbz5s1r167NnwooP9jZ2QGIKwyDZV6we/duIUT37t3LlCmjzfEmJti4ETVqICgIgwZx4VIiHRk7ifNBv379Xv292rQ5Aoic/5RKMWaMSEgQo0YJHx9Dr3jrllAqhY2N+PRTceFCHgdnZmY2bdoUQLNmzQDY2NjcunXL0Aoon2zatAmG99SzssTPP4uZM8WWLflSlbu7O4Bdu3bp1OraNVGypADEggW6vMAuXBDnz+tWH1HxUrR7hBJvb28AKpWqSpUq7u7uTZo0admypY3N1ebN0agRqleHvT2OH0flylAqMXYs1GpDp43Nnw+NBvXr448/8t4/x9TUdO3atSVKlDh9+rSXl1dSUtKnn36alZVlUAWUT6Qe4Q0D1xfdsAHVq2PyZAQHIzTUwJIuXXocFva4bNmynfOaUP+SOnWwYQPatv1h/Pg6W7Zsef1BCQk4fRq//oqvv8bRo/juO4SG4uHDIjMViaggGDuJDaXRaOrWrQtg3bp1UiJK3N1HvNgj3Lr1f03++EOUKCF27tTzipGRwtJSKBSicmUBiM2btWq1fPlyALa2thUqVAAwbdo0PS9P+er8+fMAlEplq1atgoOD9TlFaqr49tvsB8W7d4sdOwws6csvhbl52owZV/RrPn/+fACWlpbnzp1LSko6f/78ypUrx40bt2jw4OyXbM5/kyeLESOym332mYFlExVdRT4Id+7cCaBixYoZGRm+vr4tW7bs06ePr6/v/Pkr//hD7N0rLl8WT54Itfp/TebNE4BwcBDh4fpcccoUAQhPTwEIZ2eRlaVtwz59+gBwd3c3MTExNTU9depUnk2ePhULFwohxJ494tEjsXu3EEKcPi3u3NGncnrVvXv37O3tFQoFACcnJx8fn6SkJG0bP3wofHxE9epi1Sqxd68QQvj5idu3DaknPV3Y2wtAXLqk/0l8fHwAmJubS7+XxM3BQQDCykrUri2aNxetWokRI8SwYdltpIFkRLJU5INQmpm3UIoL7Wg04p13BCA6dRIajW6XS05O9vae6OkZ2bXryZIlNUuW6NA2Nja2UqVKAKSaq1WrlpCQ8NojU1PFgwfi1Clx+rTw8hLHj4tZs8Tly2L2bCGEWLtWnD6tW9mUi/T09KVLl7Zu3dre3h6Ai4vLsmXL8mjz5IkYNUqYmQlAqFTin3/EkiVi5kyxbZuIjBR9+4qnT/UrZutWAQg3N/1aZ0tPT5deY0qlsmbNms2aNWvdunXjxo0z69QRCsX/eoQ1aohNm8S334opU8SaNQZdkt6WmMyYB+kP0jXpp5Ly/iSduxR1SmhaaKYm89/Ef/OltqKraAfhuXMZ3t4ry5at9OzZM50aPn6c/bl78eI0nRouXrwYQJ06dQBUqeKWnKzOu80Ljh49qlQqTU1Npdu5Xbt2Xb169dy5c0ePHt2/f/9+/abVrStKlfrfO9WMGeLnn8XQoWLaNHH5sujUScyaJT78kEFYIK5fvz5kyJDatWtbWlo2bdo0MDDw1WNiY2OnTZqkLl8+ewjWwIEvd897986OsogIPWp4/31ptIt+v8H//PXXX68+B4mrX1+Ym4sGDUT//uL777PvMGRlicxMQ69Hb8WO+B0TwiYsi1p2NPGoX7ifIad6mP7wk/ufrI1Zuz52/ZhHY/KpwKKqaAeh9J4zebI+f8bbt4tmzbaUL1/hktY3obKyslxcXAB4enrq/Zxv7NixAHx8fMzMzMqVK/fi+5Sjo6eUf2ZmomJF0aSJmD9fLFkigoJE9eov9wgzM/9zv5fyS1paWkBAQMuWLW1tbfv06RMfHy99Pykpyd/fX5q3erhNG9Ghg7h48TXtIyOFu7sARK1aIixMp0tnZQlPT2Fqql+G/seQIUOkHqGrq2ufPn1mzJixefPm2Fu3dLiVT4XPkPtDNEIjhEjISvAL9/sj+o/oTK1mmr5qYeTCyymXpa8ZhEU4CO/cESYmwtxcz0d94vmjlLp166akpGhzvPQpu1KlSkql0tLS8qlet7/S0tJ27tx569YtpVKpUqn69OkzevTouXPnrl69+tChf0JCRFTU/w5++lQcPSqEED///J9nhLdviz17xPz5elyftBUUFPTee++VK1du/vz5c+bMyfnU0qFDh3Nnz+bW8ulTUb++AJ54eT169EjLy/30k3jyRKSkiN9+M7TylJSUkiVLAtBz+A8VVkPuD1ELtRAiISth6IOhiiCF3SU7/wj/dE269ic5mXTyi4df/Bj544Xk7LlfDMIiHISffy4AMXSo/mdITk6uXbs2gK+++uqlH6WlpT18+PD06dM7duxYtmyZn5/fiBEjpLfCDz/8UKFQfGbYKDspg30MmNKYmJgP75iUp2fPnn3++edmZmYAmjZteujQIa2axcQ8bdfOtXr1KlWq3MlraNOjR+LhQzFihBg9WsTHCz8/Q2uWFm1o1qyZoSeiQmZfwr4xj8b8EvXLqcRTox6O6hTaCUFAEOpcrbM/YX+ezR9lPPr43seKIAWCsDx6+aB7g36P/n17/HYGYVENwuhoYW0tFApx9apB5zl9+rRSqVQoFK1btx4wYED79u1dXV3ftJyHiYmJSqX6448/rly58vDhQ70vGhkZaWlpqVAorl27pvdJvvtOHDmid2vSwYEDBwA4Ojrq1Co+Pt7LywtA5cqVQ0NDX/mp2LBBDBggmjUTlSuLDz4QY8eKVavE5s35EIQdO3YE8Msvvxh6Iip8nmU9e5TxSCM0CVkJQoid8TtrhNSQ4nDopaE3b958bauU9JQZ4TOsL1ojCJYXLaeET0lSJ6Vr0u+l38vUZMZnxb/dX6LQKexBmJj48hdZWSIlRSQniwULxBdfGHp+aXqfiYnJS5mnUqmcnJw8PT27des2bNiwqVOn/vzzz1988QWAkiVL3rt3z5CLTpkyBUCPHj0MrZ7eitTUVOkzUHq6DjeghBCJiYlt2rQBUL58+QsXLqSnpx86dGjo0KENGrxnYZFpZSVsbIS1tShRQtSpI8aOFRqNGDTI0CAMCwszMTGxsLCIzWUNXCpGMjQZP0b+aHfJrt6geiqVytfXN+fBtmTnzp3Ozs71z9ZHELrd7nY3/a6xSi20CnsQjhwphBBqtfD1zf5OSIho2FCkp4spU8QbZh9oS6PRSOM/q1WrBqBbt24HDhwIDg6OjIx8UxNpLqC3t3eWvoMOkpOFl1dCs2YLjx8/oW/h9LbVqFEDQEhIiK4Nk5KS6tevr1KpHB0dXVxcXFxc2rZt263bB507Px45UsyeLdauFX//LS5dEps2CSHE1atixw4REKD/2tnff/89gD59+ujZnoqmyMTIYcOGSVt/lytX7tdff1Wr1RcuXGjVqpX04f690e8dTTxq7DILqcIehJ98IvbtE3v3/icIx48XP/yQD0G4fft2aTK+tN9NuBajbnLmAs6cOVO/iy5eLADRpIl+rck4evToAWDDhg16tJU+PLVr107L47/5RgDiww91nuQqkT7b7dmzR5/GVMQFBQXlLLBVpkwZKRfLli0bEBCg92d3OSjsa42amMDBAQ4O//lm7dpIScH9+4aefO7cuQCqVq2qVqsHDBjg6OiYZ5NSpUqtWbNGqVROnz79zJkzul5RrcaPPwLAxIm6l0vG4+bmBuDq1au6NgwNDd2yZYuZmdnKlSu1bDJkCOzssGkTpk/X9Wo4d+7c9evXy5Ur16lTJ50bU9HXqFGj48eP79y5s2rVqiYmJiYmJr6+vrdu3fLx8Xn1ARDlKOxBaGkJDw80agQA169j40ZIq1WPG4fjxw06s+bMmWUmJl3r1r1w4YJCoRgzZoyWDVu3bj169OisrKz+/fsnJibqdNEtW3DnDmrUwPvv614xGY+0nWRISIiuDadPn65Wq4cOHVqlShUtm9SqhY0bYWqKGTOwYYNWTeLj469duwZg1apVAAYMGGBqaqprqVRsvPfee8HBwXPnzj158uSiRYukuTSUG2N3SfPw5En2FxERIiVFHDkigoOFtIxMVJRhM8p79hSAunXrR82azddxEkZaWlrDhg0BDB48WKeGbdoIQOS5gBcVNleuXAFQs2ZNnVqFhoaampqqVCo9Rlf9+KMARMeOp15d4CY9PT0kJGTjxo1+fn7dunVzdnZWKBRVqlRJT0+XVom7fPmyrpcjkjOFKDqbeN69i8BA9OmTT+eqWROmprC1RVQU/v0Xzx8pa+n69euNGzdOSUn5888/+/Xrl5aWFhERER4e/vTp08ePH2dkuF+71ioiAhERePIEw4ejVSu0aYOwMCxdiqlTYWmZH78FvS2ZmZk2NjZqtToxMdFS6//zBg0atGbNmhEjRvzyyy96XHTSpD2zZ3erWLHiuXPnypcv/3//938hISFXr169f//+S3+2VlZWVatWbdmyZUBAQIMGDS5evKjH5Yjky9hJrINr18TBgyJazxWF/mvECAGIFi2yN5LQy5IlSwDY2dk9ePDghx9+ePFftVWrL1/c7mboUNGli/jjD3HzptBpnW4qPKTlYS/kuRHzc7dv35a6g3fv6jlaPSMjo23btgA8PDySk5Nzbq6qVCoXFxdpKe1mzZq5uLhIYyIAVKpUycPDQ83F94h0UZQeJNSpgzp18uNET59i9WooFAgLA4BvvtHvNF988cWBAwd27tw5YMCAIUOGODo6li5d2srKyszMzNras3lzZGQgMRHx8YiMhKsrLl9GzZr5UT8Zg5ub27Vr165evSrdFc/TrFmzsrKyhg8fLk3O0YNKpdq0aZOXl1dQUJCXl1eDBg3KlSsXERERFhZ2586dO3fu5BxpYWFRp06dKlWqHD58+NGjR5MnT549e7Z+FyWSI2MnsTHExIgJE0Tr1gIQ1aoZsgzx06dPHRwcXh2YUKvWxRd7hB4eYuxYEREhevVij7Comj59OoCJEydqc/CdO3ek7mCe66vlKTg42MbGRqVS5by6TE1NnZ2du3XrNmHChFWrVoWEhOSMjD927JiZmZlCoVi7dq2B1yWSj6LUI8wfajW2boWNDWbOxLlzKF8eBowqdnBwcHV1PX36tEKhcHR0dHJyKlu2bIUKFapXt7GxgaMjypVDhQooWxYzZ6JcObRvDzOzfPxl6O2RBo7u3r37s88+kxZez+Xg7777Lisra8iQIc7OzgZe183N7a+//po3b56np6eHh4erq2vNmjVfzMUXtWzZcunSpcOGDRs2bJiLi4u0xhsR5a4oDZbJH4sXo2FDNG+Ozz7DvHmwtTXkZHfv3q1Zs6apqem9e/e0mYZIRdepU6dat26dlZUFwMzMrGLFis7OznXr1nV1dXV2dnZ2dq5WrZq0I/yDBw9q1qypVquvX78uLUnzlo0cOXLp0qXly5c/d+6ctP4DEeVCfj3Cq1fx5ZcA4OmJW7fQuLEhJ5s7d65arR48eDBTsNhr3rz5zJkz161bFxsbGx4efvfu3bt37x46dCjngJIlS9aoUaNGjRpnzpzJyMj49NNPjZKCABYtWnTz5s3Dhw+///77x48ft7a2NkoZREWF/HqEM2fi44/h4oJvvsH48S8vWqOLmJiYKlWqpKSkhISESEMKqbg6evRoq1atcm6Hpqen3759+9q1a3efu3r16pMnT6SfKhQKlUoVGBjo7u5urILj4uKaNm0aGhr6wQcfbN68WeqqEtFryS8Ik5Iwfz5MTFCnDnr1MuRMCxc+/PXXSdWrJ+zcuTO/qqNCSAjx22+/DR8+PPfDYmJiQkNDb968uXv37nHjxjVt2vTtlPcmN2/e9PLyio+PnzZtmp+fn3GLISrM5BeE+SQlBVWqIDoaJ04kt2jBW0/FU6pGoxHCusgu0vj333+/++67arV6/fr1/fr1M3Y5RIVUYV9rtND6/XdER8PTE0zBYmxXTMyUe/eMXYX+OnXqNGfOHCHEkCFDzp8/b+xyiAop+Q2WyQ85m0hMmGDsUqhgqIUwUSg+dHBoa2dn7FoMMnr06Js3bx46dMjKysrYtRAVUrw1qo+NG9G3L5ydceuWIbMQqdARgBAiTq0ecfPmfBeXKhYWxq4oH2RkZCQnJ5cqVcrYhRAVUuwR5iYzEyoV1GooFJAGDKalQaVCgwYYNAgtWzIFi5vvHzwob25urVQOLl9+T2zsFxUqGLuifGBmZmbGdRyI3oxB+EZxcViwADNnYudOlCxo0wGLAAAgAElEQVSJdu0AYMECpKdj+nSULo1hw4xdIuU3E4WikY2Nnalp1WLRFyQibXCwTG4ePcKJE7h+/T/fzMiA7huVU5GRKYSazwuI5IQ9wtwIAbUaGs1/vvnll5g+nRsKFk9KhcKzRAljV0FEbxWDMDeVK6N1a8TGAsCJE9nfNDdH796YP9+IdVFB+bhsWWOXQERvG0eNvpFajYgIODkhPh4mJhACf/6J99+HvT1MTXHvHvTdZo6IiAoRBqG2Tp2CRgNvb2PXQURE+Yq3RrUVE4PMTGMXQURE+Y09QiIikjVOnyAiIlljEBIRkawxCImISNYYhEREJGsMQiIikjUGIRERyRqDkIiIZI1BSEREssYgJCIiWWMQEhGRrDEIiYhI1hiEREQkawxCIiKSNQYhERHJGoOQiIhkjUFIRESyxiAkIiJZYxASEZGsMQiJiEjWGIRERCRrDEIiIpI1BiEREckag5CIiGSNQUhERLLGICQiIlljEBIRkawxCImISNYYhEREJGsMQiIikjUGIRERyRqDkIiIZI1BSEREssYgJCIiWWMQEhGRrDEIiYhI1hiEREQkawxCIiKSNQYhERHJGoOQiIhkjUFIRESyxiAkIiJZYxASEZGsMQiJiEjWGIRERCRrDEIiIpI1BiEREckag5CIiGSNQUhERLLGICQiIlljEBIRkawxCImISNYYhEREJGsMQiIikjUGIRERyRqDkIiIZI1BSEREssYgJCIiWWMQEhGRrDEIiYhI1hiEREQkawxCIiKSNQYhERHJGoOQiIhkjUFIRESyxiAkIiJZYxASEZGsMQiJiEjWGIRERCRrDEIiIpI1BiEREckag5CIiGSNQUhERLLGICQiIlljEBIRkawxCImISNYYhEREJGsMQiIikjUGIRERyRqDkIiIZI1BSEREssYgJCIiWWMQEhGRrDEIiYhI1hiEREQkawxCIiKSNQYhERHJGoOQiIhkjUFIRESyxiAkIiJZYxASEZGsMQiJiEjWGIRERCRrDEIiIpI1BiEREckag5CIiGSNQUhERLLGICQiIlljEBIRkawxCImISNYYhEREJGsMQiIikjUGIRERyRqDkIiIZI1BSEREssYgJCIiWWMQEhGRrDEIiYhI1hiEREQkawxCIiKSNQYhERHJGoMwW1hY2IABAzp16rRq1Spj10JERG+PqbELMDKNRnPkyJHly5dv27YtKytLqVT+888/EREREyZMMHZpRET0NiiEEMauwTgeP368YsWKFStWPHz4EICZmZmnp2eJEiUOHDgghOjfv//y5cutrKyMXSYRERUs2QVhThdw+/btmZmZACpVquTo6Hj16tWUlJTQ0NCQkJBPPvkkISGhfv36W7dudXZ2NnbJRERUgGQUhBEREatWrQoICLh37x4AMzMzd3f3Z8+ehYaGAlAoFK1bt164cGGDBg1u3rz5wQcfXLt2zdbWdtWqVT169DB27UREVFDkEoQzZ86cPn26Wq0GUKlSJWdn50uXLiUkJACws7Pr06fPqFGj3N3dc45PTEwcPHjwli1bFArFN998M3v2bKWSA4uIiIohuQShjY1NampqvXr1EhMT79y5I32zVatWPj4+vXr1srCweLWJEGLOnDmTJk1Sq9XvvPPO2rVrS5Uq9XarJiKiAieLIIyLiytdurStrW1wcLCzs7ONjU3fvn1HjhxZr169PNsePXq0X79+kZGR1atX37JlizZNiIioCJHF7b5bt24BqF69euXKlfft2xcREREQEKBlpLVp0+bs2bMeHh63b99u0qTJkiVLCrhYIiJ6q2QRhLdv3wZQo0YNAB07dnztjdBcVKlS5eTJk507d87IyFi8eHGBlEhEREYiiyCUxoVWr15dv+b79u1r2rSpnZ2dEKJmzZr5WhoRERmZLFaWebFHqIerV69evnxZmlzv5uaWn5UREZGxyaJHKAWh3j1Cqbk09ULvNCUiosJJFkEo3RrVO8Ok5omJiTAgTYmIqHAq/kEYFxcXGxtra2tbtmxZ/c4gBWFERATYIyQiKnaKfxDmzJ3Qr3laWtrjx4/NzMzi4uJsbGzKlSuXr9UREZGRFf8gNHCkzJ07dzQajaOjI4Dq1asrFIr8LI6IiIyt+AdhztyJ2NjYmJgY/ZqXLl0avC9KRFQcFf8gPHz4MAAhxIABAxo0aHD27FmdmksdSmkOPkfKEBEVP8U/CKtWrWpqarp48eL79++HhYW1adNm5cqV2jfn3AkiouKt+Aehv79/hw4dEhMTb9y44eXllZaWNnTo0EGDBqWmpmrTXNqqgnMniIiKq+IfhE5OTnv37vX391cqlWfOnGnQoIGlpeWaNWu8vb3v37+fZ/O9e/deuHAhPDwc7BESEQEALl68mJmZaewq8k3xD0IACoViwoQJBw8eLFu27KVLl+zt7StWrHjhwgVPT8+DBw/m0jAoKGjUqFGtWrXKzMy0tLT08/PLyMh4a2UTERVCUVFRbdu2rVevXmxsrLFryR+yCEJJ27ZtAwMDmzRp8ujRo+jo6IYNG0ZHR3ft2nXatGkvbcr47NmzZcuWNWzYsHHjxsuXL09OTnZxcVGr1cuXL2/fvv2TJ0+M9SsQERnd1KlTExISXFxcpOH0xYGQmbS0tGHDhkm/e6NGjaR5gWvXrpV+GhgY6OPjY2NjIx1gZ2fn4+MTEhIihAgKCqpatSoABweHw4cPG/WXICIyjmvXrpmampqamkpvjMWD7IJQsmrVKktLSwB169bt1q1bXFxcQEBAo0aNcj4feHh4BAQEpKSkvNgqKiqqY8eOAExNTf39/Y1VPBUzjx8/PnLkiLGrINJKly5dAIwaNcrYheQnhfjvXUH5OHPmzIcffhgWFmZhYaFUKlNSUgDY29t/8sknw4cPr1Wr1mtbqdXqmTNnzpgxQwjx0Ucf/frrr9bW1m+3cCpWrl+/3qhRo5IlS969e1fa6ouo8DpwYOP06d8nJBz89197e3tjV5N/jJ3ExhQVFdWkSRPp7qjUBUxOTtam4Y4dO0qWLAmgdu3a169fL+g6qXhr2rQpgHnz5hm7EKJcZWUJNzcBiGL3WpVvj1CSlpZ25MgRExOTzp0769Tw1q1bH3zwwdWrV21tbf/444+ePXsWUIVU7O3bt++dd96xt7e/d+9ezvNpokJn6VKMHAlnZ1y7BnNzY1eTn+QehIZITEz89NNPt27dqlQqP/roo7Vr1xq7IiqqvLy8zp49O3fu3HHjxhm7FqLXSUxEjRqIjMSWLfjgA2NXk88YhAYRQvz0009jxozRaDT79+/XtVtJJNm/f3/Xrl3t7e3v3r1bokQJY5dD9Iq9e/HBB2jaFP/+a+xS8l/BziN89iz7i8TE7C/UakhLm6WmwpgRHBsLf3/MmoV79ww5jUKh+Oqrr5ydnQE8y/ltiXTUpUsXb2/v6OjoZcuWGbsWov8KC8MPP+DePVy8iIAAY1dTIAo2CCdNAoD0dEyfnv2d4GC0aoXMTMyYgbS0Ar14rvz8MHw4xo3DjBmGnywhIQGAt7e34aci2Zo8eTKAuXPnJuZ8bCQqDCZNwpdfolMnrF6N2rWNXU2BKPAe4Z492L//P99s3x6LFhXoZbWQlYUyZWBhAUtLA3umCQkJUVFRNjY25cuXz6/qSIY6d+7csmXL6OjopUuXGrsWoueSklC2LKysUKMG4uKMXU1BKdggVKng5IQKFf7zTVdXPHuGhw8BwGgrdyoUSE6GWo20NBi26XzOxr/cvJ4MlI+dwitXrqxcufLixYv5URfJmLU1pAVFU1KgUhm7moJSsEFoaYkGDVCvHgCEhGDTJmg0ADB+PE6cwOLF8PIy8CGdviZNwpw5mD4dY8Zk16SvnCDMp8pIvjp16tSyZcuYmJglS5bofZKoqKiJEyc2bdp06NChLVq0WL58OQfEkf4UCvTvj6lTMWsWxo1DTIyxCyoYBTpL8elTIYTQaERUlEhNFX//Le7eFYmJQgjx+LGoXVsAwt5e/P23bqcNCQnp0qXLoEGDHj9+rGdlv/4qWrYUXbsKS0uxapWeJxFCCDFjxgwA3377rSEnIZJI26GULl06IiJC17YRERFjxoyRlqdRKBR2dnbS33iHDh3u3btXAMWSnISGCk9P0a6dsesoEAXbI3RwAACFAvb2ePgQDx6gUiVIM4YrVMDZs+jZE9HR6NwZEyfm3TFLT0/ftGlTx44d3d3d9+/fv379+latWgUHB+tTWXg4jh9HXBxSUxEers8ZnpO2sGePkPJFhw4dSpcunZCQsGXLFu1bRUdHT5w40dnZecGCBampqR4eHpUqVVq/fv3GjRsdHBwOHTrk6ur6ww8/aAy7+UGyVqYM7t/HkSPYvFmHVo8eYeJE+Plh48YCqyw/vLXIDQkRBw+KmJj/fFOtFtOnC6VSVKiQ1b//qISEhNe2vXbt2tdff52z5YetrW2PHj2k7LG2tv7zzz91rubXX9UODlFt20Z6et6cPl2vXyhbs2bNABw7dsyQkxBJTpw4oVQqTUxMtFyGOyoqys/Pz9bWVvrTcHV1rVy5svR13759hRCxsbE+Pj7Sd1q0aHHjxo0C/g2o+Fq+XACiUiWRlKRtk6++yr4HOHKk+O8eBoVKoVhrdO9e4eXlC6BmzZovbu2Rlpa2cePGDh065IxDkVYETUxMFEKkpqbmbKjk4+OTkZGh/RX37NkDQBrn2atXL0OKd3BwABAeHm7ISYiEEGlpaXXr1gUwZcqUPA9+KQLd3d2rVKkifV21atWAgIDMzMycg3fv3u3k5ATA0tLS398/KyurIH8PKqbUatGkiQCEFq/PbJ99lv3FjBkiLKyA6jJcoQhCIcSDBw88PT0B2NjYbNiw4datWxMmTJAyBkCJEiV8fHyCgoJebRgQEGBmZgbA29tbyzQKDAzs1auXQqGQ8rVy5cp6lx0fHy/VrNFo9D4JkWT8+PEA6tSpk5qamvuRvXr1krY9USgUHh4e0k6Zr43AHHFxcTldQy8vr6tXrxbML0HF2unTmRUrzvP2vnPnjlbH//CDOHFCJCSIgQOFWl3AxemvsAShECIlJeWjjz6S/rZf6gI+e/Ysl4aBgYHSZ+EKFSqcPHnyTYdFR0cvWLCg9vMJoSYmJmXLlpUuNGDAAC33nXjJ+fPnATRo0ECPtkQvOnv2rImJiVKpzOU1LFm3bp30Gq5Xr15OBLq4uPz++++vjcAX7d69u2LFigAsLCzGjBmTZ+ISvcRnyBAA3bt31+potVqsWyf8/cX+/eLo0QIuTX+FKAiFELt37wagUqkAlC5d+uDBg1o2jIqK6tChA96wZa6073zOZm+Ojo4TJky4e/eueGFDpXr16t2+fVvXglevXg2gd+/eujYkelF6erqbmxuAb775Js+DN2zYAKBZs2YzZ84EUKVKlTf1Al8rISHBx8dHoVCYmppON+wBOclQRESENCB5z549eR9986ZwcxOurgIQ9eoVfHV6KlxB+NVXXwFo0qQJgEmTJunUNisra8KECVIPr3///snJyfHx8QEBAfWkaYyAUqns0KHDxo0bX3qaePPmTVdXV5VK1bz5v1u3anu5R48e+fv729vbV6hQoXbt2jEvjQIi0oU0lb5mzZopWgwo+O233wAMHjw4ISFh5cqVOj0dF0KEh4cHBQV1794dwHvvvadvySRfCxYsAFC9evW0tLQ8Dn32TCgUwtxcmJgIU1OR5/FGUriCMLBv33ENG9arVQvAP//8o8cZ/vrrL2lHN0dHRwsLi5wu4KRJk+7fv/+mVgkJCV99tQcQSqXw88vtVnZGhti0aXPHjh2VyuyZJ9LlnJ2dL168qEfBQgiRmCiePBFCiPR0Id2hffZMcDhDMZCSIo4fF3k9ur506ZJKpVIqlVqOPZ4/fz6Ar7/+Wr+ipObSaGddP25SHmbNErNmCV9fofcU56IgIyPDycnJwsJi4cKFeR/t4iIAUa2aAMSFCwVfnT4Kdh6hbh4/9ti4cW5o6OWHDyNatGjevLke5+jTp09gYKCTk5O5uXlGRobUBXzw4MGsWbNyxtS9ytbWduHCd378ESYmmD4d3bq9ZlE9aQV2FxfMnPnPwYMHVSrVhx9+ePDgwRs3bnh5ed29e7dZs2YrVqzQueL9+zF7NrZvx6RJuHgRW7cCwJIlePJE51NRoZKWhs8/R1YWfvwRZ89ixQr8+COOHMlesOq5rKysoUOHZmZmfvnlly1bttTmxNIi79ItfT1IzSV6n4Re48YNmJlh0iT83//BgLWBCj+FQqFUKjMzM58+fZr30Q0aAEC5cgBw6VLBVqYvU2MX8IKDByEEatbEhQvlSpaEmZl+p6lVq5a3t/dff/2l0zanCgW++gqurvjoI+zbh7Fj8dVXqF8fBw8iMREBATh0KHvKf9OmY4YNqzVw4MCclTuOHj36zTff/PTTT8OGDTt37tzixYvNtC9+27bsnU3GjUNKCi5ehK0trl/X8ZemwicwEB06oE0beHpi6lQcPozLl6Wf3Hr33dFC1KtXr379+qdOnQoKCqpateqsWbO0PLG04ZeBQSiEMOQk9Brx8dlriJQpgxc+bRQ/y5cvf/TokbOz89SpU/M+un59bNmSvU7p8z+BwqYwBaG1NRo3hnTLsWNHQ850//59PL/5o5MOHRAUhOnT0aABpk7F5s3YswfbtuHhQ5ibo3t3+PigfXtnheLLF1uZm5svWrSocePGn3322fLly4OCgrZs2ZJLBxQAgoKwfDnMzV/+voMDqlXD86UDqAiztERyMgAkJcHCAtbW8PJCQgIePgxOTNx77NjevXvxfIz08uXLpXvs2siXHmFWVpYhJ6HXqF8fy5bB2xs7duDdd41djbYiIiLWrFmzdOnSqlWr7t69W5qWk4vExERpXcl58+blPH7KRXLjxhEtWly0tT3bsGFEaOgafetMT09ftWrV8OHDC2J7g8IUhPb26NEDlSvD3BxeXoacSVoIu0aNGnq0rVwZK1bgl18waBAWLYJCgUmTkJqKQYNQqlRuDQcOHOjm5tarV6+goKDGjRtv2LChffv2Lx/07BnWr0dAQPYtAmtr/PEHpk+HiwtMTWFlhYoV4e6efRuBio7bt28fPny4WrVqnTp1yv5Wo0ZYtw7z5+P2bfTogdmzcw4+n5FRv359a2vrkJCQxMTETp06ddTlk5+UZDlT6XXFICwoZmYYMwa7d8PREYV+U7aMjIwDBw6sWbNm+/btmZmZCoXi/v373t7eO3bsyFmc6LVmzpwZGRnZvHnzHj16aHOhGFfX6idPlipVKi4uzu7ePSGEHkkWHR3do0ePkydPxsXFTZgwQdfmeTPyM8ocN26IyZOFEOKXX4TWsyZeKzY2FoCtra0hJ1m2TNy8KaZMEX376tYwOjq6c+fOeD6RI2eivTSFY2nbtgIQgLCzEz4+IjhYaiNCQ4UQIi0tezmiuDgOlilapIk0AwcOfPkH0ijQqCgRECBGjhQtW4qSJav/t8f/zjvv6HQt6QPW37quVf/f5nXq1AGQ55xF0sHVqwIQzs4CEG5uxq7mjQIDA0eNGpWzYqVKperRo8fs2bNr1aoFwN7ePpeBinfv3jU3N1cqlefPn9f+imXKlAEgLZCix/rvoaGhUm1OTk76j0nMVaEJwvXrs6dbPnggvvvOkDMFBoZ7ec19990xhpxk82bx4IF49kwMG6ZzW41G4+/vLw0rfffddxcuXNioUSPpNWdtZpbRrZtYv77QDiMm/ezatQtAt27dtDn47t2727dvnzFjRrdu3VQqlUKhuHTpkvbXaty4MYCzZ8/qV6rUXJqJ/+KKhmSoBw8EIBwdBSCqVjV2NS+LiYkJCAho2LBhziewunXr+vv7R0ZGSgckJCR069YNgJmZ2W+//fbak/Tu3RvAp59+qtOl27ZtC0B6G9y2bZtObU+cOGFvbw+gQYMGjx490qmt9gpNEJ49K5YtE0KIffvEX38Zcqa1awWgc0/uJevWCWkbnAUL9DzDtm3bbG1tTUxMpNecnZ2dj49PsNQFpGLn+PHjALy9vXVtOHr0aAA9e/bUvol0z1/v5bOl5mXLlgVQcO8sRUVqaurnn3/u5eWlNnwBsOjo7Js9gHBwyI/q8secOXO6detmapr9IMzBweHrr79+7WcvaTa2dNirCzifOnVKoVBYWlo+fPhQpwKkF3m5cuUAjBmjQxfl999/lwYe9uzZU7/Fv7RUaIJQCPHzz2LmTPH99wbeFfTzE0D2fVa9zZkjpGmHo0bpf5KtW7cCKFWq1Lp16/KeeUpFWUhICABXV1ddGz558sTKykqhUGh/r0l6Q3ny5Il+C6RJESgttJT74oUyIXWO8+GeW1qaAISZmQCElVV+lJYP5s6dK92dMjExkaaTpaen595k7dq10iiYjh07xsbGSt/UaDTSctDTpk3TtYYpU6ZIBQBQKBQtWrT48ccfo6Kicmmi0Wj8/Pykp4m+vr758DElV4UpCPNJ//4CEH/8YdBJ5swR48aJWbNEly76n0RaCsvA3S2oSAgLC5OeYejRdsyYMQB69Oih5fHSm1R0dHSNGjV8fHyStN8TRwghhLm5OZ5PBeNi8UKIIUOGAJg3b14+nEulEtLCHApFIXnM37dvXwCdOnV6Ku2Trp2TJ09Km/NUr15dWp9degru5OSk6+vtzz//lF6xdevW7datW85AUwsLiw8++GDLli2vfp5LS0vr37+/NNJiyZIlOl1OP8UwCKV9Qk6cMOgk+dIjlJaCnDBhgkGlUFGQlJQkdbP0aBsVFWVjY6NQKM6dO5f7kZcvX+7du7eNjY21tXWvXr2kj9i1atU6ofXLPTMzs127dtLTGjs7Oz2qLX7WrFmjx5Cl1zrbpcs/bdrsatt2bcuWKYWjt+3u7g4gz5fWq8LCwqTHySVKlNi0aZM0lHTVqlU6neTHH3+U+qM+Pj7Scrjx8fGrVq168VZtyZIlBw4cuHPnTumA6OjoVq1aSdfVajnT/FAMg7B2bQFkP+HT25kzQtok+MAB/U/yySefAHjTY2cqZqSeln73wMeOHQvg/ffff9MBgYGB0kAG6aO09Obi4uIijaZTKBQ+Pj7SPp15SklJkRaaMHBkdbERHh6uUChsbGx0XbX1VdKmj9LgjifSuolGlZmZaW5urlAo9LsHnpSUJI2OkV5v7u7u2t+iTE8Xn3wiWrUaZWJi8upGCEKI8PDwhQsXSrdbJY6Ojj169KhQoYI0mOttjuQqrEH45ImIjtaj3dSpQqMRJ0+KGzfEhg1CCBEeLoy1e3yLFi0AHC3Em49QPpKeveWMwdOJ1Cl87Sf3K1eufPjhh9LDEmtra19f3ydPnpw6dUraUEypVDZp0kQaUFCtWrVDhw7lcpXU1NRFixZJbzRKpXLw4MF6lFos5ddkkpo1awKQOk+h0pwoo7p+/boUKnqfQRoDb2ZmJu0R1qFDh1WrVuX5kSsmRrRpIwBRsmTWnj153K64f/++v7+/9JFOuh3q6ekZYWBXRkeFMgjnzBGLF4vvvxe//65r0xYtxMqVYscOcfiwGDlSCCFCQrKHo7590jvj42K9/G6xsX379smTJ+c5jiAX0pvgzZs39Wsu9dJe3A7itRGY89PU1FQ/Pz9pz7KKFStKV5e6hgnS3YwXpKenBwQESP0VAPXq1Vu9enVBD0AoQkaOHAlgxowZBp5HmpwgjcvVaUpMAdmx44iFhZ2Bd30jIiKkfMq5mWljYzNu3J49e8Rr9/66cyf7tpyjowgM1OFC586de+eddz7//PO3v5lPoQxCH5/sL4YPF0IILT5iq9Vi/35x4YIYM0aMHi1WrhSHD4t27bIXgjdKEErrd1hZWXE8QuGXlpYm9ZPc3Nz0eJoihEhOTq5WrRqAzZs361dDVFRUiRIlpE5hcHBwTgRaWVn5+vqGv2ELi0uXLklvvgqFonHjxlLXsEqVKkeOHJEOeCkC3d3dN27cyNfkS7Zs2QKgTZs2Bp5HWjZdGmai/YPbgjNzpjAxEZMn5723Vy4OHz4MoHnz5rGxsatWrerQoYNCoWjQIA4QpUqJgQPFwYMiKyt7UZCoKNG4sQBEgwaiCM3NKfRBeOuWsLQUPj4iPv61x0ZECH//7MUc+vQRY8aIiAjRuLHxe4SBgYHSR28jXJt09+LNRp2GYqalpQUEBDg6OgIoU6aMpaWlv79/ll4jBr/55hvpbTQnAseOHZvnvdaMjAzp5pU0qE/6Lfbt2ydFoLQfPSMwd3FxcSYmJmZmZgZOVnN1dc2ZJzB+/Pj8Kk9v/foJQI87a/+xePFiAMOlbokQQoh79+59/73GzS17mSxA9OwpnJzEgwdixQqxfbvo319o98C6sCiUQfjDD2LpUvHDD+L338WgQcLUVACaSpW2rV+f82esVqv//vvvYcMeScOVpe2u5s4V0pim9etFcLBYuVIIIR49MnDJNj1x7kSRk5KSMn78eBMTE5VK1anT5Tw/0KekqBcsWFD++aqSHh4eOQuNNmvW7Pr16zpdPSQkROoFmpubm5mZ+fj4vKkX+FpXrlyRxvgpFIpWrVrNnz/f2dlZKsbNzY0RmCcPDw8AB/V9s0hKSurTp4/07y/dXQDQu3dv/Z4Z5xd3dwEIve5x/M9nn30G4LVbD4aECD8/4eIifvxRjBkjRo4UK1aIy5cNupxRFMogFEI8fCgiI8Wff/4/e/cd1uS5BQD8ZLBBpgtFEbGgoCgORHFT926pVsVRFUcVbB0RUWmdaK1FxSpa2+IudRW3WBd1gwM3Q1EUlCF7JJCc+8drUy4qJl8CAXN+z33uozXf970o5OQd5xwEwHr1sGXLy927A0DXrl3Pnj0bFBTUtGlTAOjefYFAgJ6eGB5eTZJ2/kO5EzXU1atXR4zYzJLBfH3xnTNDsRhDQ9HaGlu3ngUALi4u8khz7NgxGxsbANDR0RGJRIocRIyNjf3ss8/YLJBtw69XxtIAACAASURBVPTq1YvDyCUSydKlS/XKtDRxcXE5cOAAhUBFzJ07FwD8/f05XJuQkMiyFGrVqvXXX3/JZLJNmzaxhW4rK6v9+5WrwxITEzNz5sw2bdp4enqqsmldUoJ6esjjoYp5HCyZ4eT7D9DLZJiVhYsXY3g4fv45BUK1u3IFW7dGgFJr667t2rEqsfLK5Y0bN/7hh43KfGiuUpQ7UXNJJBgU9KZCiK3t/60oFBVhcPCbcpIA+Nlnrw4fPlzu8uzsbB8fH/aN6uLiEhMT874H3b1719vbm62ksVng3bt32RvolStXuA0+NjbW0dGxSZMm+/btoxCouOPHjwOAm5ub8hdi8+ZiK6sWn3zyCcs9Z168eDFo0KAOHQYBYP/+H94wK1cLlH0k6tq1q1KJ8GU9fIgA2Lgxt6v/w7JBnj9/XsFr8vNx8WJExN69KRBWhtJSXL/+px492OaN/AhveHh4yTtPLFUblDtR0928yT6G4cCB2L8/ymS4fDl27vwmBLZtixERWEGgOX/+vL29PXtHE4lE5fIL7927Vy4Eyt9o5s+fD2rK7yaKy8/PFwqFPB5v+vTpp06dUqR8nUyGK1Ygn48AOHVqytuHdWUy2e+/55uaIjtX8s5kdLEY9+/HQYPQw2M0C4G1a9f28/Pbtm0bS8No2LBhtFKHLxERMSUFY2Px+nXcvFnZS/8POzJaq1atij9UyWRYWIhbt+L48cg1cGtStQ+EiIiYmprq7e3Nvkt27dql6eEohKWFcd5yINWBRIKrVuGFCzh2LIaF4aJFuHkztmyJ4eEVhUC5goICkUjEkpHl51ErCIFMRkaGipNCwk2/fv3k7ZENDAz69u3788/7yszx/k9eHn7+OQIgj4ciEVaQipKcjP37v/n8NHEiRkUhIp4+jTExOHMmWlq++aN27U4PHjz44MGD8uXQlJQUNzc3lq6wf/9+pb6Ww4exSxcsKsJZs5S6rrwzZ86wPW9FXtyxIwLg33+r9ESNqBmBkGGdSDkvFFQx1pXQ1NT00KFDmh4LUcmdO7htG/r64owZmJ2tUAgs69y5c/KpoY2NDYuLenp6M2bMeN9yk7+/PwD069dPDaMnCmO9aufPn+/q6spWtrt2PQiAdeuilxeGhmJKCh44gK9fY2kpzpv3ptXEkSMK3Tw8HOvVw3XrsHNnzM7GWbOwffs3IbBFCwwKencxrOLi4vHjx7MtIZFIpGDqZ3Q0RkTgpk24YoWqgZAdGZ2kWDu6qVMRgHvHHg2qMYEwIyODxRVND0RReXl5rNwt+w7mdp6eVAcsEL54gfXrczx3UFhYyKaGfD6fzQIr7n+UkZHBPvZFsekDqXKvXr3auXPnt9++qFfvvyQBPT386iv090exGOfOxcWLMS5OiXsWFeGRI7h9O/r746xZuH07+vnhjRsfvjA4OJgtIXh5eVWQ4JGSgsHB6OKCABgUhGfO4JIlOGQIFhZyPy8zbdo0AFirWHDbtAkBcNw4js/SoBoTCC9fvgwA7dq10/RAlPPjjz+yTe+xY2cpVTNOLBb/8ccfI0aM4HaMjahRdjYePozXruGZM+8upaGgP/7447vvvlOw4EhAQAAA9OnTh/vziJokJmJwMHp6Yq9eOHs2/vwznj+P3LIEjxzBv//Gn35CT0/lLjx+/LiZmRk7fpXEGgL8q6io6ODBi/37o0DwJmDXrYsLFmBUFBYUoIcHjh6Nzs74+DGXAXfr1g0ATpw4ociLL11CAHRx4fIgzaoxgZBViB85cqSmB6K0CxcuODi0sLFJtLFBRZqKJycnBwYGsvJsBgYGAODt7V1YqFJtCKKirl0RAM+erbonZmVlsTc+mhRWHzIZzp6NpaX41VccA2FUFF67hhIJfvml0tfGxcWxaglWVlbsFN7du3dFIpGVlRWfL7S2LtXVxYEDMTwcy+bsZGRg8+YIgFZWSn8DFxQUsO1qBRs45+djixbRPXpsUSXrQyNqTCBcvHgxACxatEjTA+EiOVnKtpH19d+k+b9NIsE//8Tx4zewPSRWlaZPnz4sFrZv317ZrtBEjdhykyKrWGq0cOFCAOjdu3eVPpVUiKWVX72KP/zA5fJly9DdHTk3F8rMzPT09GRZqqw/s7yYw6+/PnzfmlNuLg4ZggAoFOK6dQo9KDo62tfX19LSks/nGxgYKJ6Hw2pnq6HLcdWqMYFw1KhRoHw3rOpDLMZp094sXLDab3LPn2NQENrYIAC6uz/T09Pz8vKSHze9desWqx5gaWl56tQpZZ+7a9euTZs2VZwDRD7I1hYBMDGxSh8qnxRe0FT/FPIuMhmOH4+1ailSBbm8Tp0QAP/6i/vTS0tLv/nmG6FQqKOjY2Fh4ePjc0OBD2ilpTh3Lkv7OfH11zPeV+chOTl5+fLlrIA706xZsz///FPx4bGDEb+pWNWtytWYQMjaVqneJ0Wzdu5EQ0OcPRv79kWZDJcswfHj3+QhAaCTE4aElGZlZZW7KicnZ+jQoQAgEAgCAwMVOTmWk5MjT87l8XgNGza8c+dO5XxNWsHcHAGwymvi46JFi9ib0bJlyzZs2BAWFnbo0KGzZ8/GxMQkJiZmZmZW82zaj9XgwVyOR+bkoI4O6ujgWwmHSjt16tTu3buV/dfftauwTp16ANCjR4+MMvPH4uLi8PDwss1y69ev7+vry6GBxooVKwBglopnVatcjQmE5ubmNSh3ogLx8XjrFk6ciL/9hgsWYGAg6umhlxdGRlZ0Lp91BWOrpoMGDXo7WMpdvXp14sSJRkZG7BvaysqKzSqMjY3Dw8Mr5Uv62MlkrN6tSidluImKijIwMDA0NIT3MzIyql+/vo2NTbdu3Z4+fVrVQ9RK+/cjADo7K3fVvn0IgN26VcqQFBQTE8NKANrZ2d25c0e+BMq+l/T09AYOHKhKuZKjR4+COvp4VLGaEQhrXO5ExW7fxt9/Rz8/nDoVU1Px9WtFLzx69Cj7QPDJJ5+Um+Hl5uaWrc/Etg1CQ0MLCwuLioq++uor9h99fHxUb8OtbfLy8iwsLJs1c6ri55aUlLA62p07d+7Ro4e7u3uHDh1cXV2dnZ2bNWvWoEEDU1NT+Y4yy1McPXp0FQ9SO4nFWLu20tvGPj4IgMuXV9qwFPP8+XP2fSWf/wFAhw4dNm7c+FrxN6P3+Pvvv/l8vomJibe3d0RERE1ZsagZgbCG5k68DwuEqalYrx4q2/Xl6dOn7JtYPsOLjo728fGRV8QwMzNjJSvLXRgaGso69XTt2rVsf1fyQc+fP2eLRVX83OXLlwNA48aNc3Nzy56MeFutWrVCQkL4fL6+vj41gq4avr4IgH5+SlzSpAkCKNertpIUFhZ+9tlnBgYG5ubmvr6+6jrbcvLkSVNT07LfmQ0aNPj22285lIirYjUjEP70008A8Pnnn6v3thcuXNiwYYN676mI7GzctAmjo/HyZS5NMwoKCkaPHs02/9gqB/t19+7d9+zZU66mZVnXr19n1QsbNGhw6dIllb4GbXL//n0AcHR0rMqHPnz4UF9fn8fjsar/P/zwg0gk8vHxGTFiRN++fTt16uTk5GRjY8Py7gGguLh42LBhNXF7poaKiUEAtLTE9//A/R9WAtvKqqJibFUsJSVFjXkOv/zyi46ODlvAuHHjRlBQUNlDN7a2tiKR6NGjR+p6nHpV60AolUojIyO9vLwEAoGtrW3dunVvq6+w+YsXL4RCoa6u7st3ljZ6F3byuKgIQ0NVenRuLgKgoaHSxbrKCg0NNTAwMDMzMzU19fHxUfAsTFpaWq9evdiqSFBQEPfHaxO2IMGhLwFnUqnUw8MD/r8b6vvIZDK2onXnzh02KaRDwlWDJdUcOICIWFiIGRmYmIixsXjtGkZG4qFDuGcPhoYiO+t9+jTa2OCoUZodcqWQyWSBgYHyJVYejzd06FCWccEyHVnbaqZFixZBQUFK9dqsAtU0ECYlYWDgMnl/S319ffZXaWRktHv3bnU9ZfDgwQCgeDyYMQMRMT8f581T6bnss6SKvevz8vJ4PJ6+vr6yufYlJSUikYj9xY4ZM0bFltza4MSJEwDw6aefVtkTf/zxRwCwtrZWds/ms88+AwA/pRbsCFe//Ybz5uGTJygW45Il/1ViK/e/kSPR3x+zsvD5c4yI0PSg1a2oqIilTOjq6nbq1AkABAJBuZW20tLSU6dOjR8/Xr6AIRAIHBwcVN+SVJfqFQilUoyMRC8vFAqxY8cfAKBRo0YdOnQwNTVNSkqaNGmS/MSHWmb07ICTnZ2dgqVshw/HZcswMFDVQPjHHwiAw4erdJObN28CgLOyB9f+tXv3bnaytEWLFpcvX1ZpKB+7J0+ebNiwQdny/5w9fvyY/dNwKNd+9+5dmhRWmaIibNgQ09PfREQzM7SxwaZN0dERXV2xXTt0c8MuXXDKFBw7Fv398cED3LRJ04NWq5SUFJbYZmZm1qpVK3Z24e0OnXLFxcURERHe3t46Ojo8Hm+4im+C6qPhQBgV9abIwu7duHgxNmjwX3HbTz/dxhLJ2QYY674UFhbGKq14eHioPrmWSqW2tragcLMkdc0Ily1DAFSxd314eDgADB06lPMdHjx40KRJE4FA0KNHD5WGQtRHKpWy6o5jx47ldofPP/8cAHx9fdU7MPK2oiKcOhVnz8bffsOFC987I+zeHWfPxg0bMCzsowqEd+7cady4MZuuNGnShB0++GB2v1QqjY+PnzNnDlSnppv/nb3WiAcPYMsWyMqCa9fg8GF48QIaNYIOHUAohJISx8TERHNzc3YGklWWGTt27D///GNra/vPP/+0bt367Nmzqjydz+dPnDgRAEJDQxV5fc+eAAA6OtC9uyqPhefPcwDg3yjPUUJCAgA0a9aM8x0cHR3nzZsnlUoLCgpUGgpRn02bNp0/f75evXrsgBgH3333HZ/P37JlCzvsSiqVpSU4OMClS1CrFtSpA3Z20Lo1dOwInp4wfDiMHg0+PjB8OADAtGkQHq7p4apPZGSkh4fH06dPnZ2d8/Pznzx54uLicuXKlbIZXO/06NGjZs2a7dmzBwBu3bpVJYNVgGbj8JYteOYMzpuHs2bh1q1ob//mMxSPh8OGFf3xxx/vXAJNT09nBfdUP/GRmpqqo6MjFAoVOXQ+YAAePYppabhsmSrPRA8PD0NDw/Pnr6lyE5YaGKrauZ2goCAAmD17tio3IeqSlJTEahzv27dPlft4eXkBwMyZM9U1MPJORUUYEIBSKXbq9IGEQlak7Pp1PH++aoZWuaZPn85yEN3d3VlS1rBhwxQ8bVBaWmpoaMjj8di3+isOdeoqgeYD4f37GBKC/fphbi6amKCZGfr44FtZcOWVlpaKRCLWPHPUqFH5+fmcx8Cql61YsaLil0mlOHs2Tp+OSUmqBkKWE6biLk6XLl0A4MyZM6rchG27bvqY1mtqMicnJwDw8vJS8T737t3j8/l6enoKNg0g3Mhkb6ruZWcrmkTxESgtLdXX1+fz+cPZVBdg9uzZCh6zYDp06AAALVu2BAAO9ZMrg4YD4fnz+PQplpbimjWIiFevKvf9FB4ezhLJnZycznLtkXP8+HEAaNKkyTv/LeXnd774AmfPxrg49PPDZcuQc3mW3NxcADA0NFS8oPs7sWO0KrakYNtRp0+fVuUmRC2ys7MBQCAQXLx4cerUqQkJCarc7YsvvgCAr8vVdydEHaysrADg0aNHw4cPDwkJUfZyHx8fAGAJQqtXr66MESpLw4Hw0iUUCnHIEO53ePjwoYODA5/Pb8U1HUEmk7FTOSxzWS41FZcvf1MMAgANDN4clvn+e/T3R3t73LqVy+NiYmIAgPNoGZY7YWBgoNQHsbc1aNAAAMr1+SQaIf8+7NixIwCMHz+e232ysrK2bt169+5dHo+np6f3EZTnJdXNgAEDAECprhRlbdy4EQBYrkU1KQqo4cMyCQlQWgoVlhSuSHJy8v79+0eNGiWTydgHag54PJ58vw0AZDLZ6dOnv/jii9GjAwIC4MkTaNAARCJ49AhY9p1IBEZGkJAAkyfDtGkgkSjxrKKiom3btgEAKxnKGZsuNG3atGypSWUVFhampKTo6ek1bNhQlcEQteDxeOyATGJioq6u7o4dO+Li4jjcZ/bs2ZMnT2ZtKwBAT09PnaMkBMDFxQUAbt++ze3y1q1bA0BmZiZUn/Mymo3DixcjAC5ezPHy/fv3A4CrqysAjBgxgvMw5Edm/P397ezs2N9M3br1P/us9MSJd5dE2rEDDQ1Zfy9UZEL18OFD1ksaAKytrfl8fmBgIOfVUdVzJxCRfR+3aNFClZsQ9WJZWW5ubsBpUnj69Gk2EWQr5ytXrqyMQRIt98cffwDAwIEDuV2el5fH5/N1dXWFQqFQKCwqKlLv8DjQ8IwwPh5AhUQClkLAPvPa29tzuwki3r17t27dujKZbOXKlY8fP7a1tV22bNnNmzH79gn69IF3TrrGjIGoKLC1hZgY+Prro+fOnXvnzYuLi3fu3NmlSxdHR8dVq1ZlZGR06NChffv2iPj9999/8cUXeXl5HMaseu4EAMTHx4MKf2+kMixevBgAHj9+zCaFjx49UvzagoICHx8fRGzTpk1qamqbNm1YthYh6sWmdJwnc8bGxk2bNpVIJI0aNSotLb17965aR8eJZuNw+/YIgJzrP0+ePBkA2BkkDj2RX716tWrVKnkk4PP5hoaGR48eVXzjLSMDfXweAYBQKFyzZk3ZGd6jR4/kU0AAMDEx8fHxiYmJYX9atqHS250iKiaTydgavYqnPSl3onpi389sUjhu3DjFL5w6dSoANGvWjMfj6erqUitmUkmkUik7pZiens7tDizDx93dHQC2cjttoVYaDoRubr09PManpXE8ety9e3cAcHR0BIB//vlH8QtZ6yJWpAYArK2tRSIRqzJz/PhxpcZQtmXukCFDXr16FR4e7unpyVI74N++gHl5eeUujI+PlxclUrBlblZWVmhoqLOzMwDUr1/f1dVVlYZKlDtRPR05cgQArKysdHV1BQLBw4cPFbnq7NmzLP6xBiNLly6t7HESbcZiGOcD58uWLQMAlgM2g51C1ChNBsL09HRQrd0uO+XBOrAr0kSibCBhU0BPT095O+YVK1YAwLBhwziM5NChQ6yNuEAgeOcU8J2KiorGjx8PADwez9fXt4KWuefPnx81apT84EPdunXZhLJhw4ZXrlzhMGCk3IlqjE0H2f8rUmutoKCALWywE6cuLi7UfplUqmnTpgHAGpb3pryoqKhJkybNnz8fABwcHNQ7Ng40GQhVbLdbWFjIsoZZ1Kn4xe+cApZLG3j58iU7MsMt1Z2taDHTpk1TvLC6vGVut27dyoXz7Ozs0NBQlnlaLnKnpaX17NkTAPT09IKDgzkMmJ2noNyJaoiVg7ewsFBwUujn5wcA9vb2AoFAKBRW/z6opKbbvHkzAHh7e3O+Q2ZmppubG5/Pd3JyUuPAuNFkINy+fTsAfPnll9wuj42NBQC2nunq6lrxi5s3b/72FPBtrGAxt2UllpPH6gYpm7wVFRXFwlLDhg1ZLwgWuQ3/zSypV6+eSCR6/Phx2au4NVQqLS2NiIjo2bMnn89XPRORVJKyk8IxY8ZU8MpLly6x+McOPC9cuLDKBkm01pUrV0CFfGhWcRQAGjRocIB1dNQoTQbCr7/+GgACAgJ27NgxePDg7OxspS5XKnfi119/Xbx48QfrsJw6dQoAbGxsSpXsHF9QUMB2aDgv9r548aJz584AoKOjU7t2bfkUsF+/fgcPHnxf5EbEPXv2sK49rVu3Lhcpy0lISJg/fz4r8MYeFBgYyGGopAocO3aMTQqHDRtWcT/qcePGyRdFHR0dq8NhdPLRKywsZB+/ioqKpk6dOn/+/NjYWAWvvXjxInuLc3FxqSZVADUQCMVisfw4ScOGDZs3b16nTh0AaN68+YMHDxS/z6pVq+TnjgICAtQyNplMxj6nHDt2TKkLWU4e60XCebG3pKRk9uzZQqFQIBCwKWBiYqIiFz548IBNeS0tLU+cOFHuT0tLSyMjI728vOT7l46OjkFBQRkZGdzGSaoGi21NmjSZNm3a/Pnzg4KCNm3atHv37iNHjkRFRd2+fTspKen169dSqTQwMFAoFPL5/IsXL2p61ERbODg4AMDmzZvZBAAAWrRoERgYWHF1wL179+rr64MydbqrQJUGwri4uLlz58qnO0ZGRuycS506dVhxKRMTEwXPT6LKuRPvw5IKhihZ9u3IgQPy6enIkSNVGcDJkydDQkKUPeyQk5PDauDyeDyRSMQWPJOTk4OCgmxsbNhfuJ6enpeXl4LNF4nGhYSEKFg5iL1szpw5mh4y0SLt27dnZ+Pt7Ow6d+4sf2MHgLZt2wYHB5c78SCTyQIDA9klvr6+1WpTpioCYdkpIPtrat68eVBQUGZmZtmGSm3btgUFzk/KnT17dvny5ewIqFK5ExVLT0/X09NT+shMUJDMyOilp2eyu3vsjz+qazBKkclkS5YsYe+JTk5O3bt3l7+NOjk5rV+/PisrSyMDI5z9/fffa9euDQkJWb58uUgk8vHxGTFiRL9+/Tp16uTs7GxjY2Nqasp+fOzt7enfl1Sl9PT0Tp06sVMR8vdwd3d3+ckGHR2dAQMGsNW14uLiMWPGAIBAIOBQp7uyVW4gjI+PF4lEbOUTAPT19d+ekZRtqNShQ4f3nZ98GztOwkr1VLw3piyW7Pn9998rcc2kSQjwpkBAWJgaB6OsM2fOWFpaslVQ+RRQxU4XpJpTsaUXIZwVFRVFRER4eXnJF0j19fXbt28vb1W4ZMmSzMzMrl27AoCxsfGRI0c0PeR3qKxAeOTIEVdXV/kUsFWrVhs3bqzgOMyhQ4fYZ1t7e3sWOOXnJ8vJyspav369PBeQx+Op3r+tnNOnT4OyR2a6dUMAdHBQqVKOmly4cGHChAk+Pj6Kp3AQQogqsrKywsLCBg4cKD+LYGpq6ubmFhAQwHYTGzRocPPmTU0P890qKxAaGxsLBIJ3TgHf5+HDhy1atGA7haxYjJ6eXtlOH2wKyE5IAkDdunUVP06iFPmRmXKNmSrSoAECoKkpAiA1viGEaKvnz58HBwezM/DyDez27durUgarsvEQUZHdeKWkp6fXqVNHX18/KirKxcVFR0dHwQvz8vK++uqrffv28Xg8Nze3e/fuXblypWHDhnv37t20aROr8crj8Xr16uXj4zN06FDF76ysw4cPGxoa9uzZUz6prUhhIRgbg44OSCRQqxbk5FTSqAghpKa4f//+zp07f//9d3t7+xMnThhy7rdX+SolEF66dKlz584ODg6PHj3q3r372bNnFb8WEdevXz9nzpzS0tIOHTo0a9bs4MGDhYWFAFC3bt3x48dPnjy5Ked2FZUkKwuWLoWXL+HmTTA3h0uXND0gQgghihJWxk1Zk6BatWqB8l1+eDyen59f69atvby8Hj58eO3aNQBo27atr6/vyJEj5fux1YuBAZiYgKUluLoCNb4hhJAapVL6EbJAKBQKgWu7u27dui1YsCA3N9fJySk+Pj46Onrs2LHVNAoCwI4d0LcvBASAkRFcv67p0RBCCFFCpQRC1vFVLBaDCn1fs7KyAGD48OE1oHPs8+fA+to3bQrPn2t6NIQQQpRQiYGQRTLOXdTZtLIGREEA8PCAP/8EqRSOHoX27TU9GkIIIUqoxD3ClJQUHo/H+WALi6Y1IxB++inIZLB6NYwfDw0bano0hBBClKD+U6Msd6JWrVq5ubnW1tYvXrzgdh8LC4usrKy0tLSyJewIIYQQ9VL/0iibybHuepzXRTMzM7OyskxNTSkKEkIIqVTqD4Rlcyc4B0IWTTlfTgghhCiosgKhKrkTULNOyhBCCKnJ1H9Y5s6dOwDQuHHjoqIiVjuUA5oREkIIqRrqD4RxcXE8Hi8lJeXixYuci8vRjJAQQkjVUP/SqK+vr56e3oULFzw8PJ48eaLUtcXFxZGRkVCzcicIIYTUZOoPhFOmTLl161aLFi1u3rzZunXrQ4cOKXJVXFzc/PnzGzVq1KdPn4SEBDYjpKVRQgghla1Suk8AQF5e3oQJE/bv38/j8ebNm7dixQrWlaocsVh84MCB0NDQCxcusJE0b97c1tb25MmTenp6rOkEIYQQUnkqKxACACKuXr06ICBAKpX2799/586d5ubm8j+Nj4/ftm3br7/+mp6eDgB6enoODg4ZGRkpKSkAwOfzFy5c+P3331fS2AghhBCmEgMhc+7cuREjRqSlpdnb2+/fv79Vq1axsbGzZs06d+4ce7SDg0Pt2rVjYmKKiooAwNra2tvbe9q0aY0bN67UgRFCCCFQBYEQAJKTkz///PNr167p6+v//PPPn376qa2trVAodHZ2zszMTEpKAgA+n9+zZ08fH59hw4axHERCCCGkClRFIAQAsVg8c+bMrVu3AkC3bt2kUun169dZn6aGDRtOmjRp4sSJDalcNSGEkCpXRYGQ2b59+5QpUyQSiUwmoykgIYSQ6qBKAyEA7Ny5c8eOHRYWFqtXr7axsanKRxNCCCFvq+pASAghhFQrldKhnhBCCKkpKBASQgjRahQICSGEaDUKhIQQQrQaBUJCCCFajQIhIYQQrUaBkBBCiFajQEgIIUSrUSAkhBCi1SgQEkII0WoUCAkhhGg1CoSEEEK0GgVCQgghWo0CISGEEK1GgZAQQohWo0BICCFEq1EgJIQQotUoEBJCCNFqFAgJIYRoNQqEhBBCtBoFQkIIIVqNAiEhhBCtRoGQEEKIVqNASAghRKtRICSEEKLVKBASQgjRahQICSGEaDUKhIQQQrQaBUJCCCFajQIhIYQQrUaBkBBCiFajQEgIIUSrUSAkhBCi1SgQEkII0WoUCAkhhGg1CoSEEEK0GgVCQgghWo0CISGEEK1GgZAQQohWo0BICCFEq1EgJIQQotUoEBJC2ph3ngAAIABJREFUCNFqFAgJIYRoNQqEhBBCtBoFQkIIIVqNAiEhhBCtRoGQEEKIVqNASAghRKtRICSEEKLVKBASQgjRahQICSGEaDUKhIQQQrQaBUJCCCFajQIhIYQQrUaBkBBCiFajQEgIIUSrUSAkhBCi1SgQEkII0WoUCAkhhGg1CoSEEEK0GgVCQgghWo0CISGEEK1GgZAQQohWo0BICCFEq1EgJIQQotUoEBJCCNFqFAgJIYRoNQqEhBBCtBoFQkIIIVqNAiEhhBCtRoGQEEKIVqNASAghRKtRICSEEKLVKBASQgjRahQICSGEaDUKhIQQQrQaBUJCCCFajQIhIYQQrUaBkBBCiFajQEgIIUSrUSAkhBCi1SgQEkII0WoUCAkhhGg1CoSEEEK0GgVCQgghWo0CISGEEK1GgZAQQohWo0BICCFEq1EgJIQQotUoEBJCCNFqFAgJIYRoNQqEhBBCtBoFQkIIIVqNAiEhhBCtRoGQEEKIVqNASAghRKtRICSEEKLVKBASQgjRahQICSGEaDUKhIQQQrTaRxUIb9++nZSUpOlREEIIqUk+kkAYHx8/fPjwdu3aOTo6+vn55efna3pEhBBCagYeImp6DCp5/fr1kiVLfv7555KSEqFQKJVKEbFJkyZr164dOnSopkdHCCGkuqvBM8KSkpItW7Y4OjquW7dOKpV6e3snJib27t3bycnpyZMnw4YN69Wr1/379zU9TEIIIdVaTQ2Ehw8fbtGixZQpU9LT0z09PW/cuLF9+/aDBw+ePHnywYMH3bt3t7S0PHPmTOvWrf38/PLy8jQ9XkJIFckszSzBEk2PgtQkNW9pNDo6evbs2RcuXAAAR0fHJUuWeHl5sT8qLCxcvXp1UFCQWCw2MzNr1arVxYsXpVKptbX1ypUrvb29eTyeRsdOCKksoRmhzyXPZSCzFFh+bv55I91Gmh4RqTmw5khOTvbx8eHz+QBgaWkZHBxcUlLy9svi4uL69evHvjoHBwdnZ2f26+7du9+5c6fqh00IqWx50rzpz6azX//06qen4qeaHQ+pWWrM0uiRI0fs7e23bNmip6fn7+//5MkTPz8/oVD49iubNWt27NixiIgIW1vbR48e3bt3r2PHjhYWFufOnXN1dR08eHDVD54QUqlypbm1hbXL/hcZyDQ1GFLj1JilUVdX19jYWBcXl4MHDzZqpNCiR2Fh4cqVK9esWVNcXGxqatqxY8dTp04h4vHjx/v27VvZAyaEVBkZyEY/Gb3cenmWNOtU7qkEccKLkhcn7E9oelykZqgxM8JGjRpJpVInJ6c5c+bcuHFDkUsMDQ2XLl169+7dgQMH5uTkzJw508nJCQD09fUrebCEkCrFB36ITUhUftSLkhc9THocyjl0MvfksZxjmh4XUbOkpKT79+8/ffo0KysrKyuroKBALbetMYGwtLQUAO7du/fnn3+mp6crfmHTpk0PHz585cqVAQMGGBoaAgD7f0LIx8RSaDnOctxg08EdjToG1AsAgDkv5pRiqabHRdRGJBLZ29s7OTnZ2tpaWFhYWFgYGxvzeDwej2doaMj+S6NGjZo2bVqnTp0ffvhB8TvXmEAolUoBgC3kCgQCZS93c3OT34TD5YSQGmRG7RlN9Zo+KH6w/fV2TY+FqEdmZua2bdukUqmVlVWjRo3Mzc3Nzc3ls5qioiI2R0xOTn78+HFmZqa/v39cXJyCN68xgZDNCGUyGagQydhNKBCS9zl79uzQoUPnzp1bU/bOyTvp8nSX1F8CAItSFhXKCjU9HKIG/v7+mZmZ3bp1S0tLe/r06evXr1+/fl1QUMCOfRYUFLD/8vTp08TExCFDhkil0gULFih48xoTCNlkjgXCdx4WVfwmnC8nHytEPH369KBBg3r27HnkyJE1a9b06dMnJSVF0+Mi3H1p8WUXwy6fxH4SsiFE02Mhqrp+/fq2bdt0dXU3bdr0znRwQ0NDNkds1KiRnZ1dSEiIkZHR/v37L168qMj9a1gg5Lw0WvYmNCMkcmKx+Ndff3V2dv7000+PHDlSq1atDh06WFhYREZGtmnT5ujRo5oeIOGIB7zvUr47N+bcisAVGRkZmh4O4U4qlU6ZMkUmk82dO7d58+aKXGJtbf3NN98AwJw5cxRZ3akxgbDs0ijnKR27Cc0ICQDk5uauW7fO3t5+4sSJ9+/fr127tpubm0Qiad++/f379/v375+WljZw4MCxY8eq62QaqWI9e/bs169fTk7O0qVLNT0Wwl1ISMjNmzcbNWrk7++v+FUikahu3bpXrlz566+/PvxqDSXyK42ddnF0dASA6Ohobjexs7MDgMTERPWOjdQsKSkpgYGBZmZm7EegadOmLi4ubL1FIBCMHz8eEWUyWXBwsJ6eHgA0b978xo0bmh414SI2NlYgEOjo6MTHx2t6LISL1NRU9qMaERGh7LUbNmwAAAcHB4lEUvEra0wgbNu2LQB88sknAHDz5k1uN2GZ+E+fUvmlN8Qycb40X9OjqDoHDhz48ssv5UsCrVu3btGiBfu1np6et7f3w4cPy77+7t27rVq1Yn8aFBTEmnyRmmXChAkA8Omnn0ZGRl68eDE6Ojo6Ovrhw4eJiYmJiYkZGRnskIX6H5yWhuvWYVgYvqsSJFHQl19+CQBDhgzhcK1EImnWrBkAbNq0qeJX1phA2Lp1awCwt7cHAM4lQxs0aAAAz58/V+/YapzL+Ze/Tf523vN5R3OO7nm9R9PDqSKxsbG6uroAwOfzW7du3bhxYxYCa9euHRgYmJ6e/s6rioqKfH192XyxV69eH983T0lJybNnz3bv3p2f/3F+JHr8+LGenp6lpaUi62mmpqZ79qjpJ2LcOMzIwOhoXLRIPTfUPufOnePxeAYGBo8fP+Z2h/DwcACoU6dObm5uBS+rMbtlZU+NcjjtEh8f36xZMzosw2zO2Pxb498AILowOleaq+nhVJFr165JJJI6dep4eHgcOHAAAJo1a/btt9+OGzfOwMDgfVfp6+uvW7euf//+EyZM+Pvvv1u3br1hw4aRI0dW4cDVIysrKyUlJTU19fHjx48fP5b/+tmzZ6WlpXw+39jY+N69ew0bNtT0SNUsPDxcLBYbGRl5enoWFhaKxWIAyMvLYycGcnJyZDIZImZnZ7P/vmTJki+++IIV9+cuPx+srMDSEiwtYetWdXwdWkcikUybNg0RFy1a1KRJE2438fLy6tSp06VLl9auXRsYGPje13ELs1XP1tYWAEJCQiIjI+W5I4q4f//+gAED9PX1k5KSLCwsAOB9n/21x+Snk9kvrhVc054Z4caNGwFgypQply5dcnd3379/v1JLnampqX369AEAHR2dAwcOVN441SUjI2Pbtm0ikahZs2YVlBXk8/kNGjRgu6FBQUGaHrWaPXv2zNjYGACGDx9+7969il985coVtmi0Y8cOVR8sk+GkSYiIxcU4fbqqd9NKy5YtA4BPPvmkuLhYlfuwnn3Gxsapqanve02NCYROTk4CgcDMzCw4OFjB96+UlJSJEyey+Z+5ubmXlxefzxcKhSkpKZU92upJhrJFKYvCMsNmPJtxp/DOU/HTC3kXtCcQLlq0CAACAwO5XZ6env7ixQu2Vz148GDu48jIQF9fXLoURSKUybjf5723zwgLCxs4cKCOjg6Lcyzg6evr29nZeXp6+vj4BAYGhoaGRkZGJiYmsnMEJ0+eBABra2uxWKz2IWnQ0KFDAaBjx44A0KBBgwoOTWzdupXP57NXNm7cWKU33+BgvHMHIyJw0SKcNw/pnI7ynj17pqenx+Pxzpw5o/rdhgwZAgDjxo173wtqTCC8cOFCmzZt2I90x44dKz44WlBQEBQUVKtWLfb53c3NzdTUFAAEAsHIkSOrbMyVJysrS9lL8qR5QxOHQgwY3TRKFidvy9i2KX1TQnFCXHFcZYywGpo8eTIAbN68mdvlIpFI/pa6bt067uNYvRofPUJE3LYNL17kfp//l5ycvG7duq5du8pX/nV1ddlRoCFDhhQWFn7wDmwb/rffflPXkDTu+PHjbCpQp04dAAgLC6vgxUlJSfr6+jwez8HBAQDWrFnD8alXryKfj4aGGBCAeXkcb6L1bt26JRQKdXR01LKAd+vWLR6PJxAISktL3/mCGhMImYiICHbyk8/ne3t7p6WllXuBTCYLDw9n66gA0L59e3nPJk9Pz9u3b2tk2Gp048YNc3NzXV3dXr16hYWFKfIGh4jPxM9cH7hCDFjctjiVc6qyB1k9DRw4EAAOHTrE7fKxY8cCAJsRhoeHcx/HwoXIfrYPHcJjx7jfBxERk5KSgoODO3fuLC+3oa+vP3DgwNDQ0LS0tPHjx7MNBUVutX37dgBwdHT8OA7HFhYWsnSpzp07A4CHh4fsQ/PvOXPmAAA7J2xubp6Zman0U6VS7NABAbBrVwTA3r05jp4gfvrppwDg5+en+q1WrlwJALVr137fC2pYIETE/Pz8wMBAtqVhbm4eHBwsD/KXL192d3dnbweOjo7sGxoAmjdvfuTIEc0OWy327t3LiszK17ssLS1nzpxZcZbbmbNnmt9uDjHQ4l6L+GLtXaVp164dAFy5coXb5b179wYANse6cOEC93FcuYKLFuH9+zhhAmZnc77NP//8wza0GCMjIy8vr71795Y9Hefs7Kz4lyyRSNinxqNHj3IeVfWxcOFCALC3txcIBEKhUJEPwVlZWexwKVt8YiVnlbN+PQKgtTUaGiKPh+pY1tNa6soBffr0qZGREQAcP378fa+peYGQiYuL69evH3sLaNOmzcWLFxFx1KhRAFC/fv2OHTuyD8hWVlZlI2XNJZPJgoKC2Bfl7u5++/bt0NBQ9lGXadGiRVBQ0KtXr8pduGHDBqFQ6PSF07C4YTmlORoZfDXBwgbnLNKWLVuyfSYAUOkn8/BhDAvDn356s0DKVf369Xk8Hpv/hYWF5b21CldQUMAWlxRcNkDENWvWAECPHj1UGVh1EBcXx9Y5WQtSxUMa693TrFkzPp+vq6urVPGNotRUNDNDAGzXDgFw7FhOYyf/YTmgI0aMUOUmbIPwyy+/rOA1NTUQMhEREWwVlMfjeXt7X7hwoWfPnuyAnKGhoUgkysn5GN768/Lyhg0bxvY4WYUdd3d3Ft3v3bsnEonYFgh7gaenZ3h4uEQiKSkpmTFjBvvLEYlEH8d6F2cymUxHR4fH43E+BFG7dm0AYIkWb0cdJVhZIQAaGCCAKntIVlZWAFBBftXly0WdOyd8+aUSS8G5ubmsigfneXM10bdvX/miaMOGDRX/9xKLxWxBlW0Ge3t7K/7Q0aNHL2jbNrtHDwRAMzN8+ZLT2Ml/nj9/bmhoyOPxLl26xO0ObJ/YxMSk4gzgmh0IEbGgoCAgIICtlLJz0nw+f+zYscnJyZoemnokJCSwT7Xm5ubsOIOent7vv/9e9jVisXj//v0DBw6U10ypV68ey7wxNDRUW4JwTZaWlgYAFhYW3C6XSCR8Pp+dQzE2NuY+DokE+XwUChEATUxUuI2EHYGuYLXjp58QACdPVu7Oc+fOVf0zuGbt3r2b/byYm5sDwL59+5S6fMeOHewnSE9Pj8/nx8TEKHLV+fPnWeq3g63t2e7dS37+mdPYSXnz588HgK5du3K4Vr5PHBwcXPErqygQZmVljR07duHChUFlbNiwIbSMnTt3hoeHr1mzpkT5ikTx8fHOzs5mZmZNmzZV8Bu3Rjh//jybiNja2rJMZ2tr66tXr77v9ampqcHBwS4uLuwSS0vLa9euVeWAq63Y2FgAcHJy4nZ5cnIy22xn62bcx/HsGQJgnToIgCrch43H2tq6gteMGYMAqOwh2efPn+vq6goEgoSEBM7D06Ds7Gy2fN2pUycA6K38cRWpVMqORHl4eCi4UCwWi1lXhC5durATVR/Bdkw1kZuby1a8ONQaDQgIAICWLVt+MKZUUSBkBd8U5OzszOER3333HaiQJVYNhYaGslSwdu3amZiYsOUaRZIgJRLJrFmzAOCzzz6rgnHWCCxPrlevXtwuv379OguBnD+cvnHt2psQyA4Wcr/NNQBwdXWt4DWOjgiAHArUjxs3DgBmzpzJeXga5O3tzefzHRwcLC0t9fX1uYXzM2fOAECtWrXYnDIgICA8PPzw4cORkZGRkZGXL19mBUvj4+MTExMfP37MUlQbN26so6PD5/MvX76s9q9Lm/30008A4OjoqNQcKS4ujs3pFVlWrYoSa3v37o2PjzcwMOjbt296ero8z0kikbDcDvlvdXR0rly5cvfu3dOnT3t6eir1lI+pfJpYLJ4+ffqvv/7K4/G6desWFRUlk8lGjRr1yy+/VFAMjLlx40bHjh2bNm0KAImJiVUy3hrg5cuXAFC/fv3Hjx/v2LEjICBAqW5cqampAMDOntWrV4/7OFJTAQCMjQEAVLgPG0/9+vXf94L8fIiLA11dcHZW+uZz5szZvn37tm3b5syZI88+qikkEgkAmJiYREVFXb58mf0gKKtHjx6DBg1q2rRpSkrK2bNnly9frshVmZmZJSUl06ZNY/uLRF2mT5++cePGhw8f/v7775MmTVLwqmnTponF4smTJ8tTCSqiQpxWSEFBAftZ+uWXX1avXl3xYJYvX75q1SoAaNWqlbJrCwsWLGB3qKQvpCqxJhuGhobsaIxAIFC89lVWVhYAGBgYsCOFtETDfPXVV3w+39bWlq2Yubm5KTVX2LJlC7sKVEtsOvjbb9NbtVrbt+/+bt1uLlnC+T6hoaEAMHHixPe94NUrnD4d319JoyJisdjExEQgEKxdu5bzCDXl5cuXrJLG6dOnVbmPTCbLzc1lq6zt27f38vIaMGCAp6enp6enm5tb27Zt27Zt27RpUzs7O1tbW3Nzc5bRZGJiUimNLGqi0lL85htctgy//hqVLwBSzp49ewDA2tpawdLwbJ/YwsJCwXz8Sp8RLlmy5NmzZ23btp0wYcL169cXL17Mit4yRUVFxcXF8t+6urr27Nlzy5YtsbGxYWFhX331leIP+mia7iYlJT158kQgECxYsGDhwoUWFhZ79+5luaWKMDMzq1ev3suXL9n/P336lG0Xa7kpU6bs3LkzKSlJR0fHxsbm6tWrrVq1WrFihZ+fnyKX6+rqOjo6suYVqswIbz99+nNsrLuR0eXLl1f27dua630qnhHu3g2xsbBxIyjTx/SNvLy8oUOH5uXlGRoa9u/fn+sANaZu3bpz585dtGiRv7//1atX5XUGlMXj8b777rsXL160b9/+ypUrH6zBfejQoWHDhgmFwo9jUUoNTp8Gd3fw8oLbt2HnTpgxQ5WbjRgxYv369ZcvX549ezYrEWViYsLe7c3MzHg8Hp/PZ+XDACA3N5ed+Vq9ejU7XP1hqsXpD5Cv0ip1GpsF/7p161bcOKOc2bNngyqFkaoNmUzG/kXT09OXLl3KIWWtZ8+e8G9S8OHDhytjkDXRxYsX2VRbX1+fJdcDwGeffaZgAZGEhATWF3r+/PmcxzB16lQA6NChAwCUO/rL4T7vKxnz6684ZQrGxKCyc9fMzEy2rFevXj3OXT81rrCw0MbGBgBUOS99584dHR0dgUCgeE9mdrhm4cKFnB/6Udm3D0+dQkRMSsIVK1S/X0REhK6uLjs2UQEdHR32gdXNze2DtYTkKjcQspx3Hx8fpa6SyWQsAWjx4sWKX8WOh/z0009KjrE6Yktw58+f53Y5Sx9kP5arVq1S79hqtMLCQl9fX/YD4+Liwj5w2NjYnD17toKrYmJivL292cfPWrVqCQQCf3//D/a8fidWA5rVPDpx4gTHL+Pf++zfv/+df/rrr3jzJk6ahDNn4s2bitZ8TkpKYmU2mzRpUtP7uW/dupV9IdzSRmUyWbdu3QDA19dX8auuXLnCMiiePXvG4aEfm/R0/OorvH0bZ8/GO3dQ4aoO78M+/NWuXZutSzdr1szOzs7Ozo7lybD1cDkzMzOlWsRUYiDcv38/AJibm79dEfSDLl++rOy3FHv337Bhg7LPqoZYicgPdlV+H9ZviH2YGD9+vHrH9hE4cOAAq6RlaWnJcjR5PJ6vr2+5xgsymSwiIqJr167sR0tPT2/8+PHffvut/CjvI+VLw7Bz+SxpXZXKt+yj0sW3anY/fIh9++L69XjnDkZFoasrtm2LOjro6/uBbRp5J0JnZ+cXL15wHlg1UVpayv5luX0y3rZtG1uUUra6vbe3b7du16dOpY15RERMS8OICHz4EFeuREtLfPCA852uX7/OSuXFxsZW/EqxWJyamqp4NSWmsgJhYWEhS+j+mWti6RdffKHU+/i0adNUeVy1wk4MKfVptCx2+Ju9Ebi5ual3bB+H1NRUVnyEx+O1bduW7et06dKFraWIxeKwsDD2F8hmgb6+vvISDVeuXLG3twcAAwODDybqyj158sTX15dNK9nG1V9//cV5/I0bN4a3ysocOHDU2loKgOPGvSli+vffOGEC8vkIgFZWGBKC7zx/fvXqVbaV0q1bt2wVyp9WKxEREeyDuLKnVzIzM1nC6K5du5R9aGIi6uqiQIB37yp76Ufq4EFs2BA7d0YAHDqU2z2kUinbTVBlV6JilRUIWWJNmzZtOJ9afPz4MdtfrLjjkhzbQd2yZQu3x1Urhw8fBoBPP/2U2+UsVYCt+9WqVUvxhXKtIpPJgoOD2XZCkyZNbGxsQkJCcnJygoOD5cWs69evHxgY+Pa0ICcnx8fHh71m2LBhGRkZFTzo+vXrI0aMYLGWx+O5ubmx40tCofD777/n8ANSVFTESimV7VC9ZMkSHo/Xvv33Y8bIyn0avnEDu3dHAATA4cO/KVdT+/Tp0yxLdfDgwcp+jq7m2Ga5v7+/Ulexf9muXbty+8H5+msEwEGDOFz6MTp4EAHQwgKNjREAo6I43OP338/y+fxGjRopeGSUg0oJhImJiaziLeddLoad/OnevbsiL2ZHTLdt26bKE6uJhIQEAGjQoAHnO8iX/gDgo6k2Vxmio6PZxpi+vn7Lli1ZlT72GW7Xrl0VJ/CGh4ezhOt69eq9s7B9VFQU6/0EALq6ut7e3nfu3EFEsVg8b948dhBxzNCh+OSJgqNlcbphw4ZGRkb6+vre3t7yKpoHDx7U0dGpIM3m4EEcMOAcG0zv3r3ZSHbt2sVWeseOHcuholM1d+3aNZZE9PTp07y8vPDw8OPHj7Ok+OvXr0dHR9+4cSMxMTExMfHZs2fsaN7169dZue379+9ze2haGtaqhQD4999q/WJqLg8PBMAuXRAAO3RQthn1y5doZoZOTlciIirxL7RSAiFbdKqgHbCCsrKy2IqNIotIrByGKifxqg+pVMraLXFep2InZdihjJMnT6p3eB8Z+QkaNmnr3LlzRESEgrOBp0+fsk3EsruMbGXV+d9UdhMTE19f37d3u8+cOWPbuPFlZ2esVQtDQyt+0Otnz2bNmiWP002aNGGTQgcHB/mSyZMPBVSxWLx27VoWvAUCQceOHVkwnj9//se6bDBixAgAmDBhwv3796FC7u7u8iU4ZSeR5SxZggC4YIG6voga7upV5PHQwACtrGTGxnFKnmP39kYA7NOnkgb3Bg8RK/7+UNb169c7derE5/MTEhIiIyPHjBnDVp+UVVBQUFhY+Mcff8ycOdPc3NzOzs7U1LRsNk+53968eTMhIaFnz55s/4ad7pP/qfy3JSUl6enpq1atYk0qVIeIKSkpLG4BgLGx8QcP+CqiTZs2t27dunz5MrcqFfPmzbt69aqRkdHx48eXLFnCVqpJBYKDg+/evevt7c2OCypOKpWuWbNm0aJFJSUljo6O7u7up06devHiBQA0bNjQz8/Px8en3JE2uZLXr3WmTIF9+wAARo+GjRvh31yo/9y+DT/+iEeONJHJnubkdO7cWSQSDRw48OHDh6NGjWKNvAMCAhYtWqRgBtvLly8nTZp07NgxPT09sVgcFBQ0b948pb7kGuTJkyfNmzcvKSnx8fG5fft2UVERe9MoKCjg8/lSqbSwsJDH45WUlLRs2dLT01MkEjVq1Oj+/fusipBSzp2DVq3AwgJ27wYeD4yNYdAgOHwYBg2qhC9Mg3JyYNMmkEhgxAhwcFDoEi8v+Ouvi337+ly+XGphcffuXQXfJKOioFs30NeHu3ehctOh1R5a7927xwrusQV6xU8TlDN//nxzc/OlS5cKBAL5B+GKve/t5m2tWrVSyxdbXFzs4eFRwRuQsbExO91rZGTk6OioeEFw1lvx119/5Ty2Fy9esIRrpVrJEG6uXr3KPoGx99mWLVuGhoYWFRUpdPEvv7zZQXF2xtJSzMzE/HyUyfDECfT0fLO5p6MTNW/erVu3yl5XXFwsEonYE3v06PHBNfDs7OxVq1ZZW1uzb8769evX9HZLihgyZMgH0+EZFvwOHVKicVVZP/6I7PTS11/jsWPYtSu+eIF+fnj+PO7YgeHhGB6Ox49jZKQsMjKSVSu9efNmYmLiB6fy1cs33+DLlyiRKN5wURIf38/eXiAQsIp378t/LaekBFu2RABUoQSTotQ/IwQAPz+/9evXu7i43L5929zcPD4+nm1WKS4hIcHZ2Zl9xL5//76Pj4+Pjw9bJ5S/JicnRyaTyX+7atWqmJiYKVOmuLq6vv2nubm5rBhpenr6jh07SkpKzp492717dxW/0pUrVy5YsEAgEMhjcH5+fklJyTtfLBAIBgwY8Ndffyly52XLli1atGju3LmrV6+WSCTKzqqvXbs2bNiwlJQUKyurs2fPOnOoOEmUlJubO2LEiFevXi1btqxfv37K1TRJSoIxY2DCBMjMBF1deP0anJxg7lxITgZjY/jqK5g9G95T9vP06dPjxo1LSUkxNTXdtGnTl19++fZrXr58uXnz5nXr1mVnZwNAq1atvv7667Fjx6prXaQ6y83N/eabb5KTk83MzEpLS/Py8gBALBY6yxVyAAAgAElEQVQXFhYCQGFhIat1lZeXV1RUlJ+fv3///uHDh3N40Nq1kJIC5uYQFQV+flBQAFFRwONBTg78/vt/L9PXLy4u/r+KwTY2Nv369WNl81R39erVDRs2sD7S8mVw9galq6vLgr2BgUFRUVHTpk3Z2X7lTJsGmzYBAHzzDaxYAR+qfszMnDkzJCSkXbt20dHRtWvXTkhIqGDeUlwMQiEIBPDLL/D773D6NBgYQFGRgo/ipDKi6+vXry0sLACAZU198803yt6BZeKzTDgbGxtFDgux1rWKJFGyErqtW7dWsVdtcnIy+676+/3b4nl5ea9fv379+nVMTAzrMPl27tc7sSzMAQMGPH782MzMzNvbOzIyUsGNnN27d7Pa3B4eHm/3rCfVVEkJSqU4Zcqb306ejFu34qpVqMA+cVpa2uDBg9lPdNkTNIh4+/ZtHx8ftqEISu6AapuQkBAA+OSTT7hVSyg3I4yMxO3bsUMH3LYNR49GLy/08sI+fbB//0JPT0+WFe7i4mJtbc3j8YyMjF6qo5Hv9evXdXV1FfwQpqent3PnTqWf4euL2dkolaIyOcppaWks8rHyTJMmTYqOjr5z505iYuLjx69TU/H1a3z9+k16T1AQskSJWbMwJATZuaUZM5QeqeIqK31izZo1AGBnZycQCHR1dePi4hS/9sCBAwBgZmbGoun7ymeUw94IFDlWU1RUxNKwwsLCFB/V27y8vECZFqasLLi7u7sib0M3b94EAAsLC1Y6jmnevPnq1asr6MRUWloqEonYi318fLj9PBPOrl27ptIJb6kUp01782sl6zEhYlhYGPtkZmtr+88//7Azq+w9kc/nDxw4UBsWQlVRUlLC2gpu3LiRw+UREcg+dm7ZgjdvYmwsymSoSObboEGDAGD69OkcHlqWvCBOkyZNevfu3a1bN3d39y5dunTu3LlDhw7u7u7t2rVr06aNq6urk5MTmyx26dJF6ce8eoXffYeLFqHCxeeYJUuWAMDbu4Pdu0ey5X/5//z9ccECvHHjTSD87Tf8+2+s1F7RlRUIxWIxa97GZnWKN8aTZ+Kzc4+enp4KXsgKBJfLkXof1oS6QYMGnN+2zpy5CgBGRkaKJyfk5eWxes0fbJn94sWLDh06sK1W9r7WrVs3+dYOn8/39PQMCwsrl/WVm5vLfqKEQuH69eu5fV1EFXv37lWqQO47LF6M27fjmjXI6VPavXv3WrduDf9uVQKAsbHxrFmzkpKSVBqV1ti3bx8A1K5dOycnp8oe+uDBA6FQKBQKOedsML/88gsA1KtXLysri9UJqkBqairHhretWqGd3ZuqRQrugiMiYn5+PluKt7CwYBNiZ2dnOzu74cPP162L5uZobo4CAQLgwoX4/DlOnox+fhgSgnv24KVLOGqUcsNUSiWWWPvzzz8BwMrKih11uXDhgiJXLV68GADs7e3ZVPKBwlV5+vTpAwrXb5TJZO3btweApUuXKnj/siQSbNECO3d+vHatcodZNm/ezCbKFZRAjImJYSWDGzduPHnyZHlyt0AgaNu2bYcOHeT7hVZWVn5+fqmpqYgYFxfHPsxaWVmdOXOGwxdFqou4OHz+nPPVxcXFY8eOZattgYGBCpYUJ4xMJhsxaNCOzp2lVdvim9UDUaWTtrwgzu7duxFx6dKlIpFo1qxZ7IDFmDFjvLy8vLy8+vbty5pJSSSS4OBgUL7hLerrIwAKhQjw7kpF78E+ZJiamn6wu3hQEL58iefPY8+eNXxplOnSpQsAsESrNm3afHBPTp6J36JFCwAQiUSKP6tXr16gTBOyixcv8ng8Y2NjRXq+l/PDDwiA9vaobEXf0tJSdm7lfZ3edu3axbb3unTpwrb3pFJpZGSkt7e3PEPD1NS0S5cuLA1cV1c3LS3t+PHjrHxlq1atatgJtI+IRCJ58eJFNWkAWVBQoOiZVVLO5cvI46GRESr/zsBZSkoKW9b+559/uN2BhdJu3bopvgEskUjYUWflCnKxkn0AyOcrflFBQYGtrS0oVgUzNRXZrs6TJ5iR8eZttlIr4FZuIGT9wPT19dmy3gc3ZtnKHmudWq9ePaVWJ9gR0IrbCJTDztdMmjRJ8UsQMTUVTU0RAI8dU+q6N44dOwYA5ubm5epyfXB7Lzs7OzQ0lC01M02aNPnss8/8/f1Z/oaXl1fllSAiH3Tv3j1ra2s2QSc129ChCPDfwaUqwZJ9O3bsyOEo07Vr17gVxNm7dy8A1K9fX9G3Donkv+mgvr7iD1qxYicAtGvXTsUjipWk0jvUs3w4FtsaNWpUwafUkydPsi0NVk1G2V5ibPap4AIsk5iYyMqZKt5yDBFHj0YAHDZMqdH9H7aKW7bReU5ODqvFpauru3Xr1oovv3//vkgkqlu3rnzLkM/nL1u2jI4CEqIeDx+ijg4KBHjvXpU9My8vj/1QK9U/CBFLS0tZ89GAgABlHyqTydzd3RXfJJKWFjw6bhN/wv7xn82fHHBV8Cl376KODrZtG3n9unLna6pMpQfC5ORkljbQq1eviv+BHzx40KtXLxbPPDw8lH1bZ/+cly5dUuoq1qC8Z8+eCr5eJsN589DUVPHykO9w7949oVCoo6PD+vg8evSIHSlmOX8K3kQikRw8eNDFxcXOzm716tXcR0MIedvUqaijgx/6VKpeGzZsAOXzN9hWH+ea1OfPn2czEEXyN0pLX0dHw82bptHRcOuWlSL3l8mwRw8EQJVPxVaiSkmoL8ff3z8oKMjU1HTEiBEGBgZlc3jL/TYxMXHbtm18Pj8mJobVyVScm5vbtWvXrl69yqoFKigrK6tZs2aZmZnHjh1jyYvvc/QoXLsG338PS5eCr+87KmEpxcfHZ+vWrcOGDZs8efKoUaOys7NdXFz++usvltdBaqL+/ftnZWUdOnRIPlknNVhaGqSlwblzkJ0NQ4dClZSkKC0tbdWq1YMHD37++WfWV+6DXr165ejomJ2d/ddff8lzSZU1aNCgI0eOzJgxg0XiCpSUvIqNrScUWpWWZujoWLdq9eKDNw8Lg/HjoW5dePAAzM25DbDyVUGwzcrKMjExUbC4HJ/PH8qpbRUrKKNgunpZP/74IwDo6ura/cvR0fHLL3e0bYvsfx07oqcnrlmDo0fj7dtYZkWTu1evXrH0UpbmNXLkyLItdUhN9Pz588uXL1Pu5sfj++/x7l0sKcFx4/D/mzZXHnbYvk6dOgqekGB7T/369VPloSx/Q0dH54MJ32Lxs+houH27XnQ0xMbafvDOr19jnToIwC0bqOpUxYwQAF6+fPnDDz84ODgUFRUVFxfL/3u53z579szKymrlypUcKt46Ojo+evSoTp06P/zww9ixYxW/MD8/39XVNSkpqWxpNA+Prf/8M6nsy5Ytg+7dISwMDAxg3TplR/cOI0aMOHnyZE5OzuTJk0NDQ5WryEUIqWxTp8LmzQAAq1bBF18Ah2pknHh4eFy8eLF58+aso46hoSErDGRiYsIaO5uZmfF4PD6fn5iYOGXKFH19/Xv37nEpllbGpEmTtm3b9vnnn7NI/D6IpRJJUm7uCQCBsXEXA4P3TpQLC0FfHxAhOBjOnoXDh4HHg4ICUP6tvSpUUSCsVJmZmUuWLNmwYYP8a+nTp8+6descFKyMDiCTyR4+fChfpJVIJEVFhjJZo39/CwUF8Pw5tGgBhYXg6wuxsaqOOS8vz9HRMSUlBQAMDQ137do1dOhQVW9KNCQjI2Pjxo3FxcUrV67U9FiI+ohE8M03UK8eTJ8OP/5YmZUu/8+hQ4c+//xzVhv5g/T19WfMmDFy5MisrCxPT09uTxSLxRkZGZ988klRUdHo0aMbNGjA4/FYRtagQbXq1GE9pfX4fEMAkMkKEGWGhi66urYSSRIACARmALzs7Hq6uoYAIBSCiQnMmgV2duDrC7NmgYEBBASAsTHMmAEhIdzGWLlqdiAsKioKDg4OCgrKzc0FAB6P1759+7i4uOzsbF1d3XtLlth//TUo1rnigxITwcQE6tSBPXsgPx8mT1bpbnPmzPnxxx87duzYpk2bTZs28Xi8xYsXf/fdd2oZKqkyCQkJP/300++//15YWKivr5+cnMzOPJMa7+VL4PFg0ybg86FjR+jduyoffuzYsT///JNtNhcUFEgkEijTOSArKwsApFLp/fv3X7161aNHj3PnzjVq1Kjsp3nF5eTktG7deuzYsYcPH87IyEhOTi77pxcvttfTu172vzg6Xk9LW2tpOU4iSX769L/3wUWLUo8fr8d+zePBt9+CkRFMnAhr14KBAbi7g74+7NgBO3Yo/bdRBYSaHgAAwOLFi9u0adO7d2/FV0QRYc8eXLnS/e7d2wAwYMCAJk2abN269dq1a6ampl27dm2ckWG/YAGsXw8rV4K3N6i88Ni0KQBAcTHMmgXp6dCyJXBqFAgA8ODBg/Xr1/P5/PXr17dv397GxiYgIODq9u0lubk6P/wAinWVIxp29erTXbscNm6UyWQ83v/Yu/e4nM//D+Dv++7ufFAOkdCElhwrxxKb41jOy4ZlYxaziTGymYUxbWwOO5DDCLMtDGG+hCHmlJwqhUQpcqqodLrv9++Pq93rx+Q+lLv6vJ6PPfZo9Tlcd7u7X5/P9bmu9yXz9fWdNm0aUrCaYKa33qI7d2jLFnJze/Hn79evn6gZWba0tDQXF5dDhw65uLgkJiZ+//3306ZN0/Zcs2bNun79+rZt22JjY01MTIKCguzs7JhZLFRSo4allZU7ETHnq1SPiWSWlu1eemlDauqHFhbtLSw8iUipzCQiW1uZGAtTVESFhUREn3xCM2eSKPZna0vm5qSoFIHzXwz6hJKZ+caNG+LxmJmZ2WuvvfbTTz+lpDynoMOJE+ztzUTcrdsiNze3P/+Z2Z6YmCim6Cnk8rtdu7KbW0kFhFdf5djY8mrwrFlMxJ06sc7T9kQjP1CXV2beEh5e0LQpE/Hrr3OppQOg0lGpOCKiZJlAubxfs2b+/v6x5ffugkohLIyJ2N6eHzwwdFOeQyyqLBZdsrW1faJMx3OdP39elDkVjxjnzZv33F0ePjyUnv5lcvJolaqswlpTpzIz//Yb+/vzjBkln2offqhV614cwwfhnTt3FixY4OXlpV7e1tv7spsbBwVxVBSLKgTil1hQwAkJPHRoSbo5OnJYWNHTdQr++OOPrQMHMhHLZOzlxbVqMRHXrs3/v0S1zh49YgcHJuLff9dl9/DwcCKqWbPm3bt3/98Pjh8vGV/VqhWnpJRLU0FHJ05wUhIz8y+/MDOfPMmzZ/M33/D16+zqWvL+s7PjTz8tQh2Z6ic7u+QvvJKPdGRm5szMTLHaq5hTP1Xkj2aUSqWYfi1mbzdr1uy5Zfny8mKvXx9z8+b069cD7t4ta5KlejGC5GS+fbvkk/wFFq3TjuGDUO3OnTtr164dOnSok1Oxej0OBwf+4gt2dOTbt3nzZvbzYyK2tOQ5c7is6QZ5efzFFyXFYW1suEsXXraMv/+e58/nhQtZ7xo/q1aJWqPK/Hztxsrn5uaKmYKhoaH/8eMrV9jFhYnYy0vPFoJeNm5kUZnho484P5/fe49VKr56lb/4gjt1YicnDgnRZJlAqJImTGAi7tJF9z6fF0tMAGvcuLGospYkruE0INYAsLe3F8+k/tSgaGR29t7oaIqP94iOpitX+unX8EqkEgWhWlERR0VxUFBJKEyezGPG8OTJvHkz79rFH36o8WVFUlJJcrZowYcO8Zo1zMzbt7OWFYyeVlzMgwYdc3Fpo21JF7EkoYeHxzNLM9+/z76+fPEir17Nc+fytGmclsbz55f8VP0FVKiNG3ncOJ43j7t04eRkXrCg5Pvjx3NKilYV96FqiY6ODnR3f+zqyufPG7otmiooKGjSpAkRidu7t99+W5O97t27Jx5pi3V43nrrLU32ysraGR1N8fHtoqPp6lVdJnxXTpUxCEs7f56TknjqVF67lj/8kLWpJPqPXbv4+HFet67kGv/KFV64UP+GHThwgIisra01X1f66tWrZmZmcrn8+PHjz9n07l0WK2/cv8+ffFJyX5KfX7ErkYBa6TvCx4/5/feZma9f51mzDNsuqFBKpVKkwrRp0wzdFu1s3LiRiOrWrStW74mOjn7uLqNHjxYX5eJz7KZmK39lZm6NjqZLlzpER1NS0jC9G15ZyF/IiBzdtW5Nzs5ERO+8Q3FxOh3i9depUyfy9KT9+4mI9u6ljh31b1j37t379u376NGjefPmabjLpEmT8vPzR48e3em5403v3SMHByKimjUpJ4cKC+n77+n77+nRI/1aDZpxdqY6dYiIOnQgMzMaNYrmzqVNm0j7IXlQhaxYseL06dMNGzYUq6JWISNGjPD09MzIyGjfvj0zf/LJJ2Vvf+zYsXXr1pmamt69e5eI5s6dq173tGyW52StvvZuEGbfYpmPw75qVA/S0EmskYMH+ZdfeP9+/QZU7t3Lc+fytm3l1ar4+Hgx4GrDhg1JpaSnpz8oRTx/3rZtGxHZ2NhotExPQQGPGsWZmbx9O4eG/nsjiDtCgIqRkZFhZ2dHRFu3bjV0W3Tx119/EZGVlZWYCL9nz55nbVlUVNSmTRv6Z6XYVq1aaVEXcN26kkEMRDxmTPk0vRKotNM6/p/4eProI/rwQ+rRQ4+j9O5dvrNimzdvPnbs2PXr1/v7+z93YzFFZO7cufXq1Xv+oU1M6KuvaMMGatyYAgIoKqrk+8OG6dViAHiGpKQkc3PzTp06DRkyxNBt0cUrr7zSt2/fPXv2dOvWrUOHDh2f3e+Vm5vr5uaWmZl56tQpmUy2YsUKDQtBE1HJDEExLdvERP9mVxJVIwiLi4moMk40nz59ekJCwtWrV01KvSfy8vIKCgrU/ynqqcrl8s6dO48bN07TQzs60sSJJV/7+Dz5BQCUq86dO1+6dCk3N9fQDdFdSEjI3r17o6Ki6tSp8/XXXxORlZWVCLkaNWrI5XJ14TQ/P7/Y2NiUlJSxY8eKxWI1VToITU3L/zUYSNUosfbddzR1Kk2ZQt9+a+imAABUVqJgtyZbymQyc3PzGzduaFcO6coVOn2a0tLI0pI8PHQvr1XJVI07QlF+thLeEQIAVB6HDh1asGCBqampuMN59OhRcXExEWVlZTGzSqXKzs4moqKiooSEhO+++07rooB2dnTgAPXuTf/7H731VgW8AsOoGkEok+UTmSEIAQDKoFAoZs2aVYEn2LGDxo+n9u2pUSOKiKB3363Ac71AlX36hJCfv4hIplBU5P9gAAAom1xe0kGnUpWU064WqsYdoVh8xAi3hAAABjRoEH3yCSUl0cGD9N13hm5NuUEQAgCAZuzsaMUKunmThg0jzSddVHpVIwjF815F5V3MCgBAGoyNqXFjQzeinFWNTl7cEQIAQAWpGvMI4+Pj4+LiWrdu/fLLLxu6LQAAUK1UjSAEAACoIFWjaxQAAKCCIAgBAEDSEIQAACBpCEIAAJA0BCEAAEgaghAAACQNQQgAAJKGIAQAAElDEAIAgKQhCAEAQNIQhAAAIGkIQgAAkDQEIQAASBqCEAAAJA1BCAAAkoYgBAAASUMQAgCApCEIAQBA0hCEAAAgaQhCAACQNAQhAABIGoIQAAAkDUEIAACShiAEAABJQxACAICkIQgBAEDSEIQAACBpCEIAAJA0BCEAAEgaghAAACQNQQgAAJKGIAQAAElDEAIAgKQhCAEAQNIQhAAAIGkIQgAAkDQEIQAASBqCEAAAJA1BCAAAkoYgBAAASUMQAgCApCEIAQBA0hCEAAAgaQhCAACQNAQhAABIGoIQAAAkDUEIAACShiAEAABJQxACAICkIQgBAEDSEIQAACBpCEIAAJA0BCEAAEgaghAAACQNQQgAAJKGIAQAAElDEAIAgKQhCAEAQNIQhAAAIGkIQgAAkDQEIQAASBqCEAAAJA1BCAAAkoYgBAAASUMQAgCApCEIAQBA0hCEAAAgaQhCAACQNAQhAABIGoIQAAAkDUEIAACShiAEAABJQxACAICkIQgBAEDSEIQAACBpCEIAAJA0BCEAAEgaghAAACQNQQgAAJKGIAQAAElDEAIAgKQhCAEAQNIQhAAAIGkIQgAAkDQEIQAASBqCEAAAJA1BCAAAkoYgBAAASUMQAgCApCEIAQBA0hCEAAAgaQhCAACQNAQhAABIGoIQAAAkDUEIAACShiAEAABJQxACAICkIQgBAEDSEIQAACBpCEIAAJA0BCEAAEgaghAAACQNQQgAAJKGIAQAAElDEAIAgKQhCAEAQNIQhAAAIGkIQgAAkDQEIQAASBqCEAAAJA1BCAAAkoYgBAAASUMQAgCApCEIAQBA0hCEAAAgaQhCAACQNAQhAABIGoIQAAAkDUEIAACShiAEAABJQxACAICkIQgBAEDSEIQAACBpCEIAAJA0BCEAAEgaghAAACQNQQgAAJKGIAQAAElDEAIAgKQhCAEAQNIQhAAAIGkIQgAAkDQEIQAASBqCEAAAJA1BCAAAkoYgBAAASUMQAgCApCEIAQBA0hCEZVm4kIgoMZF27Sr5zp499N13RESLFhmsVQAAUI4QhGW5cYOIKDeX7t4t+c6DB3TqFF25QjdvGrBdAABQbhSGbkCldvEizZ9Pt26Rp+e/35w4kb79lszMDNcsAAAoP7gjLEurVjRzJo0ZQ0R07x4lJxMRmZtT//507JhhmwYAAOUDd4RlGTyYiKhBAzI1pfR0OniQevakOnXIw4POn6ebN6lBA0M3EQAA9IMgLEuPHkRE9vZkb09ZWVSjBrVsSUQ0cyZ99RXl5NBXXxm2gQAAoC90jWpq82aytKT8fCKifv2IiNavJ6XSsI0CAAB9yZjZ0G0oH1lZWd98801CQkL//v1btGjh6upqY2NTcadr3pwSEmjPHnrttYo7CQAAVLjqE4RvvPHGjh07iouL1d+xs7Nzc3Nr0aKF+Lezs7Ozs3N5nW7BAvrsMxo2jH7/vbwOCQAABlBNgnDRokXTpk0zNzcfPHiwSqVKSEhISEjIF/2YpdSuXdvNzU2hUPz444+urq76nDE9nV5+mTw9r/7xR82aNWvqcygAgLLl55NCQQoF5eWRsTEZGZFcTvn5mMdVPqpDEEZGRvbt21elUnl4eHh6ev7www/GxsZElJ6eHh8fHxcXFx8ff+3atfPnz9+9e5eIjIyMrKys7t+/b2RkpM95Bw0avmPHb8uWLZs4cWL5vBIAgP+yaBHdu0chIfTxx9S0KfXoQa6u9NFH9MMPhm5ZtVDlB8tcvnx52LBhSqXSx8fnzJkzW7duvX37tvhR/fr1e/bsOWnSpNDQ0MjIyDt37qSmpu7bt8/W1jY7O3vv3r16nnrkyCFEtG7dOj2PAwDwXDIZxcSUfH3qFB069G/Fq/Jy9+7d5cuXOzs7t27d+vDhw+V89Eqsagfho0ePhgwZkpWV1bFjx6ioKIVCER4e3rBhw2dtn5SU9Omnn7q5uRHR2rVr9Tz7wIEDa9euHRMTc+7cOT0PBQBQtg8+oBUrSKUiIjI2JmNjkpfT53d2dvb69ev79+/v6Og4YcKE5OTkuLi4QYMGHTx4sHxOUOlV4SBUqVQjRoyIi4tzdna+ePEiMy9evLh79+5l7GJubn7mzJmEhASFQhEREXHv3j19GmBiYjJ8+HAi+uabbzIzM/U5FMBz+fv7T5gwITs729ANAcNQKGjUKLpwgYjI3Z28valWLcrPpy1bSopeaSs/P3/nzp2jRo1ydHR85513du3apVKpevbsuXz5ch8fn6ysrD59+qxcubJ8X0UlxVXWjBkziMjOzq5BgwZE9M4772iyV+vWrYnI09OTiJYtW6ZnGzZs2GBlZSWXy4nIwcGhe/fuEyZMWLv27wMH+Natfzc7c4azs5mZz57V84QgUfn5+UZGRgqForCw0NBtAQOIjOQff+RLl/jaNb57l/PzmZlTUzk/n/PzOTRUi0MVFxdHRkb6+/urJ5jJ5XJvb+8lS5ZkZGQwc2hoqEwm69atm/hpYGCgSqWqmJdVWVTVINyyZYtMJlMoFG3atCGizp0754u3xvMsWrSIiDp06EBErVu31qcN6enpjo6OROTo6GhhYaG+tnjllb+JmIjt7NjLi8eO5fHj+fPPmZknTdLnhCBd8fHxRNS0aVNDNwQM47PPmKjkY6S0oiJet47v3tXoIMXFxb1797azsxOfVDKZrGPHjkuWLElLSyu92eLFi8XFfZcuXRQKBRENGzbs8ePH5fRSKqMqGYRnz54VwdOlSxciql+//hP/I8uQkZFhbGysUChq1apFRGd1vUcrLCz08fERbThz5gwR1atXz93dvUuXLv36rWjZkm1tWcShhQVPmcLff8+nTiEIQUcRERFE1LdvX0M3BAyjb18m4q1bn/z+7dscHs6nT2t0kJkzZ8pkMiJyc3MLDg6+fPnys7bctm2b+Ix1d3e3trYmIi8vr7sa5m0VVPWC8OLFi3Xr1iWiTp06EZGZmdmpU6e0OsLAgQOJSMRYYGCgbs0YO3YsETk5OWVkZOzZs8fc3Fx9R+jhMV19R9i6Nb/1Fk+dykVFHBDAEyfqdjaQum+//VaftytUdfXqMREnJ+t1kMDAQCIaMmTInTt3nrvxyZMnxSdt06ZNHRwcxBdlZGeVVvUGy4SHh9+9e9fBwUGlUslksjVr1rRv316rI4wePZqI0tPTieiXX34pKCjQtg1LlixZvXq1ubn51q1b7e3tX3vttZycnKSkpF27dn3zzTd9+vTp2JFq1KDMTLpwgYyMyNycFAp6913UJgUdXb16lYiaNm1q6IaAAWRk0O3bZGtLTk56Hefs2bNElJycbG9vv2/fvrI37tChw/Hjx5s3b3716lWlUvnyyy9fvXq1c+fOx6rlEnSGTmKtLViwgIiaN2+el5f322+/6XCEoqKievXqEdHLL79MRJs3b9Zq9/Z1Sm4AACAASURBVP379ysUCplM9tyzp6ZyZOS/vRY//cRt23JKig5NBqnr2bMnEe3Zs8fQDQEDiIy87eKS17OnXiNWVCpVjRo1iEg8I0xPT9dkrwcPHrz66qtEZGFh0a5dOyIyMzObP3++Pi2phKpeEBYUFNSpU4eIYmJidD7I1KlT6Z9HjP369dN8x+Tk5Nq1axPRrFmztD3pW28xEc+bp+1+AOzk5EREV65cMXRDwADmz59PRFOmTNHnIJcvXyYicQ9gb2+v+Y4FBQX+/v5EZGRk1Lt3byIyNjbOFuPgq4uq1zVqYmIyYsQI0m9GvOgdvXDhgqmp6d69e69du6bJXjk5Of379793797AgQNnz56t/UmJiNasoapf1Q5eqIKCgps3byoUCic9u8agaoqJiSEiDw8PfQ4i+kVFvRExf0xDJiYmYWFhwcHB9erVW7FihZGRUXFx8dOVnKu0qheERPTee++Rro/3hBYtWowbN27x4sVitaYmTZrUr1+/V69ekyZNWrly5dGjRx89evTELsw8evTo2NhYV1fXsLAwufZFHXr2pEaNKDmZoqJ0azVUMVlZWTNnzuzWrdusWbP0Oc61a9eUSmXjxo1FEV2QGpFh7u7u+h9EDOvT9lAymWz27Nnx8fFZWVlKpdLV1dXe3l6fxlQ2VXKF+latWnl4eMTExERERPj5+el2kBUrVuzcufPixYtinvKtW7du3bq1f/9+9QaNGjVydXV1c3Nr3rx58+bNd+zYsWXLlpo1a+7cuVN0tWtLLqdRo2jePFq3TtW1a5W8BAENnTlzZuXKlb/88ktubq5MJjty5MidO3fU5eC1deXKFSJq1qxZeTcTqoDs7Ozk5GRzc3MXFxd9jiOCMC8vj3TNVBsbm3KJ5EqoSgYhEY0ePTomJmbt2rU6B2FCQoK/v79KpVqwYMHHH3+cmpoq1qkQ/7506VJKSkpKSop6bJWNjY2RkdHvv/+uz8i9d99VHjkSuHdvxKNH8WJ2DlQn2dnZGzduDA0NvXjxIhHJZLKePXtaW1vv3r175cqV8fHx4eHhYiS6VjBkVMqOHDkik8ksLS31XC1HlEROTU0lPZKsugZh1RssI9y/f9/U1FQul6foNArzwYMH4mPljTfe+M/qQcXFxVeuXNmxY0dISMg777zTsmVLY2PjevXqTZs2rVmzZjk5OTq3XBQuWrNmjc5HgEooOjo6ICDA0tJS/FnZ2dkFBgZevXpV/VPxeK9+/frHjh3T6sjFxcV9+/YlokWLFlVAw6HyEnVCUlNTRUeCPuVdbt68Sf+MF7WxsdG5ZJqXlxcR7d+/X7fdK62qGoTMPGzYMCL66quvtN1R/cni7u6em5uryS5KpVJ8kLVs2ZKI1q1bp317S4hlm7p06aLzEaDyyM7ODg0NLX2B7OnpGRoa+vQH1t27d8UUCIVCERISosnB09LSQkJCxBvPwcHBxcVFnaxQXRUUFBw9elR8/fPPPxcXFzPz9u3bbW1tiahTp06iHKi2du7cSf/cyXXr1k23timVSisrKyKqfiVmqnAQ7tmzh4iaNWum7dXN5MmTiahu3bpa3U2K8Q7igkjndxIz5+TkiE7RS5cu6XwQqAxUKtVLL70k8s/e3n769OllT28oLi4OCgoSNa5Gjhz5rIuw4uLinTt39u/fX90V5uzsLKra2tnZ7d69u2JeDRhScnLyrl27mDkrK2vo0KFPf6bFxsaKSyJnZ2cdPjrmzJlD/5TTmjx5sm6NTEhIICInJyfddq/MqnAQKpVKMRT46NGj+/fvf/PNN+fMmRMeHn7x4sWCgoJn7bV+/XoiMjY2Pnz4sFanu3btmkwms7CwsLS0lMlkul2bz5079+zZs2+99RYRvfzyy9OmTVuzZs2JEyeysrJ0OBoY3LRp08QtYF5enoa7bN++XQy2atOmTVJSUukfpaenh4SEqMPVxMTEz88vMjJSpVI9fPjwjTfeICKZTBYUFKRUKivg1cCLtnv37j///JOZz58/7+rqWvbG6enpYkp7zZo1Dx06pPlZ0tPTxb1gYGDgkCFDtm3bpltrN23aRESDBg3SbffKrAoHITN/9tlnRPTee+/NnTu39INPhULh4uIyePDgTz/9dMOGDdHR0eKpXnR0tBg9vHLlSh1O98orrzg7u77yypAOHQYsXBin7e6rVq0Sb2JXV9enR8q89tqunj154kRevpz/+ovv3OERIzg9na9c4e3bWVRyyM3lpUt1aDhUFN0CKSEhQawObWNjs23bNqVSGRkZ6efnJyr9E1HTpk1DQkKe6ARTqVRLliwR2/Tr1+/Bgwfl9CLAYH7//fc+ffqIrx8+fPjc7XNycgYMGEBEpqamGzduLHvjBw8ehIWF+fr6iveMnZ2dp6enPr2a06ZNI6I5c+bofIRKq2oHYVxcnEwms7Kyatq0aYcOHTp16uTu7t6wYcOnh1ctW7ZMvWrSRF1LX2/adJ+IW7ViIm7YkLX6DDx27JipqSkRdezYkYgaNWq0du3aefPmDR8+3N3d3dzcvHHjBFGqW/zj4cEBATxpEl+4wKtX84QJXFDA9+/zp5/q1naoXLKzs0Xxd7lcrr4qMjExefPNNw8cOFBGb/9ff/2lLoV8/vz5F9lmKHe5ubna3p8VFxdPnDhR9A0EBwc/vcGjR482btzo6+trYmIi3ldmZmY9evQQBblcXV2vXbumW2vFQ+6IiAjddq/MqnYQvv/+++L+74nYUygUDRo08PDw8Pb29vT0dHZ23rZtm0ggHx+fMjpOy5aTwzY2TMSNGjER79un6Y4pKcVNmrjTP0XdrK2tL168WHoDpVKZlKTatYu/+YbHjOGOHfmDD3jqVN6wgb/9llev5sGD+Ztv+MsvEYTVh0qlmj9/vomJibGx8X/eAj5LamqqeDObmZn9/PPPFd1OqISWLFkianqMHj1arNWcn58fERHh7+8vxrMQkZGRkVhuV9wFpqWliQ7SWrVqRUVFaXii3Nzc3377TQzvEtUlb968WXGvy1CqcBB+//334rPg4MGDJ06cWLNmzbRp015//XVnZ+eny76IEQovvfTSvXv39Dnpe+8xEXftykQ8fLhGu+TlsYcHN2mS/+qr0x0c3OVy+Y4dOzTZcepUVql44EBevZo//JCZ+eFD/vRTzsxkPcqsQuVy7ty5zZs3azvgKz8/X1wFElFAQIDO13ZQdW3dulUsGdiiRQs/Pz91lQ+5XO7j4/Pjjz8+vdbSo0ePXn/9dfGx+euvv5ZxcPUq9qK7wsTE5OTJk0RUu3btinxNBlNVgzAqKsrExEQmk23atOnpnxYUFMTGxoaHh4eEhPj7+3t6eorFeP+zJ0ErR48yEdety3I5OzlxYeFztlepePhwJuIGDdjGhuvVK/7uu3ANz3X8ODPztWuckMBHjjAzFxby8eOcmMi//86pqfq8DqgOVqxYIfrbfXx89LzCg6ro5MmTtWvXVj8JEsvtPjEC6wnFxcUffPDBs3pWi4uLDxw4MHbs2Jo1a6pvIVq1atWtWzdbW1uZTNa8efMKfD2GUyWD8Pr166K/+1ONOwpFhW4vLy/9z96yJQ8YwDt3Pj8Fmfmrr5iIray4SRMm4iFDWNeZrP/Ky+MVK7R7QgnV1ZkzZ1566aVOnTrhplCaDh8+PHz48BEjRmi1ZK66Z/X9998vKipi5piYmMDAwNJlj5o1a+bj41P6O3Xr1tVnzZ/KrOoF4SPlox4Xe7gOdH399dc1H7OXl5cnZqTGx8fr2YB9+0qWUtKk0Me6dWxuzu3aMRG3acN6VKT5186dvGkTV7spraCjjIwMDdeWA1DbvHmzGELfp0+f7OxsdV34+vXrd+zYsfQ6Jw0bNgwMDNT8sWJVVMWCUMWqoUlD6Qy5x7lnZWs39048UwkKCtKzDX/8wX5+fOECT57Mly7xhQtc9rX4yZPs4MB16vD163qeGQCg3Bw/flx0rbVu3XrTpk2vvPJKmzZt1PlXq1atgICAqKgoneuxVSEyrlKL482+NXvOrTl2RnYnXU82M9WuGP/x48e9vLw8fD1ORpxUyHSvNr5tG9na0q+/koUFPXhAGzaQQkGNGpGzM7m5UYsW5OZGbdrQjRt06BB99BGtW0e9elFaGnXooPM5AQDK3+XLl19//fWrV6/KZCVZYGdnN2TIkLfeeuvVV1/Vs8x3FVJlgrCIi3Zn7x56bSgR7Wyys1+NfjocZOCpgbsUuyKaRLxe43WdW7JtG9WpQ0VFNHEi9e1LO3bQtWukVP6/bWQymj6dYmJo8WJavZoWL9b5bAAAFejevXtdunRJSUkZMGDAiBEjXnvtNfUEROmo7MswrX+w/lrBNQu5RUpRSti9MBWpFjku0i0FicjLySsiLWLd/XX6BGGLFmRhQQ0aUHAw+fnRwoVUVESpqRQXR/HxJf++dInq1aPx42nJEvpnQQIAgEqndu3aooiolFXqO8JbRbe+vfPtIsdFBVww+9ZsJ2On6Lzo1U6rdT7g7aLbDWMbykl+s9XNOoo65djUJxQX06FDlJ9P5uY0fjxduVJxpwIAAL1U6nXS04rSxINAU5kpEY2pPUafFCSiesb1+tj0KeTCXx/8Wj5NfAaFgho3pqZNqUcP+uSTCj0VAADopVIHoYupy985fxdz8f3i++V1zNG1RhPRmbwz5XXAZ2nShFxdiYjGjavoUwEAgO4qddcoEZ17fG539u56xvUaGTfqbt3dSKbvKKZCLox9HHs893ieKm+Y7bC9j/YG1A4ol6YCAEBVVNkHy7Q1b9vWvG05HtBEZrIta9tQu6HOJs7XC6/fLrpdjgcHAIAqp7IHYUW4VXRLhGsjk0aGbgsAABhYpX5GWEHM5eYPih8YuhUAAFApVPZnhBUhrSht2Z1lRjKjwTUGJxQk+Nf0N3SLAADAYKQYhAAAAGpS7BoFAABQQxACAICkIQgBAEDSEIQAACBpCEIAAJA0BCEAAEgaghAAACQNQQgAAJKGIAQAAElDEAIAgKQhCAEAQNIQhAAAIGkIQgAAkDQEIQAASBqCEAAAJA1BCAAAkoYgBAAASUMQAgCApCEIAQBA0hCEAAAgaQhCAACQNAQhAABIGoIQAAAkDUEIAACShiAEAABJQxACAICkIQgBAEDSEIQAACBpCEIAAJA0BCEAAEgaghAAACQNQQgAAJKGIAQAAElDEAIAgKQhCAEAQNIQhAAAIGkIQgAAkDQEIQAASBqCEAAAJA1BCAAAkoYgBAAASUMQAgCApCEIAQBA0hCEAAAgaQhCAACQNAQhAABIGoIQAAAkDUEIAACShiAEAABJQxACAICkIQgBAEDSEIQAACBpCEIAAJA0BCEAAEgaghAAACQNQQgAAJKGIAQAAElDEAIAgKQhCAEAQNIQhAAAIGkIQgAAkDQEIQAASBqCEAAAJA1BCAAAkoYgBAAASUMQAgCApCEIAQBA0hCEAAAgaQhCAACQNAQhAABIGoIQAAAkDUEIAACShiAEAABJQxACAICkIQgBAEDSEIQAACBpCEIAAJA0BCEAAEgaghAAACQNQQgAAJKGIAQAAElDEAIAgKQhCAEAQNIQhAAAIGkIQgAAkDQEIQAASBqCEAAAJA1BCAAAkoYgBAAASUMQAgCApCEIAQBA0hCEAAAgaQhCAACQNAQhAABIGoIQAAAkDUEIAACShiAEAABJQxACAICkIQgBAEDSEIQAACBpCEIAAJA0BCEAAEgaghAAACQNQQgAAJKGIAQAAElDEAIAgKQhCAEAQNIQhAAAIGkIQgAAkDQEIQAASBqCEAAAJA1BCAAAkoYgBAAASUMQAgCApCEIAQBA0hCEAAAgaQhCAACQNAQhAABIGoIQAAAkDUEIAACShiAEAABJQxACAICkIQgBAEDSEIQAACBpCEIAAJA0BCEAAEgaghAAACQNQQgAAJKGIAQAAElDEAIAgKQhCAEAQNIQhAAAIGkIQgAAkDQEIQAASBqCEAAAJA1BCAAAkoYgBAAASUMQAgCApCEIAaqnXbt2TZ48WalUGrohUB3k5uYaugkVCEEIUA3FxMQMHz586dKlv//+u6HbAlXb48ePPTw8rK2tmzZtOnv27ISEBEO3qPzJmNnQbQCA8pSWltapU6ebN2++9dZbmzZtkslkhm4RVFX37t0bMGDA8ePH5XK5SqUS32zbtu2wYcP8/PyaNm1q2OaVFwQhQLVS/PChp4/PhQsXXn311f/9738mJiaGbhFUVcnJyX379k1MTHzppZf++OOPSZMmmZiYnDt37v79+2IDNzc3Pz+/ESNGuLi4GLapekIQAlQjRUXk67stO3teQcH+gwft7OwM3SCoqk6fPt2/f/+MjIzWrVv/+eefMTExAwYMICIjIyMXFxcrK6vExMSHDx+KjUUiDh8+/OWXXzZoq3WEIASoRsaOpTVrqG5d1fHj8saNDd0aqKr27dv3xhtvPHr0qFevXlu2bLGxscnMzNy2bVt4ePiBAweKi4uJyMTEpFWrVsbGxrGxsTk5OUQkk8nee++9VatWGbr5WkMQviCTJ08+duxYx44dZ82aVbduXUM3B6qj+fPp88/J3JwOHKDOnQ3dGjC8oiJiJhMTyssjCwtN9/r555/HjRtXXFz87rvvrly50tjYuPRP79+//8cff4SHh//1119iTLKpqWmrVq1sbW0PHjxIRA8fPrS0tCzvl1LBGCpYXl7emDFjiEiMWTAxMfHz84uMjFSpVIZuGlQjKSlsZsZyOW/bZuimQGWxcycPHszMPHmyRturVKrg4GARDUFBQWVvfP/+/bCwMF9fX5GUR48ebdu2LREdO3ZM74a/aEazZ882WAhLQEpKSr9+/Xbv3m1mZjZ8+HALC4u0tLTY2NgNGzaEh4erVCpXV1czMzNDNxOqsshIOnGCWrWi3r2pfXt6+21DNwgqi8uXKSuLcnIoJYXu3aOwMEpMpFu3KDeXFAp64ratsLBw9OjR33//vUKhWL58eVBQUNkHNzc3b9OmzYgRIwICAl5++eUBAwacOXPm7Nmzbdq06dixYwW+qgqArtEKtHv3bn9//8zMzGbNmm3ZsuXGjRsDBgywt7dv3rz5lStX0tPTicjMzKx///6TJk3y9vY2dHuhClq6lJycqGVLmjuXwsIIMyWglF27yNKStmyhoiLKzqbw8H9/ZG5ORJYNGzZo2LBhw4YN69evv2/fvujoaGtr682bN/fp00eH0y1fvnzChAmjRo0KCwsrr5fwYigM3YDqSalUfvnll19++aVKperfv//69ettbW1TU1NbtGgRFxd3584dIyMjLy8vpVJ56tSpzZs3b9682dPTMyAgYOTIkVWvex0M6NIlmjSJiMjZmTIyqF49QzcIKp1p06hnT+rYkXx8iIjy8yk7m0xNb168mHf58uXLly+LzRo1alSzZs3IyEgPDw/dTtSuXTsiio6OLqeGv0CG7puthu7evdu7d28iMjIyCg4OViqVpX8aHR0dEBBgbm4ufv/16tXr3Lmzepi7paXlX3/9ZaCGQxU0YQLn5zMzT5zIeXmGbg1UIkVFPG4cHz3KzHztGjs6MlHJP0ZGrFCYmZmZOTk5tW3btlevXmJqxMCBA/U5Y0FBgYmJiVwuf/jwYfm8hhcFXaPlLDo62s/P7/r163Xq1Nm0aVPPnj3/c7M7d+78/PPPK1euTE5OJiJTU9MOHTrcu3cvMTHR1dU1Li7uxbYaqqyEBFq5kmxsyMmJRo82dGtAX2L2uqmpqf6H2rSJRo4kV1eKjyeZjMLD6cYNSk2lGzfo0aPCixcd7927J7bs0KHDqlWr2rRp07Rp0ytXruhzUk9Pz5iYmKioqC5duuj/El4cQydxtRIaGioKeXTp0iUtLe252yuVysjISD8/P4VC0ahRowsXLhCRi4vLC2gqVCubNnG3bnz6dDkeMjk5uWvXrubm5p6enjdu3CjHI0NpmZmZUVFRS5Ys8ff3d3Nzk8lk5ubmBw8e1P/IHh5MxKtWPXODvLy8S5cu7du3T0wNtLCwkMlk9+/f1+ek77//PhEtXrxYn4O8eAjCctOjRw8ikslkU6ZMKSoq0mrf69evHzp0KC8vTyaTmZiYFBcXV1AjoXqaNImJeMqUcjlYZmbm9OnTxWBmuVxORBYWFvPmzcsXfbCgn7t37+7Zs2fevHmDBw9u2LDhE3cmYiqCg4NDcnKyPmfZt4+JuG5dfvxY0106d+5MRPv379fnvCtWrCCit99+W5+DvHgIwvJRXFysUCjkcvnGjRv1OU79+vWJ6Pr16+XVMJCE48eZiOvXZ/0uoQoLC0NDQ0XBB5lM1r59+/DwcH9/fzEFtmnTprt27SqvJkvNkSNH3N3dnZycnkg+a2vrbt26TZkyZdOmTYmJiSdOnPD09CSi5s2b63Nz1rs3E/H8+VrsEhg41cXF76efonQ+KTOLkTLNmzfX5yAvHoKw3DRo0ICIunfvbmdnl5SUpNtBRMf6gQMHyrdtUP01bcpEfOiQzgeIjIxs2bKl+HRu3ry5KKPs5+fHzIcOHWrVqpX4ka+v77Vr18qv3ZLw+PFjCwsLIyMjIrKysvL29g4MDAwLC4uNjS09mO7SpUtWVlZWVlaiYqePj89jzW/oSjl37lyzZi1fffXXBw+02GvdOiZiPz8dTvivgoICU1NTuVyenZ2t14FeLARhuenatSsRtW7dmogiIyN1O8g777xDRKvK6NcH+E+ffspEPH68DrtGR0e/8sorIudeeukld3d38XWjRo1++eUXsU1RUdGSJUtsbGyIyNzcPDg4WLfPaGnavn07EdWvX//ixYtPDCMvTaVSiU8Ae3t7R0dHcSFSxvbPMnLkSCL6+OOPtdrr4kUmYmdnbc/2r/Pnz6tUKjGJ4vDhw7of6IVDEJab0aNHE5GYF79ixQrdDjJ37lwimjFjRvm2Daq9/AsXfuva1dvFpbCwUPO9UlNTAwICxJ2KnZ2dt7e3QqEQdy3BwcF5T83HSE9PV/eUNmnSZOfOneX6IqqtESNGiDs8R0fHP/74o4wtCwsLe/XqRUTOzs62trZENEXLR7+pqanGxsYKhULbJyzFxWxpyTIZ37un1X4lwsLCjI2NP/vss+7du8tkMnd3919//fXRo0e6HOuFQxCWmy+//FK814lo2rRpuh1k48aN6v4oAK2Ijs0///xTw+0DAwPFMH1TU9OuXbuKuz2FQhEQEHD79u0ydjx8+LC6p7R79+4nTpwoj+ZXW48fPxa/W3GT9/fff5e9fXZ2tija2bp1a/E/SKtBmJMnTyaikSNH6nAr6eXFRLxvn7b78Zdffikuj3x8fGQymbW1tXh7mJmZ+fr6hoWFVfKZhQjCcrNp0yYiEkX2hg4dqttBjh8/TkSenp7l2zaQAnEp5u/vr8nGjx8/lsvlcrncy8vLwcFBfGz179//0qVLmuyu7ik1MjJq1aqVfg2v5rZu3SoeuxJRw4YNNam2n5aW1qhRIyLq1KmT+N+0efPmMrZ/9OhRVFTU4sWLR44cKULo1KlTb775ZmBgoFbF/QMD2ciIterPKi4uHj9+PBEZGRmJIQ5GRkYhISGhoaHe3t5i1LHoTheJWDnvERGE5ebkyZNEJJ5yt23bVreD3Llzh4hsbW3Lt22SVVRUtHLlyoYNG3bp0iU3N9fQzalYV69eFRfjT3dpPi03N1dcsN+8edPS0rJFixaa30oyc2FhYXR09Lp164iodu3aerS6+nvrrbfUfUVTp07VcK+4uDhRcErsaGZmFhX173jOwsLC2NjYsLCwwMBAT09P0bktiLvPHj16iDnNY8aM0Xw61m+/8ZkzzMwRERptn5OT4+vrK5onBruamZmFh4erN0hNTV2yZIm3t7fsnyq46kTMycnRsFUvAIKw3IgyDeJyzNraWufjiPexntNaQalU/vLLL2Loo/gj7NWrlyYJYUCZmZnR0dFhYWFBQUF+fn6NGzc2NzefOHGi5kcQ12GhoaHP3TI7O1t8aDLz2bNnte1Gu3Hjhhj9IZ5mabWvpOTm5lpZWal/V1p1Ix86dEh0jYqBeLa2trNmzXr33XdbtWolHuWqGRsbe3h4vP/++6GhoWFhYbVq1RKX4+LUAwYM0PCdP306jx/PSiVPmvT8jW/fvi3GxdjZ2bm6uhJRrVq1joqSbk+5cePGokWLOnTooE5Ea2vr48ePa/7bqFAIwvIkHm7XqFGDiO7cuaPt7leuXGHmNm3aiJ6NCmigJKhUqoiICPGURQyDDAoKqlevnvhAqTzXoampqfv27Vu6dOn48eNfeeWVOnXq0FNkMplCodCw/GxycrKVlZWRkZEmo47v379PRDVr1tSt8UlJSaKjj1ALqUybN28mIjc3N837RUvbuHGjTCYzNTX18fERqSYoFAo3Nzd/f/8lS5ZERUU9kXOxsbHieWTz5s1r1qxJRN26dcvKyir7XAUFPH06//UXr1rFkybx8uW8desz69devXq1WbNm4kWJyZHOzs6JiYnPfUUpKSniHtHS0rLy/DEiCMuTGHcursq1HUEgyrOtWbOmW7duRPTRRx+hkIcOIiMjRRcNETVq1Cg0NLSoqGjmzJlOTk5innjXrl0N/pRiy5Yt6qrrpVlbW7dr127UqFELFizYtm3b5cuXp0yZIuLq6tWrZR8zOztbDGDp2LGjJp8vGRkZRGRvb6/bS0hMTBQXGeJTXreDSMGwYcOISDw8020M3Xfffbdnzx6xcGzTpk1/+OGHEydOPHfuSnJysggqZ2dncTPq4eGRkZHxnxs/eMBBQezqylOncnExT53KY8ZwzZpMxObm7OvLYWFc+j0VExMjbjpbtGghvujQocOzDv4sd+/e1Wr7ClXpgvCLL74YNGjQ2bNnDd0QXbzxxhv0z3gZ9QSs53r48KH4a5HJZL169VIoFOKNa2trGxAQEBcXV6FtrjYiIyM7dOggEqVBgwZLliwRVxI5OTkiV0Q5CAAAIABJREFUGitPFnbo0MHY2NjS0tLT09Pf3z8kJCQiIiIpKenp/kmlUimewbRu3bqMeCssLBTl3d3c3DIzMzVpQ1pamuiv0+0liLrwzs7Oom26HaTay83NtbS0lMlkokNCn24eMUFZq8o+t2/fFpfm9vb24pLF2dn5iSuqwkJeupRr1WIilst50iRWKjkjgz//nBcu5Pbt/12wonfv5W+//XZERER+fn52dnabNm06dOggrucGDhxY1R/AV64gLCwsFBlw7NgxQ7dFF2JN565du5qZmf3www+a7JKQkCBGvVtZWYkOd7lcPnDgQPWSYHK5/LXXXtu+fTsKkD7LX3/99eqrr4pfV506dUJCQp7oKcrMzBQZ6ejoKD6SfHx8DJWFCQkJov9cw8+Ohw8fio61wYMH/2fHmnoWtoODg+ZTx8RDvkaNGmnR9FLOnz9PROKew8PDQ7eDVHu///67uG0iosaNG2vbL6om3jO2trYFBQVa7fjo0SNxhWRrayse4zk6OsbHx4uf7tp12NW1JOe6d+f/vPu4do2//po9PblFi5KrzBo1aowaNap///5iROh7772nbWnlSqhyBeFvv/1WpS8wv/vuOyLy8vLScNLMtm3bxAPFxo0bi8ctNWrUUM+3FSsXqtfpdXBwCAoKwjoAT5gklqUlql279sKFC5+VLllZWSIL69evb9gs/OSTT4hovDYlYBISEsTj57lz5z79U9FpZmFhoVVvvHjI17hxY813Ke3MmTPqpwAdOnTQ7SDV3tChQ9X9okFBQTofZ86cOUQ0evRoHfbNz88XzbCwsPDw8GjSpMmtW7fi4uL69etHRJ0733Bx4VLDPJ/p+vXrpcd/mpqaymSyBQsW6NCkSqhyBaF4PPbTTz8ZuiG6iImJadiwoegxt7a2DggIOH/+/LM2LioqErePIjgtLCyIyN3d/ekipVlZWaGhoeoikEZGRj179oyIiND56rKaEan27rvvPjfVsrKyRK+1Ogu7dOlSxl4qleratWt79uxZtGhRnz59hg0bpn83dVFRkZi0d/LkSa12/N///mdkZCSTyZ6YT/brr7/KZDK5XL59+3atDige8jVr1kyrvdTEZCFxq9q5c2fdDlL9FBcXq2c1eHt7W1tby2Sy9evXjxo1Sp/HPeKeUqv5LU+06r333iMiExOTBQsWvPfee+JmrlatWitW/K5NJSJm5suXL8+bN69Pnz5ffPGFbu2phCpREMbHx8tkMisrq6pVrVVYuXKlWLamefPm4tNW6Nq166ZNm57o0Lh586aXlxcRKRQKUZKNiPz9/csY4qxSqfbv3//GG2+IVVpEH2BMTEzFv7LKbvDgwUQ0fPjwZs2a/frrr2Vv/J9ZKG7fi4qKkpKSIiIiQkJCAgICvL29Sw/SE5cgbdu21XME0549sTVr1m7RooUO+y5YsEB0oV+8eFF85/Dhw2J4/bJly7Q9Wnx8POmxSsCxY8eISFyf+fj46HaQakCpVMbFxa1fv37SpEliJOQT7xkiGjRokD7PNS5dukREdnZ22vaLlqZSqcTAKzG50MTE5OOPP36gVU3uaq0SBeHEiRO17TIqX6tXr164cKHWb468vMDx48X7/sMPPxRv1oSEhKCgIDFwWbyJAwMD1Xd7YvhD/fr1xYWemZmZ5lW2b926FRISYm9vL5PJqtxaJxVh5syZ9M+k45kzZz53+6ezsHHjxq6uruorjNIcHBy6d+8+YcKEL774Qmw8atQofVo7aBCbmBQsX35Fh31VKtXw4cNFg+/evXvp0iUx4Vrb2sqCWAVa56Iwhw8fpn9KzL/66qu6HaTqSktLmzx58hNTGoTGjRu/8cYbISEhkZGR0dHRYlZMQECAzucKDg4morFjx+rf7J49e1paWrZp00bM1AK1Cg/C9PR0TYax5eXlib9qg9zlPH78ePTo0QqFwszMzNTU1M/PT9PlI65f5/btd7Zvb2FhsWbNmqcPGxYWpq7lL5fLe/bsGR4efu3ata5du4rX6+TkpMNYsrNnz+rTr1WdiOqsItuGDBmiyS4iC+vUqRMREWFmZibWzxKx17Nnz8DAwNDQ0MjIyCfqbZ49e1Zc7+tw+yVkZLCxMSsUfOuWbgfgvLy89u3bE1G3bt2aNGlCRL6+vrrdbcTExBCRu7s7M6tvMTV34MABIhJzXnv16qVDA6q027dvl75a8vX1DQ4OjoiIeHoKwYkTJ8SDj6+//lq3c4n+57179+rdah41ahQR/fzzz/ofqpqp8CAcO3asJtGyevVqIvLy8qro9jwtMTFRTMAyNzdv1qyZujiep6fnrY0buYwpWTt2sK0tE7GLy50ynx79/fffo0aNEn2nRFS7dm1xlgEDBmg42P0Jjx8/lslkxsbGGEoqRm2IVND8FjkrKys+Pn7x4sVE5OrqGhMTo8miQlu2bBEz3HVbMHLhQibiQYN02PVfN27csLe3V79FdR62Lqratm3b9ujRozKZzNfXV6vFCs6cOdOzZ8+BAwcSUd++fXVrQ5UmpvdpMhlux44d4vnu+vXrtT2LuHGvXbt2uYzMFIOr9VyDvlqq8CAcPHiwOlratWu3evXq//zTFTMHNmzYoNtZzp07t3jx4suXL2u7444dO8R4vJdffllcF1+9ejUoKKhOnTqutWqxqSnb2HBAAD897GXWLJbJmIiHDmXNHmqKYS8tWrSwsLCwsrKaNWuWDuXh1cQ8k+TkZJ2PUD3k5ubK5XITExMjIyNjY2PNn6M8fvxY/A61WktoxowZpNkM96e1asVEvGOHtvs9acGCBWL+Vt26dcPCwnQYNhUZGenq6mpvb29sbNy7d29xp2tpafnVV19p/gt88OBB9+7d5XK5bo88JeWnn34iImNjY026mlQq1eXLl8Xo8c8//1zPntXSxPWiJvVfpOZFPCNUR4uIQxsbm4CAgAsXLqg3OHXqFBHVqlVLt6U+t23bZmNjY2xsbGJiIm49NfloKCoqCg4OFkOBBw0a9ET9ofz8/EubN5esSiL+6daNb9zghQt57lw+eJAXL2aFgkNCWMuPIZVKJcYN6ryKvSCeimEte2YWFZ7E/BP1HKnnWrRokbip0ipI1DPcmzdvrtWornv3uF07rleP9b+yHzRokOhUF39Q3bp107xv8+zZs2JimbjPEKM56tat26VLF/G30LRp0927d5d9kMLCwqVLl4oB0sbGxmvXrtX3JUnAxx9/LD79/nMweVpaWkRERHBwsK+vb+3atcX/oFu3bonJf+VyD6dSqcSch0pecdcgXtxgmfz8/PDwcPUfofgMCgsLKygoEEva6lB/qLCwUD2NrFatWupCtG5ubsuWLSujtt6dO3d69OhBRAqFIiQkpKxzXLrEQUFsZ8fOzvzllywWqZkwgbOyODZW2wYLYjXwfTqs+lXKu+++S0QrV67U5yDVw2uvvSbeTkS0detWTXZRKnPGj+9COg1Jf/jwoRjlNGjQIA3v6adM4dxcvnyZnxcxz5eRkSGWXU1PT//5559FN6mbm+fHHz+nY+LmTZ4x47DonqlZs+a3335bUFBw9uxZ9bjlNm3aNG3aVHzt6+v7rM6GyMhI8fKJqHPnzkeOHNH3JUmDSqUSC8c7OjqmpKQw8969e2fMmNGrVy8xXKC0unXrtm/fXryxa9asWS79ordu3SKiOnXq6H+o6scAo0bPnTs3btw49Wgr0T8jk8m0vWG/efOm+BtWh1l6enpISIhYx4uIzMzM/Pz8nq6GfuTIEXFP5ujo+Kxa6U96+JDPnmX1iNYff/yPzlKNiTk9y5cv1/kIjLXsSxHjwsUt8rx58zTZ5fbtb6Kj6e+/R+h2xsTERNGjPnv27LK3zMri9HQeNoznzOETJ3jTJt1O+C9xIzvonyeNmZmZH330kbt7FBHXq8fr1/9HD0VuLoeEsLU1y+XKli07BgQElK4Ir1KpwsLCRPE5hULRtWtXsYKKubl5cHBw6U6a06dPi5m+ROTi4hKuyTRsKKWgoKB79+5E1LJly8zMTD8/P3Xy2djYiJlXbdu2Vd8REpFMJhs4cGC5nF10vGGt0/9ksOkTDx8+DA0NFaPObGxsZDKZGFGp4bXP4cPcvn2CtbVNgwYNnljxWalURkZG+vr6qtf78PT0DA0NFaUaQ0NDxUD5bt263dJ29N6CBSV3gR98wHosuDx//nzd7oBL++WXXwhr2TMz86pVq8TdCRGNHDnyudsrlTnnztlHR1N2tu435Xv37hUjIErnwe3btw8ePLhiRdFHH3HPnuzoyEQ8ciRPncohIfzzz+UQhGLGwo7//6Tx7Fn29i7pwvfx4dOnWcySfviQV69mB4eSHw0dylev/vfoqszMzMDAQNGnYm9v3759e/HnI8Y6pqamBgQEqGdhh4SE6DOnTcqysrLUtdGnTJni4+PTrl270skn1K5du0+fPjNnzly4cGF5lc7YsmVL6UsoKM3w8whFNVj1LK7GjRsvWLDg9u1nDoZUqXjBAjYyYiIeO/ZAGasdJSYmTpkypfRkPjEQWSaTzZgxQ5fxlo8f87ff8ty5rF93kKgkp+FY/2c5ceIEocwjMzMfPXqUiMTTFE1+IbdufRUdTQkJ+g5R/vrrr4nI1NS0d+/eXl5e6g4uZ+dL6ifL5uY8fDhPncr5+fzKK/oGoajnUrdu3cKnyoGoVBwWxvXqMRG//z6PGcPM/OGHJSnYrh0fPvz84587d07UAxO/Ty8vr4yMjODgYDE2x8TEJDAw8Lmr+UDZkpOT7e3tSy+lK24GvL29AwMDw8LCYmNjK6JulCgAGRgYWO5HrgYMHIRiNlL9+vXv3LmzZMkSMaipZcv3TUzYz48jI5/s58nO5qFDmYhlMg4KYk2yrPSzSScnJ3Nz8y1btlTQy9GQ6KNo06aNPgcRa9nXqFGjvFpVdYml9cSgx+c+81MqH507Vyc6mh4+LIdxRv369Sv9iWZnZ9e5c+cZM2IWLuTduzkpicUzRLFmwPHjfPIkL13KOg8WHj9+PBF98sknz9ogK4uXLuWVK/nzz3nvXp48mTdv5l9/1WJEl+gpFdUD5HK5mPMjk8lGjBih1fwKKMOvv/7asmXLVq1aTZ8+PTw8XM9xcxoSo3UWLlz4As5V5Rg4CEUv+Zw5c8R/KpXKPXv2fPjhZXHDR8QtWvAPP/CPP3JuLmdn8/jxTMQ1a+oy6GDhwoVUOSb/ig9uKysrPY8j1rK/d+9eubSqShO/ih49enz22WcbNmw4ffr0s+qeFxXdu3Hjw8uXy+dtkJ2d/fXXXy9duvTAgQOa9LT37ctErEEBnP/w+PFj8WCy9Ijr/7RqFcfHc0AAT5igy4mYOScnJzg4WIzKadeunaaP0qESE4vE/fbbb4ZuSGVkyCC8deuW+Eu7efPmEz9KT+eQEG7YkInYwYGHD+e5c/nmTQ4J4UmTWLe5c6KURiWZ8yS60XRYxb40sQg71rJn5nfeeUeM5lerVavm+fOOiYk9btyYkJHxfXb2vsLCWzdvTk9LC87JOcms+wxOfezfzwoFy2T8vKqo/0HU0OnUqdNztxRBGBfHeg6MiI6OLpeCJlAZiNVXnhhRAYKCDGf16tVFRUVDhw51dHR84kcODhQURFOm0I4dlJ9P586RsTHFxZFcTkuW6Hg60e967do1ZlaPozEUZ2fnM2fOJCUlqadX6kDcBh0/flyU3ZKytWvXHj9+/MaNG5cuXUpMTExMTLSzUxQVnSkqSnv06IDYpl696fn5iU5OqxWKJ8cmvDA9etCiRTR5Mo0ZQ82akaenFvuuXbuWiMRco7K9+Sb9+SdlZ9OmTTq3lOifGSlQPYji3aLeGzzJUAlcXFwsZgRrUmpBjDUYMoS/+Uavk4rRWenp6XodpTyIJek3btyo8xG2b98uVh7o2LHjX3/9hVprT1Hm51/Lzt5z+/Z3168HJCa+cv/+r48fJ6amTrl//xfDtmz0aDYz4/79wzTvErh+/bpcLjc3N9ewJl+LFkyk80xXqIaaNGkik8kaNWqk+01hQQFHRbH2BbwqP7mhAnj37t03btxo0qSJmFhTtmbNyNSUJkygl17S66S93N3HtWqVl5ys11HKg7OzMxFdu3ZNh32Lioo+/vjjQYMGFRQUeHt7z5gxY/To0fXr1x8wYEBccDA9fFjeja2i5KamjW1sXqtb92Mnp1AXl79q1nxTqcyysxuWl3fOsC1bvpx8feft3PmOn59fUVFR2RsXFxdfuXJl7NixKpVq6NCh4jHhcxUXExEpDNnjA5XL2rVr27dvn5KS0rVr19mzZ6tUKu32Z6YPP6SiIoqIoM2bK6aNhmOoBBZFE7799ltNNhaTpLOz+fvv9TvriBFMxOvW6XeUchAaGkpEHTt21LbcaEZGhrh0eKImzvr16/u6uhaamLCJCXfpwtOn87Vr5d3qqk6ZlfXn/fu/KJXPLqT+oty6dUusevHBBx+U/n5BQYF6WUR/f39PT091X5ZCodC8anOTJkzE2tdDhepM1JUU80H79++v0Ti7+/f566950CBOTeUvvyz55rhxFdrOF88wQZiUlCT6eTQc8ThhAhcUcEYGz5ql34k//5yJuBIsrLzpn6c3TZo0CQkJ0bCL7PDhw+qaOMeOHXvyx0olL13KDg5saloyuPbHHzkigufO5a++4rw8Vi8UhXVYKoEzZ86I+XmvvfbatGnTfH19mzRp8sT0MiKSyWROTk7t2rV7bhWb0pycmIgx3wGeFhERIUaWNWjQICoq6pnbxcbyuHFsYVEygn/XLg4KYmYuLNR9OHJlZZggDAoKIqJ33nlHw+0HDeJvvuE5c/QOwrVrS0p9VALjx48XdaKJyNTU9O233y5jkLpKpVqyZIlGNXEKCvjTT9nKimvX5vh4njqVmfniRf76a/7ww5JtPvqofF8L6CYsLEysm6GOPYVC4ezsrF4WMSoq6lnzQMrm6lpsa6tKTTXM4Fio5FJSUkTlBIVCERwcXLpfSqlU7ty5M3LcuJLVdWQybteOO3TgYcN4/nz+6iv+6CM2xKqxFcoAQVhQUCAqBZ84cULDXcQH+IMHegfhkSNMxBoMQH8xRDU4Pz8/dblwV1fXkJCQBw8elN4sOztbzAGSyWSBgYEaVaF7+JBXrOBTp/69Cxw3jt95h+fN43nzuDxWu4Zy8cMPP3Tq1GnevHlbtmyJi4t7umSMbkTt0CfWFgZQK91N2r179/T0dFH2snnz5kTkYGWlrFePvby4UaOSO0JbW374kKtpaT0DBOHVq1fbtm0rlsbWkKholp/PJ0/qd+60tJKZiZVMWlpaSEiIeql0a2vrgICAs2fPMnN8fLx4a9rY2Gi4tMK/HjwouYg4fpyXLcMdoXSIvi8UW4Cy7d+/X1QRsrGxUT+NbtCgQZcuXU6/+mpJBDZuzIsWcbUurSdj5nIYcqO9Bw8eqKuAvjjMtG4d3b9PAwbQSy/R6dPk7U1JSWRsTP+sWWFAhYWF27ZtW7FixaFDh8R3GjZseOfOnYKCAnd39y1btoixptqJiqJDh8jWlj74gP74g4YNIyLavJlKVb6H6sfW1jY7OzsrK6tGjRqGbgtUaunp6SNHjhSfOQ0aNLC3tz937pxKper50kuRzs40cSINGEByg80veDEMFoSGER5OBQX0xhs0cSIFB9OKFTR/Pu3YQRYW1KuXoRv3r8uXL//888+rV6/OysqSyWRvvvnmypUrMRMWNHTu3LmOHTsWFhbm5OSI1ecByqBUKr29vU+fPi3mVJibm48cOXLixIliqRMpqOY5/6QjR2j4cDI3px49KDaWjh2j+fMr4ZwYFxeXkJCQGzdujBkzpnv37hs3bkQKgibS09PHjRvXrl27wsJCIrp7966hWwRVgJGRUffu3VUqlZWVVXBwcEpKyqpVq6STgiS5IGzQgK5fJyK6fp0cHcnbm2bOrLSdhJaWlh999FFaWpqhGwJVQF5u7hdffNGsWbOVK1caGRmJqkPu7u5Lly4tFrPrAZ4tNTWViJYtWzZ79uyn10es9iQWhB98QGvW0Jdfko0NNWlCosaprS3Z2Bi6Zf/NwsLi5s2bSqXS0A2BSkylovXrzdq02REampeX5+7uXqdOnYKCAqL/Y+/Ow6Iq+zeA3zPsiwgKKOIWrqi44S6Y+5aaG6YVtlho+bpk/rTN0DLFysIl31BLgczEFnNLRbPUFBFEFFQE3JFVdlln5vn9cYx8zWUWcIBzf66uLhvPec53Eueec54Nubm5c+fOlbaPMHaVVK1dv34dQHMD1+6qsWTWR1jTpKSktG/f/tChQ1z+mB5s/3783//h3DkAEcOHT7t+/fz58wA6duz4+eefl5SUzJkz58qVKwqFYuLEiV988UXFyGSiez311FNXr15NSkqSNieQG5ndEdY0dpaW+1Uqu5UrjV0IVT8qFUaOxPDhOHcOTZrA27vXwYOtysoaNWoUFBR0+vTpIUOGjB49Oj4+3t/f38LCYvv27W3btl28eLHUfUhUQaNB48Yr+/f/XLbfk3hHWL2VlMDZGS4uSEgwdilUbcTE4ORJ9OuHFSvw00/o0AExMSgrg43NrY8+qjt9+r9Hit68eVPashhAmzZt1qxZM6Q6DZMm40pJQePGaNgQqanGLsVIeEdYvVlaorQUxcXGroOqjdOn8csvmDgRQUGYPh116uDkSahUePVVXLrUaN68B86XaNy4cUhIyMGDB9u2bZuQkDB06NDRo0cnJSU9+fKpGrpxAwD+XvBRjhiE1Z5Gg8JCJCcbuw6qHg4fxosvwtERkycjMRHTpmHQIERH45tv0KjRo08dNGhQTEzMRx99ZG1tvXv37o4dO3JMMuHvIKwGa4oYDYOw2rO2Rk4Ofv3V2HVQ9dCwIW7eBIAbN+DigiVLcPAgOnfW8mxLS8tFixadP3/ewcGhvLz8q6++qsJSqYa4fh3gHSFVaw4O6N4dnApGEh8fhIdj6VLEx2PwYPxr2yZtNGvWbOTIkSqVqn379pVeINU4zZph1Ch07WrsOoyHO1hXe4cPY/t2uLpCo8HBgxg6FAAOHLj7C5Ibc3MsX254M9Ise1PuYS97a9fCygq7dmHpUmOXYjy8I6zeysqwZAlmzULjxggMxK5dd1/fudOoZVGNxyAkSU4OTp9GWhpu3zZ2KcbDvwbV2/Xr6NABVlZ4+mn88AMALFsGALm5xq2LajoGocwJgYMHsWcP6tfH229jxQpjF2RUvCOs3pydIY3ru30bderA1BTvvYf33oO9vbEro5qNQShbJSUICUHHjhg6FKtW4do1ODigUydcvYpp07B4MWS4pCP/GlRvdnbo1QtLlqCkBG+/je+/v/u6HhsTEt2DQShD165d27Llz88/n5qTAwCNG+PNN9GrF6yt8dJLKCnBzJnQaHDsGL77Dg0bGrvcJ4gryxDJ0eDBgw8dOnTw4MFBgwYZuxaqctHR0atWrdq6dasQolGjRGfnp2bPxpQpMDP7n8N+/x0vvojUVDg5ISQEw4cbqdwnjo9GieSId4QyERcX17Vr127duoWGhiqVyilTpuzYgagoTJ16fwoCGDgQ0dEYOBCZmViwoGDRog9lsocXg5BIjhiEMtG4cePExERnZ+eFCxcmJyeHhoZ27frUI453cZHmqarz80ctXfrxoEGDbkoLONRqDEIiOWIQyoS9vX14ePj169cDAgK03FxCqcT775uEhHzs6up65MiRLl267Nmzp6rrNC4GIZEcMQjlo1evXhYWFrqe1a9fv5iYmBEjRmRlZY0bN+7atWtVUVs1wb8GRHIkBaGJXiu0kUw4OTnt2bPn888/F0I0a9bM2OVUIY4aJZKjiIiIwsLCXr162draGrsWIiNjEBIRkayxj5CIiGSNQUhERLLGICQiIlljEBIRkawxCImISNYYhEREJGsMQiIikjUGIRERyRqDkIiIZI1BSEREssYgJCIiWWMQEhGRrDEIiYhI1hiEREQkawxCIiKSNQYhERHJGoOQiIhkjUFIRESyxiAkIiJZYxASEZGsMQiJiEjWGIRERCRrDEIiIpI1BiEREckag5CIiGSNQUhERLLGICQiIlljEBIRkawxCImISNYYhEREJGsMQiIikjUGIRERyRqDkIiIZI1BSEREssYgJCIiWWMQEhGRrDEIiYhI1hiEREQkawxCIiKSNQYhERHJGoOQiIhkjUFIRESyxiAkIiJZYxASEZGsMQiJiEjWGIRERCRrDEIiIpI1BiEREckag5CIiGSNQUhERLLGICQiIlljEBIRkawxCImISNYYhEREJGsMQiIikjUGIRERyRqDkIiIZI1BSEREssYgJCIiWWMQEhGRrDEIiYhI1hiEREQkawxCIiKSNQYhERHJGoOQiIhkjUFIRESyxiAkIiJZYxASEZGsMQiJiEjWGIRERCRrDEIiIpI1BiEREckag5CIiGSNQUhERLLGICQiIlljEBIRkawxCImISNYYhEREJGsMQiIikjUGIRERyRqDkIiIZI1BSEREssYgJCIiWWMQEhGRrDEIiYhI1hiEREQkawxCIiKSNQYhERHJGoOQiIhkjUFIRESyxiAkIiJZYxASEZGsMQiJiEjWGIRERCRrDEIiIpI1BiEREckag5CIiGSNQUhERLLGICQiIlljEBIRkawxCImISNYYhEREJGsMQiIikjUGIRERyRqDkIiIZI1BSEREssYgJCIiWWMQEhGRrDEIiYhI1hiEREQkawxCIiKSNQYhERHJGoOQiKgGOnMGpaUAcPLkPy9qNNixA99/j+JiY9VVEzEIiYhqoF9/RUEBAHz33T8v+vvD0RFdumDuXGPVVROZGrsAIiLSy5dfwtoa167980pmJry8AMDUFBoNlLzV0QqDkIioZnrrLTg6Ytasf17RaCAEFAqUlTEFtccgJCKqgRwcYGICAI6OyMzE77/D1RWvv44FC2BhgVGjjF1fTaIQQhi7BiIiMkzZ/il7AAAgAElEQVRKCiIiMGGCseuokXjvTERUw125gg8+QIsWxq6jpuIdIRERyRrvCImISNY4WIaIiCrJtm1ITkbnzhg50til6IB3hEREVBnCw1FYiPfew+nTiIszdjU6YBASEVFlOH0aAwcCwIABiIkxdjU6YBASEVFlaN0a584BwNmzaNvW2NXogKNGiYgeoqwMGzYgJwfPPgtnZ1y+jN69cfw4WraEs7Oxi6t+NBqsWoXiYjg6on9/uLnBtGYMQ+Edoc6EEL/99pu7u7urq+vSpUuNXQ4RVZlPP0W/fnj3XXzxBVJTceYMAMTE4PbtSr7Q0aOYNw/+/vjvfyu55SdJqYSjI2JisH492rSpQU9Ha0ZcVxN37twJCQlZvXr1xYsXASiVykWLFiUnJ69du9bGxsbY1RFRZbt5Ex4eANC+PdLSsG8fsrNx8uTdnrBKFBqKoCAoFJgxA2r13bXTaqLffsOPP6JvXwA4ehTduxu7IK3wjlArqampixcvbtas2Ztvvnnx4kVnZ+dnnnnm008/tbGx2bx5s6en5xnpqyIR1SYODkhNBYArV+DsjOHD8f77GDas8i+kVEKhAABLS5SXV377T4y3NwCo1QBw9Khxa9Ee+wgfIzo6etWqVT/88EN5eTkAd3f3evXqnTx5UqVSnT171szMbPLkybGxsZaWlgEBAXPmzDF2vURUeXJysGoVlEr06IH27REXhxEjsHcvOnZE48aVeaG1a1G3Lpo1w/btWLOmMlt+wuLi4OGBhg2RloZ69ZCZWSM2wagBJRpFeXn59u3b+/bt261bt9DQUI1G07lz59atW1+4cOGvv/4yMTGZOnWqtbV127ZtIyIiZs+eXVJSMnfu3HHjxmVnZxu7diKqJF9+iZ9/hocHhg9HkyYYMQIARo6s5BRcsgT5+TA3R1kZvvyyMlt+8tq3R/36SEuDiwuys3Hhgt4tJSQkeHt7N2vWbPny5bGxsZVY4wMI+pcdO3bY2dlJ/38cHBwGDBjg4uIi/aezs/PChQtv3Lhx3yk///yzg4MDgKZNmx47dswoZRNRJevXTwBi584qvER5uXBwEIBwdRVNm4p/fbbUOJrx4wvat/99zJhlPXtu3bBBv0bOnDnToEEDk3v6Shs0aODr6xsWFlZQUFC5BQshGIQP0LBhQ4VC4erq2rNnTwsLC+mPoVOnTt9++21JScnDzrp27VqfPn0AmJqa+vv7q9XqJ1kzEVWykhJhaSkUCnH7dhVe5fBhAYgWLQQgXFyERlOF13oiPv/sMwB9+/YF8Pzzz+vRwqlTp+rXrw/Ay8srLCxs9uzZje+5Bbeysho8eHBgYOD169crq2YG4QNIt4NJSUk2NjZKpXLw4ME7d+7UaPEDWl5e7u/vr1QqAQwYMODs2bNPoFoiqhJHjghAdOxYtVeZP18Ad289X3+9aq/1RERERAB46qmnADRu3FjX03///Y86deoAGDduXMWNh0ajiYqKWrJkSffu3ZV/dzoqFIouXbp88MEHp0+fNrBmBuH98vPzAdja2gohtm3blpSUpGsLe/fudXJyUigU7dq1q4ICieiJ+OQTAYiZM6v2Km3bCkB06CAAsWNH1V7riSgvL7e1tVUoFFJv0ZUrV7Q/d88e4e5e4uTU4fnnny8vL3/gMZmZmWFhYb6+vnXr1pUS0c/Pz8CaOVjmftevXwfQpEkTAJMmTWqh416XhYWFFhYW69atE0JITRFRTTQrNjawd+8bgwdX3SVyL1/W5OTAwQEXLsDCAoMGVd21nhhTU9NevXoJIaR+pX379ml54vbtGDcOFy5YTJv2Z2hoqOlDVqVxdHT08fEJCQlJT0/fv3//rFmznnvuOUNrNvD82ufGjRsAGus7Kiw+Pn7QoEHu7u4ApH8TUY2jVqtD9+/Py8ub1KNH1V0lZPfutzIyZg0ZMrasrGPTpvVsbavuWk9Shw4dDh48mJGRAWDmzJkbN24cNWrU6NGjPT09H3bKli14+WWoVFiwAMuW1ZMmVT6ahYXF0KFDhw4danjBvCO8382bN/H3HaEepByVehn1boSIjOvMmTN5eXktW7Zs1KhR1V1l165dGiFO5ucP+OOPrVWZuE9SfHz8999/D6BBgwb9+vUzNTWNjo5esmSJt/fQdu3E9OnYtQulpf9zyrlzmDoVKhU++ggrVkCbFKxcvCO8nxSEet8RSkFobm4OBiFRzRQbG+vv7w/AW1onpWoUFhYePXrUxMTkwoULAJ555pmqu9YTc/r06WHDhmVlZfXv33/nzp116tTJz88/cODAnj17bt7sdPCg4sIFrF8PW1sMHYquXVFYiOXL8f33+OQTWFpi7lzjlM0gvJ+UZHpnmJSjCoUCBqQpET1hJcXFBw8d2rNnz549e6QPAVRxEO7bt6+0tLRjx45nz5718PBo3rx51V1LZ8eP4/p1DB2KevW0P+nYsWOjRo3Ky8t75plntm/fbmVlBcDOzm7ixIkTJ07UaBATg4MHsWsXjh/Hzz+jQwfk5yMmBsXFWL68yt6LFhiE9zPwjlA6vaysDLwjJKr+MjKwbx9271bExY3+exkUZ2fnhg0bAhhUlaNXNmzYAKA63g6GhkKlQt++mDMHmzZh/3706oX69R990uHDh8eMGVNYWDh58uSQkBAzM7P7DlAq4ekJT08sXIibNxEeDpUKEydizRpYWlbZe9EOg/B+Bt4RSqcXFBSAd4S11/mS82YKM0uFZb4mv71le2OXQ3r59lusXo2/1+6yUCqf79PnpqlpWlrapUuXMjIyTE1N69Spk5qaWq9evYqFNSrFsWPHFi5cePz4cQDSIsbDqmIhb70dP353NyhPT0RGYswYAOjSBaNGYfRodO367068Xbt2TZo0qaSkxNfX99tvv33YgM8KjRvjlVewcSNMTTF1Kt56q0reh/Y4WOZ+ldJHKK04yjvCWmlp2tLjhccPFxyOLY49X3ze2OWQLgoLMXcuPv4Y8+cjKwuxsbC2Rvfu8PaGo+NzZmZHjhy5dOlSnTp1JkyYEBQUlJOT8/TTT+/Zs6eyrn/hAl5+eaa3t/fx48cbNGiwZs2adu3aATh79mxlXaISWFmhoAAAMjIQF4fOnWFmhuhoLFmCbt1OjR8/c+bMffv2lZSUSIdv3bp1woQJJSUlM2fODA4OfmwKVhgxAo0bw9YW48dX0TvRmoHzEGuZnJwcAHXq1NHvdJVKZWpqqlQqTU1NTUxMysrKKrc8qg6mXZ0m/eJ44fGw7DDjFkO6CQoSkZFCCLF9u1i/XnTuLMzMBCD9kzVs2Jw5cw4cOFBaWiodfvHixdWrV1fKlVNShJ+fMDUVXl6bbGxsFi5cmJeXJ4TYsWMHACcnJ+k/q4XLl8XcueKjj8SqVWL8eAEIKyvRtavo1080bOgnbdAI2NjYjBkz5sUXX5SWelm4cKEelyoqEhYWwsRE5ORU+tvQAYPwH2VlZcHBwQBatWqlXwvS7WCDBg0AuLq6Vm55VE28cvUV6RfHC4+H3A5Zn7neuPWQDlasEMnJQghx+LDYulW0aiVMTISnp/D3F1FRjzjvl19+2bRpk37XzMsT778vrK0FIMzMxMyZqrS09HsP8PLyAvDhhx/q137V+uwz0b27UCik7wrq+vXbu7v369evbdu2ir8fkCoUis8++0zvK/TpIwCxd28lFq0zBqGIj78QGBg4atQoW1tbKcBMTEz0WzVbeugvPeuQ1lag2mdz1uZ3U979OPXjXXm7mpxrgmj8mPOjsYsi7Zw9K+bPFxcvitdfF2lpIiZGyzuRwMDA6OhonS7l4SEuXRIREWLyZAEIhUJMnCguXXrAkREREQqFwsbG5tatWzpd4slJTRUbN4px4xLuGT3k6OhoZmamUChWrlxpSNvvvCMA8e67lVWrPuQShMnJQlq4TtrkJCNDhIUJPz/RtKno3PmfqSstW7b08vKSvukMGTIkLS1Np6vExcX5+vpOnDgRwMSJE6vgfVC1UKopLVIXqYV6bfpaRMPlrEuOyqhPdkh7iYli2zb9djtSq9UpKSmPPubaNbFzp/jzT/Hmm2LGDBERITZtEhMmiIiIR501btw4ADNmzNCjqiepvLz86NGjCxcubNu2bcXHpq5fEe6zZ48AhJdXZdWoD7kE4csvi8BAodGIadOEh0fFjb4AxNChe/v16zdgwABpwPS+ffsOHjwobUDo5OS0V8c79sjISGl50jFjxlTRe6HqQy3UfRP6IhpvXn/T2LVQlcvNzf3oo4/ufaW0tPT06dObNm2aP798wIC7GwsCYuxYMW+e2LNHzJsnvv/+8S0nJCSYmZmZmJicP3++qqqvbPHx8d27dwcQGBhoSDu5ucLCoqxr1+PFxQ/d5K6qySUI580TH34orlwRc+YIOzthbS26dhVPPy3c3UX37v4VX22aNm26bds2IUR6ero0oFmhUMyePfuxw17Ky8vDwsKkLbgAmJmZHTx48Im8MzKyc0XnzE+bK6OVfxX+Zexa6An573//6+vr27Fjx4rZcu7uhVIEOjqKwYNFQICYN08IISZN0ioIhRDTp08HMH78+CqtvHJ9++23ACZMmGBgOz169ALwxx9/VEpVepBREObni1mzxFtviVdfFaam/9wRDhkSO3bs2LVr1yYkJNx7ikajCQwMlH7Qe/TokSz1sf9LXl5eYGBgs2bNpL8PdnZ2s2fPjo+PfyJvi6qF91LeU0YrJ++ZzHHCchASElKxJZ6JiUmbNm0mTZq0du3lPXvEzZv/HCZ9nCQni1mzhDY7k6anp0v78B07dqyqSq9siYmJ0pMzbbZrfYRZs2YB+PjjjyurMF3JKAiFED/8IN56S6xefXek2MKFIjxc/D1S+sEiIiKkHSbr1q37ww8/3PtbiYmJs2fPtrGxqehfDAwMLCwsrMr3QdVRkbpo6FtDASxfvtzYtVCVW7VqFYDOnTufPHnyzp07jz54wQIBiJEjtWr5gw8+AOBl3O4yHfXsObBfv5kXLxr0uRcWFgZg6NChlVWVrmQRhPv3i7FjxV9/P7jKzxf5+Tqcnpub6+PjI6Wdr6/vnTt3jh496uPjY2JiIr3Yt2/fsLAwlUpVFcXTE6bWaC4VFV0qKsp+yL6gD3T48GGFQmFlZaXHTs5Us8yfPx/AsmXLtDk4M1PUrSsAoU1XSV5enrSZbQ36RjVpkgDEesPmEKWmpgKwtbV92Ga8VU0WQTh8uABEQID+LUiPSaVllqSfVABWVlavv/56XFxc5VVKxpenUr17+fKfOTk3SnTruvf19QUwYMCAxz4mio4W33wjhBD6zky7n0aj+eyzz6ZMmeLn5+fr6+vj4zN8+PDBgwd7enp26tTJzc2tUaNGDg4O5ubmJiYmgwYNKtHxrdG9JkyYAOC+50OPIG103727ePTPRUFBQUBAgLm5uUKh8PDwmD179v79+3OMO89cC2vWCED4+hrUiEajqVOnjrm5+Z9//llJdemm9gdhQoJQKoW1tcjKMrSp6OjoBg0auLq6Ojg4+Pv7Z2ZmVkaBVL3kqVRzEhN/zMjI1LHDLysry8nJCcD69eszMjKSk5Pj4+OjoqKOHUsKDxc//ih++EEEBYm1a8XmzWLIEJGcLObOrZya161bJ11aS4sXL66cC8tSly5dAERKK9Ro4c4d0aiRAMTPP2c88IDS0tLAwEBHR0dpdF6vXr0uXLjwzjvvuLi4ODg4uLq+17SpesYMsXt3JXyIVbrYWAGIZs30b0GlUr300ksAzM3NjfWhWvuD8I03BCCmTze0na1bt/r4+EiLxBs4XJiqszyVKvDGjdvl5eW69/9Lg+juW6C5d+/PK0ZmSf98/LHYuVPMmFE5QVhaWip1Yw8bNiwoKCg4ODgsLGzv3r3h4eGnTp2KiYlJTk6+ceNGdnZ2SUnJkSNHFAqFubl5DRqmX93Y29sD0OkjOzg4rUuXgS1btrxvOJVGowkLC5MmXAHo3bv30aNH7z0gPDy8a9efHB2FpaUwNxeNGol27cTKlWLKFCGEePddERMjtm4VQoi1a/WbG2kotVrUqycAce2aPqeXlpZKE69tbGx+/fXXyq5OW7V894nc3LItW0wVCuWsWYY2FRsbu337dml/stL79lem2sVSqayn9cLB96pbty4Ac3NzW1vbunXrmpub29jYuLmZ29jAzg4mJnBwgKkpHB1hbY1hw7B4cSVUu27duitXrnTs2HHv3r0Voxkfxtvbe9q0aRs3bpwxY8Yff/yhePJ7gddwt2/fzs3NrVOnjnQDp6UXXnD89NP0pKSkoKCg//znP9KLhw4dWrhwYXR0NAB3d/clS5ZUjEWoMHjw4OhoZGdj5UqsXYuCApSUwMUFVlbYuRPFxVCpkJKCa9eQmgq1urLepQ6USvTrh5s3kZmJpk11O7e0tPS555779ddf7e3t9+zZ06dPn6qpUQvGSuAn47PPPmvWrKWf3w7Dm1qyZAmAfv36AfD39ze8QaqeNELsv33765SUy8XFOp2oUqnat28PYPr06Y/u2jl7Vly4IIQQn30m9u8Xuq/l94+CggJpbVvtV37Izs6WTgkO5spwOjt16hSAzp0763rivYtrx8XFVWSeq6trUFCQlkPtwsLEiBHi8GHx669i+nTh5ydOnRJ+fiI0VEyZIq5e1f39CCGNe1WphN4dx19+KaQZH+vW6XBWYWHh4MGDATg7O8fExOh57UpSm7dhUqvV69atu3Yt6dln798iUg/W1tYAhBAAiouLDW+QqicFcCg3d0Nq6mUd/5RDQ0Pj4+NdXV2/+eabNm3aFBYWPuxIDw+0bYvr1xETg2HDsH69/tVu3HgmO7vAy8trxIgRWp7i4OCwatVX/fqtffvtcRkZ+l9ani5fvgxAehatk2effbZ///6ZmZleXl4dO3bcvn27vb19QEBAYmKin59fxRD0R/Pxwd69d389fz527QKA3r3x4ovo2lXXiu5asAAA4uMREqJnC9evY8sWlJfj0iVtT8nNzR0yZIi0htehQ4c6d+6s57UrSW0Owl9++eXKlSutWrUaPny44a3dG4RFRUWGN0jVloVSCaBEo9H+lLKyso8//hhAkyZNVCrV2LFjpTXcH2bPHrRvj8REAFi4ECkp+tSZlQV/fy8Xl9wVK3TL0ueem2BnNzMrSzlvnj7Xra2OHj166XGf5VIQurm56dH+tGnTTE1NL168aGpq6ufnl5CQsHDhQisrK13bad8e3brB1BSvvQY3NwwYAADPPgtdxkv9Iy0N4eGIiNDnXIlCgenTsXo1AIwYgUmTEBKC3NyHHp+ent6/f/8TJ040b9786NGjHTp00P/alaTm9REWFxcvWrSoadOm1tbWdevWNTMzs7W1tbS0tLKysrGxMTc3t7OzMzExsbe3l+a9zpkz57EdJ9qQglCj0YB3hLWdpe5B+PXXX1++fLlly5aRkZGWlpbSzOhH8PSEqSlOnUL37jh1CvPmYds2netcvhz5+fD2NuvTx13Xc9euxeHD2LIFL72EIUN0vnSt9MorryQnJzs7O/fo0cPLy6tv3749e/asWERNcuXKFeh1R5iYmPh///d/0peke9ei0oMUeM2b49o1TJyIjh0BoFUrPVszN0fdurC1xZ07Op+rVt/9MtepE376CdnZOHAAGg22b4eZGby9MWlS2oAB+a1bt6445fr160OGDLl06VLbtm3Dw8P13gK9khn3yawepG4YbUhjFgoKCirlutu2bQPQq1cvAFOkMVtUS628ccMzKuo7rfceKSwslHrdunbtCmD+/PnanPXVVwIQzs7CxkYA4rffinQq8uZNYWUlFApx+rRO5/0jIEAAonlzwdWQhBClpaU+Pj7SyvsV6tat+8wzzwQEBPz111/Sbr1St5aua/HfuHGjefPmAAYNGlRcXJySklL66BWttODrKwCxdq2BzYiZM4UQIjZW50nxKpWYOlXY2YkvvxRCiLw8ERYmkpNFYKAYPFiYmwtAeHt/B8DNzc3Pz2/nzp0JCQnSzXSXLl0yMh48mcQoalgQSivxWFhYDBkyRPq+1r17965du3bo0MHd3b158+ZNmjRxcHCQBu/Z2tpaWVmlpqZWyqV37twJoFu3bgCeffbZSmmTqqf1V66Mjo4OTkzU8njpoai7uzuAOnXqpKenP/4cIdRq0bu3sLfPHjEi9Omn57q5uem0Pt+0aQIQhnwlKy8XXbuKuXMZhP8jISFh48aNU6dOve+2z8rKqn///tJ6GhcvXtS+wfT01FatWgHo27ev9EccHh4eHh5uYJ3r1wtAPPecgc3cXdvhxg2h02ZKxcVi9GgBCDs7ceTIAw7IyRE//CDeeGPJvcNrTU1NAfTp06e6LRRQk4IwLy/P1dUVQFBQ0NKlSx99O7hixQppi6///Oc/lXL1gwcPApA6dYcMGVIpbVL1JP10vf/++9ocnJ2dLX04durUCcB92/Q82rlzd1xcGiuVSml3t7ffflv7c0NCRIsWD97oVXulpWLBAvHdd0II8c47YtEiUVQkxN9r81JqampYWNjs2bM9PT2lHhZpFmbv3r137typzUrTKlXO+fM93nuvV6dOnbKzs+/7XUPWqr5wQQCiYUO9G7jL21t8/704ceLufERtFBaKIUMEIBwcHrPPohBCrVZHRUX5+/t7eno2adKkXbt21XBB5po0WOadd95JSUnp2bPna6+95uHh4efnN3nyZB8fn8GDBw8YMMDT09PDw8PNzU1ajsHW1nb58uWmpqZBQUHJycmGX13qIywvL4dhfYRCiM8//7xJkyZNmzYNCQmRGqRqRRq/oOWQqGXLluXk5Hh6esbGxjo5Oc2dO/fx5/ytQwfrl156UaPRqNVqU1PTwMDA06dPP/qU0lJ4eODOHZib48cf9e8ZkpibQ61GTAyys1FcjNJSJCUhMRH5+QY1W2s0bNjQx8dn1apVUVFRGRkZs2fPFkJoNJoTJ06MGTOmZ8+eO3bs0Dy8L1mtzk9MHFpUFPn883d+//1gxeqMknnz5q1cuVLv2tq0gbMzrK3LkpMfPi5FC927IyICublQqfDxx4iKghCPOj43N/fVV2cdP37HxQVHjqBnz8e0r1QqPT09Fy9eHBUVFR8fHx8fX7FRQTVi7CTW1smTJ5VKpbm5uU5re7788ssAfA1cCE8IIcSZM2cASI84unbtql8jWVlZo0ePBlAxWrpJkyYBAQG3b982vEKqLP/9738BTNdiOaKUlBRra2uFQtGmTRsAq1at0vVaRUVF0sIi0loNbdu23bBhQ1BQUEBAwNKlSz/4YPmcOcLPTzz/vPDxEUOGiA0bxAsviA8/FMHBuj3Lepi33xapqWLhQjFnjliwQISGim3bDHriWosNHToUwOrVqwMCAqReYQCbNk28fTtUo7l/tWi1uighoX9UFM6da1FW9oB97Q8dOpSXl2dIPc8/7wfg22+/NaSRefPEzZti6FDx3nt3Vz5ycRGvvSZ++UUUFt5/w5qRkSGtMDd8+Mtadx3UADUjCMvLy6Vnklo+rapw9epVCwsLpVJ55swZA2tISUnx8fF57bXXADRv3lyPZxr37ugUHBwcHBxcMW7YwsLC19f33LlzBhZJj7YnKys4NXX/v55Q3Wfz5s0Apk6dWvGKRqPJzs5OT09PTk6Oi4uLioo6fPhweHi4NDOnZ8+eAJo1a6bfYtb79++3srJaunSpvb39fYPobG1d7luebd488e674tNPxYIFlRaEQoh168Qrr4gFC+5Or5YGUNC90tPTTU1Nzc3Ns7KyhBBFRUVr1qwZNKhPZKQyKgrnzrllZHyt0fzzA5CUNDYqCmfPNi4tvfKIZmNiYoKCgvQr6csvvwTw6quv6ne6ZOlSIYRYs0Z89ZV4803RrNk/P2ydOs3o27dvQECA1Ceamprq4eEBoE2bNtevXzfkotVNzQjCZcuWAWjZsmVRkW4j64QQc+bMATBmzBjDy1CpVNOmTXN0dFQqlS1btgwICNCyy1etFitW5Nataw+gb9++1+5ZlY87Oj1JK65fL9VoyjWa/dnZwamp36Smrr55c+X16wEXLjz//PM+Pj5DhgwZMGCANLDNxsamQYMGDg4Oj5h+Y2NjY2VlFRwcPGjQIEO+mKelpZ08eVKhUFhYWDz//PN+fn4LFix47733Vqz47MsvRVCQCA0VYWFi3z5x9qx4911RWio6d66EINy7V3z2mVCrhUol4uLEhQt3l7nhlir/FhgYCGDs2LH3vqjRlGVlbYqLaxMVhagoxMY2ysn55caNt2/d+igvb9+5c27FxY9a0zUtLa1hw4bab2Rxn6ioKOmDUdcTVSrxiI+us2fF8uViyJAyM7N/Vs1t3bq1NAixTZs2aVoPqK4pakAQXrlyRXqmrN84q8zMTGnf578qNiTUS35+vvT138LCouKpiL29/fz5869de9Sa8KmpYtAgAQgvr9B33333gRtuSXv8VkzBbtGihfYpS9r7v6Sk9bduncrP94mP94yKqvjH68iR+xLO0tLyvlccHBycnJzc3NzatWvn6enZr1+/wYMHSzdwL7/8sjBs4IMQYtCgQQDee++9Rx+mVgvpkVRiovj4Y/G/SzTrprxctGkjALFli/6NyEePHj0AhIWFPeg31bm5Oy9c6B4dbZKV9U1GxtfSqxrN4zcwycnJWbJkiVqtFkIsWrRIp5JycnKkFd5TUh7w6PURfvhBdO0qcnMfc9jt27fDwsJ8fX2lERLSlEpdi6wRakAQShs+GNLP9+GHH0p9MHq3kJKSIj0Zr1+//tGjR9Vq9c6dO6UZRdbW1vXr3x41Sjwwpg8dEi4uAhBOTuKxU49ycnI+/fTTipm2lpaWen9VpAf69O/nOd+kpq66cWPtzZubU1O3pKX9nJYWGhoaFha2b9++Q4cOSX2EvXr1unXrVnZ29iM2C7106ZKlpaVCoTiozb6rDxceHi59r9K+t3j1agGIdu2E3mwQ1a0AACAASURBVBPSNmwQgGjVSui435QcJSUlKRQKOzu7Rz6U0ty5E6PRlKWmrrh6dZpK9bic+ducOXMyMzNv3749Y8YM7UvKzs7u+fdIFQ8Pj5CQEC03xLhy5YoQ4oMPRGysttdav3691CUEYOTIkdoXWVNU9yD87rvvANSrV0/LuVkPVFBQ4OzsDN2nwUqio8Xo0SsAuLu7X758+d7fioqKWrBgszR1FBBduojNm8Xx40LqAv/qK6FUCkAMHiy0n80opWyPHj3Mzc27deumR8H0MKHaPdI5ceKE1POnzcHSJMJWrVoV67hI972khRoCdNk8uqREuLvf3dRJD8XFokkTAQh+19LG4sWLK279H02tLtBoVOnpawoKtL1bnzNnzldffbVu3brJkydreUp6ero0XUfaE0oijc/09/ePiop62POJsrKyNm3aHHng1L+HS0hIACDteVm3bt3a13dTrYPw8uXLUoAZOCxKCPH5558D6Nixo1rHpf537RK2tkKh0Lz6asC/pwFJ0tJEQIBwdRWAUCjECy8I6eHB7NmiXz/h7y/0+LHJysqSfsp1PpMMFhsbK33L1ubg0tJSabWjDz/8UL/L/fTTTwBcXFzuSCNVtPbnn0KhEBYWd/ey0MmqVWWA6NzZoL0v5EMaFaxN70xJSXJq6ifp6WuE0Pb/7Jw5c6RomandIKX0Gzeketzc3KRwatGixbhx4+5d3rZBgwa+vr5hYWH3Lq2VkZFx8+bNjIwMPR7ju7i4AJD6Aoy+WUSlq9ZBuGjRIhMTk6ZNm6akpHwjrX+gr+Li4qZNmwL49NNPH/Gk6z5BQcLUVADipZce/wCqpERs2iTmzhXz5ok1a8SpU2LuXH0isIL0XD4/P1//JkgviYmJOo1BiIiIkOb2xMfH63otlUrVrl07AP/97391PVcI8eqrAhCvvPK7Th9t+fn5jRo179dv+7592v5dkLPIyEgADRs2rKI7ocjISOmP7+TJk48/+vJl0br1F717t2nTpl69egD69+8vfUoUFhbu2LHjtddea9SoUUUiWltbjx49+osvvrhw4UJYWFhSUpJ+RUr7RklbBm5Ys0a/Rqqtah2Ey5cvB+Do6FivXj2lUnla30UVP/nkk6+//vqDDz6ws7OTRrt4enq+9tpra9asOXHi8sOCZuXKu3d4S5YInb4/zZsnysuFn5+YM0e/eu+SVqrlTuJPXlpOzuSQEL8dOmxj6efnJ/VD6/pdW9rU/qmnntJv8cmsLDFkyDQAmzZt0v4sqdfcy8tLjyvKkLRIwty5c41diBBxcdKgA3Xnzv69ewN49tlnHzhpJy4uLiAgoG/fvhVjnu3t7aXeQf38FBQU7O0dPWpUeZMmYuJE/d9CtVStg1D83XcizTUeMWKEHi2cPXvWzMxMqVRKS0HWq1fv3l25vbwSFArRsqXw8RGffCL27hXjxomTJ0V6uli8WLRoIUJDdb6iNNfxr78MnYwlDSPcv3+/Qa2Q7vJUKs+oqP66PP/Jzc2VvoZv2LBB+7NKS0ulqaVbDBi4GRoaKg3j0rIfPTMzU/pGeEzaTZUeSa1WSys7njp1ysilREcLR0cBiI4dhZWVsLb+evbsxz7fSk1N3bhxo/TUNCQkRP+rx8QIQDRuLADRoIH+7VRL1T0I//jjD6l7VuoT/v3333U6Xa1WS/fyUpQ2bdq0oKAgLy/vyJEjq1evfvXVV0ePzq0Y6gIINzfx1lvCz0/cvCmWLdN/y+aQEPHCC+LwYT1Pl7zzzq7+/X/fsuXa4w+lSlWq0XhGRfXWcZreDz/8IP2sSmPZY2JiTp06FR4evnfv3rCwsODg4KCgoJUrVwYEBLzzzjtSh6I0Nc3Dw0PXruv7DBkyBP+7AsADFRQUZGdnv/DCCwBGjx5tyBXl49SpUyYmJq1btzZyHWVl4qmnBCB69BCWlgIQr7+ufQevNNjHoJtatVrY29/dMAUQCQn6N1X9VPcgFH/veyIlWY8ePXR69LRu3ToAzs7O0heiX3/99d/HlJWJ2FgRHCzeekv4+4u33xYnT4oPPhDLlulf86xZAri7O4nePvxQAMLf36BGSD/do6M9o6LUOj7nlNbPk3bpkhbafxgrK6uCggJpQuru3bsNrDYpKcnKykqhUHh6eo4aNWrw4ME9e/b09PR0c3Nr2rSpg4PDvbu/mpiYVMpaS/Jx69atEydOGLsKISIjxYABd4ctvPWWTh02hw4dAuDp6WlQASNHCkD07CkAsXGjQU1VMzVgY97ly5cfOnQoKirKyckpMjJy165dY8aM0ebEtLS09957D0Dz5s0jIyN9fHweeKKZGTp2RMeOmDoVAObPR48e2LoV1tb619ykCQDcuKF/C5XVCOnHQqEoFqJECOt7HqQ/1tq1aw8fPrx161ZPT8/27duXlJTY2NgIISwtLcXf0ahQKJRKpUql6tSpU3p6ep8+faSZsoZo0aLFggULAgMDo6OjH3GYtHO1Uql84403pMH3pA0XFxdpzKRxbNyI69dRUABfXyxdiqFD8fbbCAjQqY3evXubm5ufOXMmLy9PWiBGH97e2LsX0k7FR49i2jQ926l+akAQduvWbfz48T/99JOnp2dmZub7778/atQobTadnz17dm5ubteuXSMjI+3s7KR1+R5L2q37ww8RG6t/zQzCmu4pKyshhOrR6/D/S9OmTd99991FixbNnz9fm+OVSuWMGTP0KvB+ixcvdnd3l7oqraysbG1tzczM7O3tTU1N7ezsLCwsrA35ZkfGUlaGmBh89RVUKvznP/j6a8TFoXlzXZuxsrLy9PQ8ceJERETEsGHD9CzG2xsATEzwyisYPVrPRqqlGhCEAJYtW/brr7+ePHmySZMmcXFxW7Zs8fX1ffQp+/bt2759u5WV1a1btwAsX75c6vF+rN27MWwYTExw4AD699ezYAZhjVak0bS0smpkbn61pKSjjlvGzJs378yZM+Hh4S1atDA3N7exsbG2trawsLCzszM1NbW3tzczM5O2jL59+7a3t7f05L9SPPfcc5XVFFUXJSWQZgdWPGnXPQUl3t7eJ06cOHr0qP5B2LMnUlKwZQvKypCYCCGgy/OS6qxmBGHr1q2nTp367bffNm7c+MaNGx9++OGkSZOkRfYeqKioaObMmQA8PT2PHTvWo0eP6dOna3mtlBQsX47SUoMKbtJE1b17jqNjOtDBgEbQvLneP/akP5UQDczMXtPraZilpWVYWFill0QyZWeH7GycOYPERLRvb0hL3t7en3766ZF/LaurA1NTxMaieXP4+GD7dvz2G0aONKSk6qPGbMz70UcfWVlZnTx5snXr1levXt2wYcMjDvb39798+XKrVq1OnDgh7c1bsb3DY7m6YuFCvPWWQdU2aoTTp11++62zIfvuxsRg/nz89hvWrTOoGNLD6cLCDampaWVlxi6EZG/1aly5AhcXzJplSDPSnMLIyMiSkhL9W7l6Fa1bA0CbNrh61ZB6qpUaE4Surq5vvPGGRqOxs7ObMGHCIx4oaTSa2NhYaWicWq2eP3++tJehlszMoFRCqbzbJawfU1NTFxcXtVqdmpqqdyPp6Th4EElJuHRJ/0pIP11tbV93cWlobm7sQkj2rKwwbhy8vAxsxsHBoUOHDqWlpadOndK/lV69sHcvAOzZg969DSyp+lAIHYcDGFFWVlaLFi3y8/OnTJni4eFhYmIijQWoU6eONBZA6oypU6eOiYnJ0qVLN2/e3KxZs/j4eBsdu3kqRZ8+fU6cOHHs2LG+ffvq18L27XB0xLZtsLTEs88iPx+jR0OLQUJkqDKNJvbOne516hi7EKLKNGvWrLVr137yySfScHo9hYcjMhI9etwdWFgr1Iw+Qomjo2Pbtm1v3LixdevWrVu3PvpgaVhpUFCQUVIQQJMmTU6cOHFDr7Euly9jwQKMGoUmTfDMM/D3x8mTiIiAmxv8/ODnBweHSq+X/mGuVDIFqfbx9vZeu3bt0aNHDWplyJDaFIGSmhSER48ePXXqlJmZ2bx588zNzdVqdV5eXnl5eWFhYUlJSXFx8Z07d8rKyvLz89VqdWZmpo+Pj/7jowzm4OBgYmKycOFCJycnabE0LW3fjtdfR14eTE0xcCB69UJ6OgoLkZmJ5GS88w4++QRz52ZNnZrbsmXLqqufiGqZfv36ATh69GhRURGn0/wP487n115paam0SP/ixYuNXYtWIiIiKsa1enh4bNiw4ZFbegohRHGxmD377mJvY8eK+zZ9UqtFeLgYNUooFKJPnzVKpXLw4ME7d+40cGN0IpKJy5cv161b19nZ2crKatSoUUFBQbpubV9b1ZggXLJkCYDWrVsbsv3pE5aWlhYYGNhEmg8I1K1bd/bs2deuPXjt0PPnz0+Z8l9AWFqKdese1WxsrPDzm2lpaVmRstu2bauSN0BEtcXZs2cbNmwIoH79+hU3QkqlslevXkuXLq19WwzqpGYEYcKlBEtLS4VC8ccffxi7Fp2VlZWFhYVJa38DMDExGTVq1H0L/2/atMnGxkapVI4e/aeWa0Dm5ORUpOwyQ9ZFJaLaLioqytHREUDHjh03btyYlpYWHBzs4+Nz716+zs7O0l6+MtwDtQYEoUZoRiSM8P7O+7U3XzN2LQaJiory9fU1+3tahqenZ3BwcHZ29osvvii94uvre+920tooLS3dsmVLZmZmFdVMRDXdkSNHpI23PD09zc3NTU1NK+7/7ty5s3PnTj8/v3sX3rKysurSpUt4eLhxy36SakAQbsrahGg4xjpmlteGj/vr168vXLhQ2loagJSLtra2wcHBxi6NiGqbvXv3SnuP9O7dW1r2fcGCBQ8cWHDvXr4mJibW1tYqlerJF2wU1T0Is8qznGKdEI3Q27rvkFuNlZSUBAcHt2zZ0sTExN3d/dy5c8auiIhqm19//VUaTODl5SXNKFu4cOFjz7p8+bKDgwOA2NjYJ1BkdVDdp2fPuzkvU5XZv07/F+q9YOxaKpOFhcXUqVMTEhIuXrwYGxvboYP+S5ISEf3b999/P2HChJKSkj59+kiDEr744ouAx+3ftHDhwtatW7dt2xaAoTMOa47qGITXy67vyN2RWp7qn+ofmh1qobD4usnXCtSSZc7vpVQqW7ZsaWbIYm5ERP/y9ddf+/r6qlSqvn37Hj9+3MTEZMOGDW9psYZyw4YNVSqVdPvIIDSaG2U3lqQuaWnR8lTRqfTy9Bfrvejv4t/Gso2x6yIiqhkWLFjwxhtvCCG8vb3/+usvU1PTTZs2TdNuH11p0r20JJZBW1XUKNVurdHQ7NBm5s362fYDMO/mvC8afyEgauXtIBFRpYuKiurZs6cQYuDAgYcOHbK0tNy+ffuoUaO0PF2tVtevXz8vL8/R0TErKyspKalFixZVWnB1UO3uCOua1M1UZd77ClOQiEhLZ8+e1Wg0Li4uK1eubNy48c6dO7VPQQAmJia9evUC4ObmBtncFFa7IBxhN+LPgj8Xpy4Ovh1sreRqeEREOnjhhRcsLS3T0tKaNWuWmJg4RPcFsr29vQFIK0TKpJuw2i26baYwW91ktbGrICKqkSwsLLp163bs2LHjx4+P1GsHeSkI09PTIZsgrHZ3hEREZAgpyfTOsJ49e1paWiYlJdnZ2SUlJd26datSq6uOGIRERLWKFIR6d+9J95QajUba6O3YsWOVWVy1xCAkIqpV+vbta2JiEhUVVVRUpF8L0iQKaUluOTwdZRASEdUqdnZ2HTt2LCsri4yM1K+FQYMGDRw4sGfPngB++eWXSq2uOmIQEhHVNhWb0et3+sCBAw8cOJCSkiItMVPryeJNEhHJioHjZUpLS318fL7//ntra+sPPvigUkurjqrdyjJERGSgzMzMBg0aWFtb5+Tk6LqacVFR0fjx4/fv329vb793797evXtXUZHVB4OQiKgWatu2bUJCQmRkZExMTGRk5MiRI4cOHXrvlvQPVFhY+Oyzz/7+++/Ozs4HDhzo1KnTk6nWuKrdhHoiIjKct7d3QkLCpk2b4uLijh49+s0335iamvbs2XP06NHPPvustNHSfXJyckaOHBkREeHi4hIeHt6+ffsnX7ZR8I6QiKgW+vDDD5ctW6ZWqxs3btysWbO8vLwLFy6o1Wrpd9u1azdq1KhnnnmmT58+0s716enpQ4cOPXv27FNPPRUeHi6HtbYrMAiJiGohlUo1YsSIqKio3Nxc6RV7e3t3d3cAFy5cqHjRycnp2rVrmZmZgwcPTkxMdHd3Dw8Pd3V1NVrdxsAgJCKqtdRq9ZkzZ3bt2rV79+7o6GjpRaVS2aZNG2dn54yMDCcnp82bNw8aNOjKlStdu3bdv3+/o6OjcWt+8hiERESycPny5T179uzevfvPP/8sLS2VXnRxccnJySkpKfHy8tq9e3fdunWNW6RRMAiJiOSlqKjo+PHju3bt+umnn1JSUgB06tTp2LFjjx1TWlsxCImIZEqj0ezYsUOlUj3zzDM2NjbGLsdoGIRERCRrXGKNiIhkjUFIRESyxiAkIiJZYxASEZGsMQiJiEjWGIRERCRrDEIiIpI1BiEREckag5CIiGSNQUhERLLGICQiIlljEBIRkawxCImISNYYhEREJGsMQiIikjUGIRERyRqDkIiIZI1BSEREssYgJCIiWWMQEhGRrDEIiYhI1hiEREQkawxCIiKSNQYhERHJGoOQiIhkjUFIRESyxiAkIiJZYxASEZGsMQiJiEjWGIRERCRrDEIiIpI1BiEREckag5CIiGSNQUhERLLGICQiIlljEBIRkawxCImISNYYhEREJGsMQiIikjUGIRERyRqDkIiIZI1BSEREssYgJCIiWWMQEhGRrDEIiYhI1hiEREQkawxCIiKSNQYhERHJGoOQiIhkjUFIRESyxiAkIiJZYxASEZGsMQiJiEjWGIRERCRrDEIiIpI1BiEREckag5CIiGSNQUhERLLGICQiIlljEBIRkawxCImISNYYhEREJGsMQiIikjUGIRERyRqDkIiIZI1BSEREssYgJCIiWWMQEhGRrDEIiYhI1hiEREQkawxCIiKSNQYhERHJGoOQiIhkjUFIRESyxiAkIiJZYxASEZGsMQiJiEjWGIRERCRrDEIiIpI1BiEREckag5CIiGSNQUhERLLGICQiIlljEBIRkawxCImISNYYhEREJGsMQiIikjUGIRERyRqDkIiIZI1BSEREssYgJCIiWWMQEhGRrDEIiYhI1hiEREQkawxCIiKSNQYhERHJGoOQiIhkjUFIRESyxiAkIiJZYxASEZGsMQiJiEjWGIRERCRrDEIiIpI1BiEREckag5CIiGSNQUhERLLGICQiIlljEBIRkawxCImISNYYhEREJGsMQiIikjUGIRERyRqDkIiIZI1BSEREsmZq7AKIahW1EGohoFCYKxTGroWItMI7QqLKtDolZWtGxo8ZGcYuhOhJuHPnzuDBg+3t7YcNG3b+/Hljl6MnBiFRJXO3tvasU8fYVRBVuYiIiC5duhw6dCg/P//AgQMeHh7jxo07efKksevSGYOQqJKZKBRKPhelWk2lUq1YsaJfv36JiYktWrRYu3bt7NmzLS0td+zY0atXLy8vr127dgkhjF2mthQ1qFai6u/LmzdnubqaKhR5KlVGeXkrKytjVqPRYPNmpKVh5Eh07mzMSqgWuXDhwtSpU6OiohQKRZ8+fU6dOuXh4XHixIm8vLy1a9euWbMmOzsbQKdOnebNm/fCCy+YmJgYu+TH4B0hUWWa4uxsolCkl5W9dPHirMTEjLIyY1bz9ddo0QLvvIOvvkJ+vjEroVpBCLF+/fru3btHRUW5urq2a9fur7/+Ki8v9/Ly0mg0jo6OixcvvnbtWmBgoKura2xs7EsvvdSmTZtVq1aVlJQYu/ZHYRASVaaG5uYKoL6ZWSNz86zy8reSk4s1GqNVc/Ysnn4aSiV69sSlS0Yrg2qFtLS0UaNGTZ8+/c6dO3379s3NzY2Pj2/YsOHu3bsDAwMtLCykw2xtbefMmZOUlLRu3To3N7fk5OS5c+e2bt16xowZxq3/ERiERJXPVKEIcHNramGRUFTkf+WK0bofXF1x+TIAJCaiaVNjVUG1wPbt29u3b793715HR8cePXr89ddfd+7c8fHxiY+PHzly5L+Pt7S0fOONNxITE3fu3Onp6Xnjxo2goKDAwMAnX7k2GIREVcLO1HRly5a2Jia/5+ZujokxQgVHjmDKFAQH46OP0LUrnJ2NUAPVfGVlZd27d580aVJ2dnaPHj00Gk1kZKS9vX1oaGhYWFi9evUeca5SqRw9evT+/fu9vLwApKenP6mqdcMg1EJwMD7+GIsWIS/P2KVQTfKUpeUyN7dWZ85M8/Tcvn37E722SoXJk+HujmvX4O6O8eOf6NWpFlm1alVUVJSZmdmAAQMiIyOzs7OHDx8eHx//4osvanP66tWrHR0dFQoFgOLi4iouVk8MwsdJSUFSEhYtwquvYvVqY1dDNUwfO7ueBQVCiJdeeikyMvKBx5SXl8fHx4eFhS1atGjChAmOjo5t27b9888/DbpweDhSU9G4MYKD8frrUKkMao1krE6dOgAGDhw4c+ZMKyurwMDAvXv3NmrUSMvTnZycAJSXlwPIzMysujoNwSXWHufmTbi5AUDz5rh1y9jVUM0zd+7cixcvBgUFjR079tSpU66urrdu3Tp//nx8fHx0dPT58+fPnz9/3zflnJycN954IyIiws7OTs+rhoQAQNOmuHoVU6bAuLM4qCZr0aIFALVaPWHChD59+ri4uOh0uhSE0qhRBmGN5e6OjRsxdSr270f37gBw+zbq1zd2WVSTrF69+uLFi3/++WenTp2Ki4uLioru/V2lUtmyZcsOHTq0b9/ew8PDzs5u9uzZFy5cmDRp0p49e/SZg5Wfj507oVQiMREApk7Vv/SYGOzdC2trzJjBNJUnKcmkDNM1BStOLywsRDUOQk6o/x/5+flqtdre3l5x78og8fH49Vc89RSeew4ffYSvvkJkJJ56ynhlUs1z48aNtm3bWlpaZmdnOzg4tGvXztPTs3379u3atevSpYuNjY102K1bt4YOHZqTk1NWVpaVlfX2229//vnnul4r/bvvGrz2GtzdceYMWrVCQgL0W+mmtBRvvokNG3DpErZtg7+/Po3I0G+/4Y8/YGKCjh0xebKxqzFUSkpK48aNGzVqlJKSosfpt27dcnV1dXJyyszMdHV1vXnzZqVXaDjeEf6Pvn37xsXFnTt3rkOHDv+82r492rdHQQEmTMDNm8jKwvjxOHYMf394ET3WkSNHioqK3NzcYmNjGzdu/LDDnJycHB0d4+PjO3ToUFBQsHLlytatW/v5+el0LZ/1629aWfk3aTJeparz3HN6piCAW7fQujWUSrRti9RUPRuRoZ9/xoYNAPDaa7UgCJ2cnBQKRWZmphBCofvPknR6Tk4OAL0bqWocLPM/VCoVgAc/jAoJwY4duHQJzZrhzBlMnQreTJPWQkJCANjb27dp0yYsLOxhh5mZmf34449ubm5xcXGenp4A/vOf//zxxx/aX+jKlSvHjh1LLyt789Ah+/Pnr2s3tO/BGjbElSsAcPMmuwN0YGp6/y9qMnNz8zp16pSXl+fpNWzezMzMzs5OpVLZ2tqWlZUVFBRUeoWGYxD+D7VaDcD0gT++b76JyZORnw+FAnXq4Oefi7/44knXR09QWVnZgQMHcnNzDW/q1q1bhw4dMjc3P3fuXFFRUceOHR9xsKOj465du+zs7I4fP+7l5VVeXj5x4sTk5GQtrxUcHCyE6Ny5c1FR0dNPP920eXM9i87MxP79GDcOixdj82YsWKBnOzLk4oK9e3H4MPQe61TN3NtNqAdnZ2cADg4OhjRSpRiE/0O6I3xwECoU+PZbeHri6lW0aJHZvXu7Tz7ZvXv3Y9vcswfHjwPAtm3Yvx9ZWQDw3XeVWjdVhlu3bu3atWvFihVTp07t1q1b3bp1hw0b5unpafi2MqGhoWq1ukuXLnl5eb169Wrbtu2jj2/Xrl1wcLBSqTx+/Hj37t1v3749ZswYbb6PCyG+++47/D024aWXXtK/6C1bMG4cAgKQnY2xY1G3rv5Nyc3cucjOxrlz6NsXaWnGrqYSGBiE0unSNIzqGYS14c69Ej0qCAFYWeGnn9Cjxxk7u3nA1Zyc559//sSJE+3bt39Yg1lZiI5GcjI8PXHiBJo2RevWcHRERAQMeWRFhjt//vzVq1fj4uLi4uLi4+PPnz9/37rAJiYmtra2ly9fHjt2bGRkZJMmTfS+lhRO0lSqqdqN4Rw7duzHH3/8/vvvnz9/vmXLlufPn58yZcquXbse+Ny+Yj7GgQMHkpOTFQrF2bNnbWxsxhsyjz44GADu3MGaNXBzw7295vRor7yCn39Gjx6IjMRPP9WC1QwqJQitra0BZFTLPasZhP/jMUEIoFmziz/91GPgwPLy8t69e584cWL8+PEnT560t7fXaDTXrl1LTrY9c8YpIQHnz+PCBeTn4733MGMGKtbY++orODggKemJvB96iIEDBx4+fPi+F11cXKRhnBWDOS0sLIYPH37o0KExY8YcO3bMRq/hUVFRUXFxcY6OjrGxsebm5pMmTdLyxHfffff8+fNbtmwpLi6uV6/eb7/99v777wcEBOTk5FTMQYyPj4+NjZXu/+7Trl27OnrvDxwXhzNn/p+9O4+rKf//AP6+93Zv3bSTkIQsyV6UtNk1Y5tBgyFjZwbFGJqxTJYxE4bJNqMYJGuMJSaRdUIzyk6TpSIqKtr3uu/vH5/cb0Pq3nOvFuf9fMxjfn7jLO++rvs657OCoSHcugUaGh/AiI9qZWwMACAWAwDUyhcgZbG2Tc5B2Lp16w4dOhgYGEBtDUJAUg57cklJSan8sF9//RUAtLS0WrRoAQBmZmbW1tbseadXr1AAlP9jaIienpiRrFw34AAAIABJREFUgcuW4dixuHYtxsUhIs6cWR0/DqnQlStXAEAsFvfr18/T09Pf359tpVbhwS9fvmzdujUAjBgxQiaTcbjd7NmzAcDJyYldRKlz8/Pz7ezsAKBjx45isVggEFSYbWZmZgMHDvzmm2927NgRGRm5c+dOgUAgEolOnDjBoWBExHnzEACdnBAAhwzheBHeWrwYAdDZGQFwxYqarkYNvv32WwD48ccfU1JSzp49y+EKz58/b9eunbGxcbNmzQICAoqLi9VepCooCP+Ddee+evWqyiPZliICgaD8UODGjRtPmOA/cyZu3oxnz2JyMiLiiROYl4c5ObhxI27YgNevIyLu3v2efxLybuzPbsGCBQoeHxMT06BBAxeX9d9/r/S9ioqK2NMVS9Pg4GBlr5CcnGxmZubh4TFo0KD69esDgKGhoYODw7Rp03x9fcPCwl68ePH2WUuWLAEAPT29u3fvKnvH4uLiDEdHBMC2bREADx5U9gp8t379/x8jPDxquho1YJNZZ86cuXDhQgDo0qVLQEBASUmJgqcfPHiQfXR1dHTYV2WrVq38/f0LCgrea9mKoyD8D/a4/a6Xg/KKioratm0LAAYGBr///ntERER6enrlp5w6hVpa2KUL5uSoqVyivMLCQvZ38vbt24qfFRaWqaGBAgHu36/c7Y4cOQKvF6kyNjYuKipS7nxERExPT5fJZC1btgSAI0eOKHKKTCYbNWoUALRo0YJN3lJcSEgIAEy2t//HxaW4bVvMz+dQM6/t3YsA2KMHAuCYMTVdjaqeP39uZ2dnamqqqanp4uLCHuzg9ZCuyj/SmZmZ8lmwAwYMiI+PDwgIkA8WMzEx8fb2zsjIqLaf5V0oCP+DNW/m5uYqcjBr7PLz81Pw4pmZaGWFADh8OHJqYyNqwObw2djYKHuiry8CoJYW/v23Emd9+umnAMD2oPH09FT2pnKsR9Pc3Ly0tFTBU/Ly8rp37w4Azs7OhYWFit+LJSj7eM+YMYNTvbz27MKFoy4uWz76aEm3bkvHjq3ZYkpLS48fP86tPRMR9+/fzzZakr/MaWlp9enTp/nraTnm5ua+vr4VfmdeunSJPb2xpbrlPQulpaXBwcHsw8naLTw8PJJZA1oNoSD8D4lEAgCKfGvEx8cLhUKpVFrli2B5MTFoYIAA+MMPKlRJVPDVV4fr1TNZv349h3OnTUMAbNIEFWg7x5KSkqioKIlEoqGhwd5Br127xuGmzMSJEwFgyZIlSp2VmJhoamrKGrUUPCUzM1MqlQqFQraqZEREhPLF8t3NmzfljeGdO3euwUqSk5P79esnEomEQqGDg4NSLfMFr159/vnnLKsGDx6cnJx88+ZNd3d3Nm5ZKBTa2NiwnGOtHd7e3vJOpfz8fC8vL6FQCAC2trb379+v8Bbh4eGDBw9mV6hXr56Hh0dCQoIafmzlURD+B/uTU+Sh29vbGwDc3d2VvcXx4ygUYpcuF0+cCFH0nKgoXLsWL19W9l7kDc+fo4YGGhjIUlK4NE8XFWG/fvjjjxgbi4iYkvKfVsPHj/HkyWI2DdHGxkYqlbJhLGZmZrdu3fLx8eFcdm5uLmu0j4mJUfbcqKgo1s6xefNmRY739/cHgK5du7Kvcm7jg3iOrcnJmhCbNGnC+ToymWzbtm1Llizh1pe2d+9eNuhBW1tbPuC5e/fuhw8fxiq/4sLCsGnTkT16vPEyh4ixsbEeHh5aWlrsgp07d7aysmK/HjVqFCLevn27c+fOAKChoeHl5VVld8Dly5cHDx7MBltIJBJHR0elGjDU4kMIwqKiIj8/Px0dHS0trcWLF3PugI2OjmbjX548eVL5kfIOm3PnznG40ebN19myQ9HR0W/+3suXeOkSbt2K8+ahqyva2mJMDHp5YV4eLluGkZEcbkfk1q1DABw2jPsVSksxLQ3NzTE5GTdtwoAAnDoV7e1RT69snLC+vrl88FSzZs1Yg9LcuXNVKTswMBAAevbsye30oKAggUCgoaFx5syZCg949epVeHi4r6/vtGnTWDsY+5pbuXKlClXzV1FREfsfXCAQiMVibg8TCQkJffr00dHREYlEDRs29Pb2VrzxKSMjw93dnX0IXV1dExMTs7KyfH192SaCszt3RgsL9PXFCr8qc3Nx1iwUCBAgxdX10aNHFd7i+fPn3t7e8m3COnTo0KVLl0uXLvn4+LB2tXbt2kVFRSn+8965c8fd3V0oFOrq6qry1MhNnQ/Cw4cPt2nTBspp06ZNaGioUhd5+fKll5eXRCIRCoUCgUBbW9vb2zv/3WMEzpw5AwDNmzdXvMOmPJlMNmbMGNa8/scff2zcuPHLL7/s3bu3iYnJi+7dsfz0CwDctKmsVyomBtet43A7ItelCwLgH3+odJG0NFywAD09cdOmsnHy7B8TE+zbF5cs+d3f3//KlStsyNWlS5c0NTWV6kt+W//+/QFgy5YtnK/Ahr8bGho+ePAgNTX13LlzmzZtmj59uqOjI5vd9TaBQKBKWy7Psf9VWSQo1XvCBAYGsisYGBiYm5c9WhkaGi5evLjKyV1hYWFsVXdtbW1fX9/yv5WXl7d58+ZkV9eyj2yzZrhhA5bv3nv4sGyosESCK1diVeNCU1NTv//+e/bwJH9+EggEnp6eeXl5yv7U+HpE9zfffMPhXFXU4SCMiopycXGRh19QUND58+flu0YMHjw4Pj6+yovk5+evWrVKX18fAEQi0dixYz/55BN2hdatW4eEVNx6OXbsWABYtmwZ5+LlAxnecLlPH2zXDu3t0ckJbWzQzAzXry8bqhgaikFBnO9I7txBADQyqvg5WHFpabhyJQYE4MiRGBKCmzbhuXNYycDMnTt3AoBYLObWfpCYmCgSidj+TZxrLi0tHTZsGOuJeftT16BBg969e8+aNWvLli3h4eEpKSnsb5a9vX3tGeBehzx58oQ1jLOulv79+1+9elXBc1NTccyYskWnPv30UxZ75fvSNDU1p02bVmGrVV5enrxnzt7e/uHDhxXfo7gYd+3C9u3L4nDCBNyyBZcuxblzMToa27ZFKytU5mUuOzvb19fXxMQEAHR1df/880/Fz33D9u3bAeCLL77gfAVu6mQQPn36dNq0aezP28jIyMfHR96mXFRU5Ovry17YpVJpJS92MpksKChI3tnbr1+/W7dusd+6cOFC+UCNY3PgX8vIyNDW1hYIBLGsp4irJ0+e6OjoaGhotG3b1tHRsUuXLiYmJtvZ/K3y//z+O65YgT/8gEuWYC2bhVq3hIVh69b41VeqXocFoUyGzs74jkEAb5o7dy4A1K9f/10NTZXw8fEBgM8++0zpQl+7f//+9OnTg4ODxWKxvr6+np6ejY2Nu7u7j49PcHBwhR/j1NRU9leDQy94XVdaWjpp0iQnJ6ctW7ZwaPLZuXMne7Bu0KCBnZ0daw8QCAQff/zxlSv/Vn7uqVNoaoouLj/r6em93YRw/fp11njInqvc3d3L961cvXqVTegSi8Xe3t5VT/KTyfDoUezRA8+fx/nzERGzs3HOHIyN5TZhJjMz8+zZs1W+sFbu+PHjADBo0CBVLsJBHQvCnJwcb29v9rQlkUg8PDwqbHZISkpyd3dnva8WFhZvr6/x999/Ozg4sKhr167d8ePH3ziguLj4XYH622+/seBU8WcpLS1t1KjRG8/m062tsWtXHDMGf/gBDx3Ce/eQ08wzUl5CAs6bh4gYEIAVzT5XzsaNOHs2PnqEBQVVNh2VKS0tZU/07dq1U3DWlEwmY0PS2TMZ9zViENkkaPaB7927t4Jn3bx5U0dHZ5eTU+nq1ZxvXec8fvy4V69e8pc5CwsLX1/fSnpJyktJSZEv7jpixAg2fZP1penr6wsEwtat8x0cMDi4gtlT2dk4fTrrmEMXl9LHj5+96y6sL40tAykUCgcPHhweHu7j4yMWiwGgffv219maHYqLjUX5H3FNz5b5+++/AcDW1raa71tngrC0tDQgIIAlh0AgcHNzq/KF7OLFix07dnzjxe7JkyfyjGzQoIGvr28lj05vBCrLS1tbWwDYs2ePij8R62jU0dGZPHnymjVrQkJC4uLiuHU6kneRyTAuDq9eRVdXPHkSvb1R+f6aN7E+lFOnlDsrKyuLRZqrq2uFHzk2YsXPz8/Dw8PBwUFXV/ebb765evUqADRs2JDbTHxElMlkbMoXWxp+tzJrGiWcOIFCIQqFeOwYt7vXLUFBQaxnzsTEZMiQIfJl1s3MzHx9fXMqXQgjNDSUDUWp8GXu5cuX69YF169f1srTuTPu24cpKWWt9H//ja1aIQBqauLq1VWP6ETEuLi4r776Sj50k4Xi/PnzuTRll5Sguzs+eYIHDuDWrUqfrlaxsY/btHEbOLC616WrM0E4YMAA9uft6Oj4t8JTmouLi9etWyd/sWvTpg3rvq5Xr563t3fln2y5ixcvyjeQs7e3BwB9fX0FJ91XgnU0Ll26VMXrkPISExPPnbu+bh1Onoy2tqijgwDo44P+/jhtGn77rapBePly2VRChZeX+r+4uDg2pJ6t7paUlLR58+YZM2Y4OzvLhxuUN2zYMNZj/fXXX3Mu+OzZswBgamoqEAh0dHSys7OVO3/lSgRAHR183XHwQUpJSZEPDhg5cmRaWtq3334rFAq7d+8uXwalQYMG3t7eL1++fOPcvLw8Dw8P9rjs4OBQSet3Tg6uW4dNm5bF4eefI5sXOnMmtmmD7dvjjRvKlf38+XMvLy+pVNqgQYMLFy4o/WPLpaXhjh34jkHF1Skrq+zjVs3qTBDu2rWLrdbKYSxycnIye7ETCARCodDNze3x48dKXYG1lLKmf6FQOHToUGVreIO6OhoJIh4+fPjLL7+Ux4mpqXn5PtYmTXD5cvT3x5gYbNpU1SCcPh0BUOFlSt/0119/sUexrVu3vrHNob6+ftu2bXv06OHs7Gxtbc3m4AsEAgMDA27T/xm2JaGzszMATJw4UenzZTIcOxYBsHlzfCsDPgwnT55kqwfo6+vLX+bmzZsn796ztbWVDxrQ0dHx8PB4+vQpOywiIoJNnNfS0vLx8VGkRaewELdtwxEjcPFi/PFHvHmzrGOu2ufO1VJaWgiAKr9oKKfOBGFpaamKsyz9/f3nz5/PYdVjuRUrVrAgNDAw4DDqobydO186Ov4+aNAoVS5CmClTpsjjxMjIqFevXrNmFf/2G168WPbVnZKC//yDiLhnD0ZE4Nq1HG9UWIisdUuZZUrf9PvvvwOAWCxet26do6Ojk5NTly5dWOy9oWHDhmxqkL6+fgVTThWQk5Ojq6srEAjYeHqOLw35+dijB3p4YGnpB7Y2YFZWlnwlzL59+76xrIm8e48d0LFjR2tra/ZrTU3NKVOmeHh4sGVWOnbsePPmTWXvvngxZmbitGmowtJ7HyD2xlzVXG41qzNBWONOnDghEonY4yEAWFpaqrJWrJ0dAqDK/YwEETEsLOyXX34JCwtLSkqq/Mi0NNTTQ4EA9+3jcqODB4/Y2q4YNUrVv6OzZs16Y98SlnblB3Oyn0Umk40ePRo4rZ2NiAEBAexrGpRcp/RNBQUok+E33+DKlThjBj59+v9NFWbP5njNmnblypVWrVpV+TKXmZnp6+srH9fWunVrBwcHNlalXr16IpFo4cKF3HpwFy/GvDy8cAFVbmD6oHTtigBKTd9QAwpChURFRbEJWD/++GN2djZrJxk2bBi3b5aYGLYESXW//hN8vUOOsmtnM4MGDQKADRs2qFjDyZMnAcDQ0HDChAlr1qwJDQ2tZInF3Nxc9iLSt2+/oiLlXsj69u0LAD179gTl1yl9U2Qkshn9iYm4ZAlOnYo3buCNG3Vxa82cnJzx48ezcaHdunVT5G07Jyfnl19+YS/WADBmzBi2F+mqVas4l3H4cNkL9qFDnK/xARowAAHw5MlqvSkFYdXi4+PZ8+CkSZPk/6VBgwacv1y++QYBanygMn/NmIEA2KgRvu7oUciLFy/EYrFYLFZxphS+Hie1fPlyBY9PTExs3bqtnd2R1x9AhTx79ozNxGfLvHFYp/Q/LlzAvXsREbOzcd48nDABT5zAEyfqYhAuX75cJBKJRCIvLy+lOlyKiooCAgLatWsXERExadIk1tfLuYzZs8sGiM6axfkaH5r8fPz1V0xJwWvXqrVLmoKwCpmZmaxlqVevXuX/zpw5c4atJbhfyR3qiouxUSMEKOu1ItWvqAh79cLWrW+7ug5XfPTvunXrWDOAinfPzs7W0dFRdpzU1avFbBDBxo2KnrJy5UoA6NGjB6iwTun/5eXh+PH4zz/43Xd45cr/v7zrYBCyTRUGDRoUEhJy7949ZU9n4/W8vLxYExHnMmbPLlsqQ4XFEj40L1+ipSVevYqbN6OKT25KEb7dRU/kiouLR44ceefOHSsrqyNHjrDxfkzfvn3XrFmDiBMnTrx27Zri1ywqAk9PGDYMbG3fQ8VEAWIxHDqEUun40NDDbCBlJQc/f/78zJkzvr6+bL8RNghTFQcPHszJyXFxcZGvaqSI7t01du0CgQDmzIGQEIVOEQgEhoaGhYWFoI6yQSqFDRsgIwOmTQN7e/DwKPvv8l/UHd26dQOArKysjz/+mI1dUgrr3GUzYVJTU1WpZOFCWLQIGjZU5Rofms8/B39/KC2F0lJISamuu1Zf5tYOqampO3bsuHHjhiL929OnTweAxo0bv2u6BRuvaG5urmBzmbU1/vsvXr+OO3aUPVJnZuJ33ynzAxA1+ffff9ns6fJTOTMyMqKiogICAjw8PPr161d+6R+hUNixY0fVN4jZOXly86ZNt2/fzuHcRYvKlktVZBJISkrKli1bhEKhlpYWh3WfP2BsNw82J5jzGnK7du0CgHHjxnEuY926sj5CzsOYPySlpfjzzxgVhT/8gH//jTY2uGYNamqiuzs+ePDe7867IDx69Cj7XhOLxVZWVu7u7r6+vuHh4W9PNF6+fDkAaGtrVzJ/v7CwkG3kXckeWtnZGBmJu3bh8eM4ezZOn14WhBMn4rVr+NdfFIQ1JiQkhI0Etre379+/P1sZ5A2GhoZOTk4zZsyYP3++Isu4VyE+HgUCmY5OcVYWh7NLS3HcONy7t2xvyocPUf6xzcjAy5dx27bi2bNn9+nTp+HrtwypVGpjY6Nq2R+W0NBQAGBDkFxdXbldhI14GjhwoHpr46f4eHR2RgC0s8Nt2xARv/sOp09HoRABUCxGd3e8e/c9FsC7ILx06dLo0aPbtm3LxoyVf963tLQcM2bMqlWrwsLCNm7cyGbfHz16tPILJicns7FkbBPwtLS0v/76y8/Pb86cOZ9++src/P8zuwcOxHnz8PRpnDcPd+zAceMwJAQPHaIgrElr164tv6qLRCJhj0fyBanVvDPt8uUIgGPHqnKNlBRs0QJjY3HDBvz1V3R1xWbN/v8xMzS0YD+Lvr5+z549J0+e/PZiKDzH+jLYEtWcnxKioqJYmqq3Nh4KCkJDw7KNzN6Y5n3vHn7xBYrFbF26zGHDhim+rJhSeBeEctnZ2fJGMAcHB7aQd/lcBICNio1MOHDgAOs2YMPz5Dp2vMTWD+zYET/7DH19y5Z+HjeOmkZrkT179owdO/b48eNxcXHvfUN2bguV/ldKCn7/Pc6YgRs24NKlZfmnrY02NvjFF7hp05GTJ09WMh+DJCQksC4PAGjWrBm3izx58gQAzMzM1Fsbr6SkpMyatYF9gN3cMC2t4sMeP8bZs7Fnz2Xse7VPnz6nT59WbyUCrHSkAH8UFxffu3fvxo0bN27ciIyMvHfvnqura1BQkCLnenl5rV69WiAQIKJEIuncubOVlVW7du06dx5tYWHesiWIRGVHPnwIrVvDy5dQWAh5edCqFZSWQkICtGjxHn80UltcuQIODtCkCSQk/P8zobzUVPj9d2jXDjZvhkWLID0dOnSAli1BSEPfFFNQUCCVSjU1NQsLC6VSaV5eHoeL5Ofna2tra2lp5efnq71CPjh+/PjUqVNfvHjRt2/QxIluY8dWcXxKSsqGDRs2b96ckZEBAPb29kePHm2oroFG6s1VHiouLmZ9S2yVin3c1iwhfPDPPzhwoOotAKmp+MsviIgjRuB/98okimKNN6wdSMHF99/GFtlQeh1z3svNzZUvU/72ynaVY5sA6+rqisXiESNGqKskDfXEKY+FhoYmJSU1b9780aNH+vr6bB9wQv6jsBBWrACpFBwcYPFiFS+2aRP8+y/07g2HDqmlOD4yNjbOyckxMjJKTExMTU1lkcbhIrm5uSkpKW/0iZBK5OTkODk53bx5UyqV/vTTT/JEVJCOjo6npycizp07t8I9W7ihxhRV7dixAwCaNWsGAGPHjn2jr5EQAIADB2DAAFi0CFq0gAsXVLmSTAbbt0NQEOTmqqk2XmKzANkGbSlKzlbLzs5esmRJfn6+WqYS8s22bduio6N1dHSioqI8PT2VSkE5c3NzUOv/8vRGqJrU1F+Tkrr36PHrgwcAMHHixJouiNRKycng5AQAYG4OT5+qcqUzZ+DpU2jVCuzt1VMaP7EM09bWBiW/T8PDw7/44ov4+PjMzMz4+HgAuHLlip2d3Xuq88PTrVu3oqKibt26WVlZcb6I2h9B6I1QNbt3m/z997elpY9LSv4ePZqtWEHIm3r1gn37IC8P/vgDHBxUudKuXQAA48cDpydpUoZ9k7Zt23bSpEkVzh99W3Fx8dKlS3v37h0fH9+qVavg4OC0tDSxWOzm5vaei/2gqCXDKAhrmYAA9n+FaWn0VEjeyc4OevcGf3+YPBm0tcHXl9tlsrPxyBEQCMDdXb318U5aWppIJDp79uznn3/etWvXKo+/d++enZ3dsmXLBAKBi4vLkydPnjx50r59+zNnzsi3pCCKYOM8a1sQ0qhRFURGsgnMKBajWIwqb0pAPnzFxWhlhQDIaS+n7du3W1paT558WO118Q0brMG+A52dnUNCQt41hVQmk/n6+rLd6ps2bWppaQkAAoHAw8OjoKCgmsv+AMhkMrFYLBAIVFmtUCaTsT0PuO0E+TYKQhV89RUClC0NNHx4TVdD6oiDB1EgQJEI//xT2VNdXFwAgNs6peQNbAP6+vXrszjs1KlTQEBAcXFx+WMeP37cq1cvlnxOTk6sT9Hc3PzChQs1VfYHgC3hW+U22pUzMTEBgOTkZLWUREGoAj8/7NABLSwQAI8fr+lqSN2xZAkCoJ6eUusnPn78WCgUamtrZ3Fap5RUiM1LkzdvtmjRwtfXNz8/HxGTk5PZsNJGjRp1796dHeDm5kYrmKuIbWx369YtVS7Cdke/ffu2WkqiPkKu0tMhJwcmTQJ/f5g3D1xda7ogUncsWwYjRhQZGU2fNSs9PV3Bk3bt2iWTyYYPH66rq/teq+MVNi8tNjY2ICDA0tIyPj5+zpw5zZs3X7p0qVQqHTduXI8ePQoLCyMjI42NjY8cORIUFMQ2LSGc1cbxMmqJUz6aPh3T0vDFC/zyy5ouhdRBOTlDnJwAoF+/fm80x/33qJzIyMgdO3Z88803WlpaAHBKtXVKSSVKSkr279/fpUsX9t1oZGRkZmbGfj1s2LAXL17UdIEfiFGjRgHA3r17VbnIZ599BgDK7ov+LjSPUAWsd4EWayUc1Ku3Zf/+67a2Z86cmTNnzqZNmwCguLj46dOn9+7du3btWnR09L1792JiYmQyGTtDKBQ2bNiwb9++NVr3h0wkEo0aNWrUqFGXLl1atWrViRMn0tPTtbW1f/nll2nTptV0dR+OWvhGSEHIVUkJIAIilJTUdCmkTmrSpMnBgwf79OmzefPm06dPa2hoPHz4sOS/HyeJRGJpadm+ffuOHTvq6+vHxsaOHz9+z549NVUzTzg6Ojo6Ou7atSs2NrZv377Ozs41XdEHRS0ZJhKJAODRo0dqKYmCkKuZM2HRIgAAD4+aLoXUVfb29v7+/gsWLHj48CEAiESili1bWllZtW/fnv27ffv2rEWUkclkHTt2/PLLL3/77beaq5ovxo8fX9MlfJhUD8KwsLCAgACBQJCVlaWWkigIueraFRSYh0tI5dzd3Vu2bBkaGjp8+HArKys2X+1dhELh6dOnu3btqqOjs2bNmmorkhA1YkucX7hwobi4WCwWK3VuXl7e/Pnzf/vtN0Rs06bNihUr1FKSaOnSpWq5ECGEm2bNmvXp06dx48YaGlU/mOrp6TVs2HDVqlWZmZnUX0jqohcvXuzZsyctLS0gIEAoFHbq1EnBOIyMjHR1dQ0NDRWLxUuWLAkKCtLX11dLSRSEhNQxXbp0uXbt2t69e2UyGXVfkTrHwsJCJpOlpKTExsaGhoZu3bq1qKioU6dO5XsB3lBSUrJmzZpx48alpKS0b98+JCRkzJgxQvVtRU071BNS9+Tm5trb2yclJXl5ec2fP7+myyFEaYh44sSJn376KSIiAgB0dHQmTZq0YMECU1PTN46Mi4sbP3785cuXBQLB7NmzV69eXXkPAsdqCCF1zpUrV5o0aVK/fv1NmzbVdC2EcBceHj548GC2MaFEInF3d79//z77LZlM5ufnx/oUzc3Nz58//55qoDdCQuqqefPmbdy4sX79+qtWraIhjqROu3Xr1tq1a/fu3VtaWioUCj/++OOpU6f6+/v/+eefAODm5ubn52doaPie7k5BSEhdxfoIL1++bGJiEhwcbGtrW9MVEaKSBw8erFq1avfu3UVFRUKhUCaTNWzY0M/P75NPPnmv96UgJKQOY9sjWFtb79u3T/0dJ4TUhGfPnnl7ex86dKhFixanT59mWxi+VxSEhNRtz549o71hCVEFBSEhhBBeo22YCCGE8BoFISGEEF6jICSEEMJrFISEEEJ4jYKQEEIIr1EQEkII4TUKQkIIIbxGQUgIIYTXKAgJIYTwGgUhIYQQXqMgJIQQwmsUhIQQQniNgpAQQgivURASQgjhNQpCQgiI1J2lAAAgAElEQVQhvEZBSAghhNcoCAkhhPAaBSEhhBBeoyAkhBDCaxSEhBBCeI2CkBBCCK9REBJCCOE1CkJCCCG8RkFICCGE1ygICSGE8BoFISGEEF6jICSEEMJrFISEEEJ4jYKQEEIIr1EQEkII4TUKQkIIIbxGQUgIIYTXKAgJIYTwGgUhIYQQXqMgJIQQwmsUhIQQQniNgpAQQgivURASQgjhNQpCQgghvEZBSAghhNcoCAkhhPAaBSEhhBBeoyAkhBDCaxSEhBBCeI2CkBBCCK9REBJCCOE1CkJCCCG8RkFICCGE1ygICSGE8BoFISGEEF6jICSEEMJrFISEEEJ4jYKQEEIIr1EQEkII4TUKQkIIIbxGQUgIIYTXKAgJIYTwGgUhIYQQXqMgJIQQwmsUhIQQQniNgpAQQgivURASQgjhNQpCQgghvEZBSAghhNcoCAkhhPAaBSEhhBBeoyAkhBDCaxSEhBBCeI2CkBBCCK9REBJCCOE1CkJCCCG8RkFICCGE1ygICSGE8BoFISGEEF6jICSEEMJrFISEEEJ4jYKQEEIIr1EQEkII4TUKQkIIIbxGQUgIIYTXKAgJIYTwGgUhIYQQXqMgJIQQwmsUhIQQQniNgpAQQgivURASQgjhNQpCQgghvEZBSAghhNcoCAkhhPAaBSEhhBBeoyAkhBDCaxSEhBBCeI2CkBBCCK9REBJCCOE1CkJCCCG8RkFICCGE1ygICSGE8BoFISGEEF6jICSEEMJrFISEEEJ4jYKQEEIIr1EQEkII4TUKQkIIIbxGQUgIIYTXKAgJIYTwGgUhIYQQXqMgJIQQwmsUhIQQQniNgpAQQgivURASQgjhNQpCQgghvEZBSAghhNcoCAkhhPAaBSEhhBBeoyAkhBDCaxSEhBBCeI2CkBBCCK9REBJCCOE1CkJCCCG8RkFICCGE1ygICSGE8BoFISGEEF6jICSEEMJrFISEEEJ4jYKQEEIIr1EQEkII4TUKQkIIIbxGQUgIIYTXKAgJIYTwGgUhIYQQXqMgJIQQwmsUhIQQQniNgpAQQgivURASQgjhNQpC8uFLSko6fvz40qVLhwwZoqur26hRo2PHjtV0UYSQ2kKAiDVdAyFq9vTp02vlpKSklP9dgUDQuHHjiIiIZs2a1VSFhJDag4KQfCBSUlJmzpyZm5v7dvIZGhq2aNFCR0cnPz9/woQJR48eDQsLs7KyunTpkqGhYU0VTAipJTRquoBqlZeXp62tXdNVkPeiW7duycnJJSUlAKCnp2dubm5oaFhaWvr8+fPY2Nj09HR2mJOT06FDh5ydnW/duvXJJ5+cPn1aU1OzRgsnhNQwHr0RFhcXSyQSqVSal5dX07UQNYuLi7OwsBCLxR4eHnv37k1OTi7/u3p6etbW1jY2NjY2Nj179jQ3N09MTLS3t3/69OmoUaP27t0rFFJnOSH8xaM3QvZOUK9evZouhKjf/v37AWD06NFjxoxZu3atrq5up06dbF5r167dG1FnamoaEhLi5OR04MCBFi1a/PTTTzVUOCGk5vEoCDMyMgDAwMCgpgsh6nfgwAEA+Oyzzzp16hQTE9O6desqX/I6dOhw+PBhV1dXHx8fU1PTWbNmVUulhJBah0ctQhSEH6r79+/fvn3bwMCgf//+YrG4bdu2CjZ19u7de8eOHQKBYM6cOUePHn3fdRKiBqmpcPQoxMTUdB0fFHojJHUeex389NNPOQx7+fzzzx89euTt7f3555+fPXvW3t7+PRRIiJpkZcH8+TB/PuzfD336gLOzgufJZLJ9+/ZdunTpt99+U0sh8fHxmzZt6tixY7169bS1tTU1NfX09DQ0NAwMDMRisY6OjlQq1dLSUsu9qgPyxpEjKba2wR4ef9V0IUTN2rdvDwAnT57kfIUvv/wSABo0aBAZGanGwghRszNn8OBBRMSsLJw/X/Hz0tLS9PT0AODixYuqVxEbGyuVSjU0qn6PkkqlFhYWV69eVf2m7xWPmkZTUoyvXh2Sl+dU04UQdYqJibl3756hoWGfPn04X2TDhg39+vV7+fLlhAkT1FcaIepmYABpaQAAqamgzBTY+vXrf/PNNwAwf/58VHmmwJw5c/Lz8w0MDFxcXOzt7a2tra2trS0tLdu2bWtmZtaoUSMDAwPWPJOfnx8fH//DDz+oeMf3rY4E4aNH8O238P33EBrK+RoZGQAA1DL6gdm3bx8AjBgxQiKRcLvC9u3bhwwZ0qVLF0Rk7eeE1EZZWWBpCU+fwg8/gK8vTJmi1Nlz5841MTG5evXqn3/+qUoVf/zxx/Hjx/X09G7evJmYmBgREXH9+vXr16/HxMTcv3//6dOnz58/z8jIKCwsBIBz585pamqeOHHi5s2bqtz0fasjQbh2LSxbBsuXw6FDwPVxJjMTAEBfX511kRp38OBBAPjss884X2H37t2hoaGXL18GAA8PD7VVRoh6bd4MjRpBcTH07Am+vmBsrNTZOjo63333HQAsXLhQJpNxKyErK8vT0xMAVq1aZWpqOnz4cDc3t08++aRfv34ODg42NjZt27Zt2bKlkZERa4nt1q3b9OnTZTLZkiVLuN2xmtR026xipk8v+8XcuZiXx+0aX32FALhxo9qKIjWOPWY2aNCguLiY2xWeP38uEok0NTV1dXUB4NGjR+qtkPBWUVHR7du39+3bN3PmzI8++uj8+fOqXtHSEgGwa1cEwB07OFygsLCwZcuWALB7925uJXz11VcAYGdnV1paquApqampLBQvXLjA7abVoI4E4aJFeOcOvnqFEyagTIZTp+LPPyt7je3b8fPPUfVPI6k9Fi5cCAAzZszgfIVNmzYBgK2tLfu3GmurkEwmu3XrVmBgYH5+/vu+l1qkp6efPXt29erVdnZ2gwYNunHjRk1XVHslJiaGhYX5+vq6u7vb2NiUHzOppaXVsGHDx48fc7/6P/8gABobo0iEWlqYns7tMjt27ACA5s2bFxYWKl/CPyKRSEND4+bNm0qd6O3tDQCOjo7K3rHa1JEgLCrCbdtw7VpMScE1a1AgQABctAhlMgUvsG0bLluGiPjdd++xTFLNGjRoAAB//PHHzJkzf1b+2QgRnZyc2BMuAKxdu1btFSJiYmJicHCwt7f34MGDWcFisbhbt245OTnv43YqysrKCg8PZ9/mVlZW5WdkikSiDh06ZGdn13SNtUhISMiUKVNsbW11dHTeaGwTCoWtWrUaPnz4okWLrKysAMDKyiozM5PjnWbNQgB0dkYA/OwzzgWXlJSwYn799VelTiwuLu7SpQsALFy4UNmbZmdnN2zYEABCQkKUPbd61JEglNu8GQGwZ08UixEAv/gCFWsT27QJZ8zAe/dwzpz3XSKpPi1atGBPmkKhUCgUHjhwQKnTk5KShEKhlpaWtra2QCBQ6YH9NZlM9vDhw/3798+fP79Pnz76b3VKm5qaSqVSABgyZEhJSYnqd1S94J07d65evXrUqFGtWrUSCATlq5VKpe3bt3d0dJwxY4a5uTkAfPTRR5wboj885cdDGhoaOjg4eHh4+Pn5hYeHl3/QyczMZJN8Pv74Yw5/6KWFhWhsjADYujUC4PHjqtT8xx9/AEDjxo1zc3MVP4stQ9iqVas8Tp1Ta9euBYBOnTop3qZanepaEJ47h3p6CICdO6NUigDPpk+v5A8mLw+3b8dBg3D9eoyOxqlT0dMTo6IwPr4aaybvzT///GNkZAQAbCK8RCI5e/as4qf7+vrKXwd79uypYjGvXr2ytbVlfY3lNWnSZOjQocuWLTtx4kRycjIiPnr0iD0gT506VcWbqm7QoEFisVherVgsbt68effu3bt37968eXORSMT++9y5c+Pi4kxMTABg8uTJNV11bXHz5s3NmzdfvHjx5cuXlR/54MEDIyMjiUh0Z9UqZe9y9OhRZzOzsI8+KmreHBs2VPDpvxI9evQAAB8fHwWPj4+PZ6s0nz59mtsd8/PzzczMAGD//v3crvBe1bUgRMTbt7FJEwRAS8ssG5vGOjp2dnapqalvHBUdjZ6eaGiIAAiAkydjbCyGhqKDA3bogBIJenhgRkaN/ABEnf766y/WGePs7AwA+vr6t2/fVvBcFp+sg9DX11fFSiZNmsSmGDdu3Hjw4MHe3t7BwcFJSUkVHnz58mX2XvjzzxtUvK8qcnJy2P96H330Uc+ePVu2bClPPnkuWltbT506NTg4GBEjIyPZF+KKFStqsOw66uzZs8k9eiAABgQodeLw4cMBgDXj+y9erHolFy5cAAADA4Mq85sZNGgQALi7u6ty061btwJA69ati4qKVLnO+1AHgxAR4+KwdeuiZs36dujQpEkT1viekJCAiIWFhfv37x89+kvWjQiAPXrgzp145w6yhorTp3H8eBQKyzqeN29W/emK1LADBw4IhUKBQNC9e3c2EIC9eFUuISFBIBBIpVKpVCoUCp89e6ZiGR07dlSq6yU4OLht286mpgm7dql4Z+7YLEwHB4eoqCiWfBoaGlZWVu7u7r6+vuHh4W83t5w4cUJDQ0MgEOzgNHCR77ZtQwCUSFDhIZQvX77U1NTU0NAwNjYGgGvXrqmlkN69ewOApaWlm5vbpEmTpk+f7uXltXjxYh8fn/Xr1/v5+e3duzcoKCgsLGzRokUAYGRk9OLFC1XuWFJS0q5dOwDw8/NTy4+gRnUzCBHx+fMZrq4AYGJi0qZNG/YLT0/Ppk2bsr/PNjaR06bh9esVnx0VhS4uZUk5bNgvJ06cUHN5RUW4dCmuXIk//aTmK5OKrF69GgC0tLQ6dOgAANbW1lWO6fj555/lbarOzs4qFhATE8N6iZQajLdhQwkAamrW2GDmTz/9FADWr19fWFi4ZcuWyMhIRer38/NjL4unTp2qhiI/NLNnIwA2aICKzdXZvHkzANjY2LAnfnVVMWnSpLc7sN9FIpFs3LgxPDxcxcXSgoKCAKBRo0YKvolWmzobhIjZ2dkDBw4EgHr16pX/E+3cufOvv/6alZVV5RWOHMGhQxPYWf369VN2THBl9u7FsDBExF27aMZG9WBz4Q0NDdkImirHdOzatatTp07sJXLTpk0q3n3p0qUAMGXKFGVPnDsXAVBPD2/dUrEEpWVlZXF+G16wYAEA6Orq0oQKpRUX48CBqKmJR45UclRBQcGNGzcCAwNZoxd7HVylfP9ihf79919NTU2hUPjTTz8FBQVt3br1t99+8/HxWb58uZeX1+zZs6dNmzZ69OiRI0f269eP9WcPHToUAHr06CFTeKx+efn5+ZMmTbp//76hoaFIJKptL4V1OAgRsbCwcNSoUfImHTc3tzAWPworKiry9fVlAy5EItGECROePHmihspWr8bYWETE8HAMDFTDBUlVSktLWVeKmZkZ+9aoZEwHG9u5Y8cOiUQiFAoTExNVvDsbks5hKEFpKbq5lQ3/quQbpvysBktLSxMTkw0bVO1cDAwMBAAXFxcO58pkMnd3dwBo0qSJev7K8Ep6OkZE4LNnuHw5Ll2KDx9iaSk+fIh//IHLlqGb27Hhw99e0logEKjegI+IpaWlDg4OAPDVV18pcnxUVJRAINDS0mJ/rY4ePcrhposXL2ZvtBoaGkKhUNkv6vetbgchIpaWlrJRf6qMZHv16pWXl5empqa+vr7qowcREa9cwVWrsLgY589XsAGEuXfvnhruzld5eXk9e/ZkPR/a2tq2trblG0jfns8HAE2bNtXW1lZ8fE2Fbt++DSoscJOfj2PG4KlTePgwImJwMCJiRgaePYurV+OoUejq+s8bsxqEQqGenp6KZQ8ZMgQANm/ezO30wsLCvn37AkD79u3Tuc7v5rXp0zEnBwsKcOJEHD26rKsGAAFut26toaHBOvCWLVu2ePFibW1tdb0Rsp2YGjVqpPif2siRIwHA0dGR/eVS9nMeExPDXkBZz4Wnp6fyVb9fdT4IEZG1bh1XbW4NIrJVKxs1aqSGmvLy8NgxXLIEz51T8Izi4uIBAwZIJJIHDx6ooQC+Sk1NZX3G9vb2kZGR8vl8b+9D2aRJkyFDhnTq1AkAzM3N3zW8UxHsaVeVBW4Q8eJF7NEDnzzBOXNw4kSUj/YCwHr1srW0tORjWC5cuDB69Gj2I7AxYhykp6ez7yZVfvBXr16xV+HOnTtzvgh/yVeOnD4dly3DZs3w44/RywsDA0tu3CgoKCh/7JEjR9hkWW4vZHJJSdiz5yULC6uDbDsnxdy/f19DQ0MsFjdr1gwAApQZ9SqTyViCsn+bmZkp0m9Vzep8EL548UIoFEqlUqUmh1aopKREKpUKBALuqz/IzZuHAOjkhACo8Lj8yZMnA8CQIUNUvTu/PXz40NjY+I1XKHnyLV269Pjx4/Jv//z8fNZM1LFjxwyu82ksLS0B4JzCDz0VungRAwNx5kycMwcXLkSpFHv0wJkzcft2vHULi4v/Mwtb9bcxttRWnz59OBccERGxfPnyLVu2CAQCAwMDztfhr+nTMTsbCwpw8mRFFslauXIlAOjo6NxSoT/5s8/YCEGlJzCwbyc2uMzc3PyNnK4EG1rVsGFDtuKoikH+ntT5INy+fTsADBo0SC1X69y5MwD8888/ql7o66//H4Tr1yt40osXL9ion9DQUFUL4LfAwEBjY2M9Pb23k+9taWlp7CXyiy/mcmjavH79OmtIUHGZmIsX8ehR3L8fO3fG7OyqZ/VkZGSwCRu9evVS/FtJ7qOPPgKALVu2cCwXccqUKfB6+ua0adM4X4e/EhNx2TJcurRsPIECxo0bx3Lo+fPnHG548iQCoLY2xsUpfe6zZ8/YewL7y7JRse0Lnj9/bmhoCACs3W748OFK37ha1PkgHDFiBCi/bt67jBkzBgDUMEGKUxAi4qpVqwCgXbt2tXDO6QcsNja2X7/x9eplc+ho/vbbbwFg1qxZKtbw9994+TIi4syZip7y9OlTNl9ozJgxSo3le/XqlUQi0dDQ4DwzrKioqH79+uxLGQCUWtCHcJafn8/eyXr27Kns009uLrZsiQC4bh3Hu8+dOxcAunXrxkaxKtLCyQYzslP09PSePn3K8d7vWd0OwqKiIvYKFa+mNdOWL18OAAsWLFD1QmxQPAtCZUb3FRYWtm7dGhQb0F9SUuLv779mzRoVCiVlIiOxXj0EwOXLlTuxVatWAPDXX3+pWMCIEdimDV65otxZ165dY8s9L1myRPGztm3bBgADBgxQ7mblhISEAAD72Y2NjWn10WqTmprKtlJSdp2Xq1exQQO0tkbOLRfyDZXYmJcffvih8uNPnjwJAFKptFGjRgp+p9WUuh2EZ86cYb076rrgoUOHAGDw4MGqXohrECLikSNHAMDQ0DAtLa2Sw86fP88Wg9fS0qq1z1l1y4kTqKGBAoESe72dPXsWABo3bqziUsLZ2SiVolCIHIbHh4SEsKH2VY7/LCkpuXPnzs6dO9lUy61btx47dozbKLMJEybI20VnKv4OS9Th3r17LJB+Umy9jgULMDcX4+Lw2DFUcSgemy/Lhpjp6+tX8h2Vm5vLApuNkenevXttWGL+Xep2ELJX9W+//VZdF4yOjgaAli1bqnidWytXRri4nB42LMLFJWb7dmVPHzBgAAB4eHhU+LsJCQnu7u5sMEjTpk0DAgK4TXElb/v1V7aKLb6rZTo9PZ/tzyffq6Fhw4aqT7nZswcBkNOMPsTXb3gikejYsWPl/3tJScndu3cDAgI8PDwcHBzYMqGMtrb2559/LhKJ6tWrp+xyIYWFhWzqLRtDePHiRY51E67+/PNPkUhU4SDS/HxMTMS7dzE8HIOD8dIldHPD5cvx+nXcuVPV+8o3VHJ0dFy6dGklW4ldvnxZX1/f0tKSbWF4/V2rfNUOdTsIWStieHi4ui5YVFTEZliruFfcnDlz4PUiuQr2Kpd37949DQ0NDQ2NO3fulP/vOTk53t7ebJVkbW1tb29vbluikEr8+iteu4bffIOIuHMnvniB4eHo64vu7mhlhU2bPi4/ElVLS4u9jf3++++q3HTYMARArjP6EF9P4dDW1vb39w8ICJg9e3bPnj3LJx/TsmVLNze3qVOnSiQS+Ue0QYMGSk3aCQ4OBoC2bduqZZQQ4Ybti6SlpdW/f39HR8f27ds3adJEKpWamCSWm5GIgwfj11+jjw/u3q2GIETEdevWsdfBH3/8cd26dX5+foGBgUFBQaGhoWFhYVFRUTdv3oyNjU1MTLx58yb7kHh5eanhxu9THQ7CR48eAYCRkZF6+yfYtmEqrmzr6ekpbxPg1jI+Y8YMAOjXrx/7f2UyWVBQEHsAFwgEbm5uatk8j1To7l10dcXQUPz+e5wwofxEZ5RKsU+fATNnzty+ffutW7eKi4vZmvpisZjzWN+MjAJ9fRSJUIGlwt9JJpONHz+efTzKJ1/5rTBSUlLkx+/evVsgEIhEoq5duwKAhYVF+d+tHBu7yEL0Xe0WpBrY2dmx74Ty2re/27gxWlmhoyMOGYIrVuDXX2NBAfbrp54gzM/PNzQ0fHvhmwoJhUIzMzPV57a9bwr9MLXT0aNHAeCjjz5S8I9EQVZWVvfu3YuOjra2tlbjZZW1cuXKoKCgM2fOhISEGBsbe3p6RkREAEC3bt3Wr1/P1k8h78/IkXD4MBgYgK0t/PsvdOsGNjZgYwNWVqChcar8kVOmTImPj//xxx/d3NwuXrzIckUpx44dQFz8xRfrGjUayblggUDg5+eXmJh4+/btXr162bzGBq+/bezYsQ8fPly2bFlMTEybNm0ePHgwePDg8+fPsxVMKlFQUHD8+HEAiIuLAwD5Goek+kkkkoSEhMWLFw8cONDwNba9V3kHD4KmJnz/PSQmquGmWlpat2/fXrRoUePGjQsLC/Py8nJzc4uKijIzM0tKSjIzM4uKinJzc/Pz83NycsRi8dKlS6v8UNW8mk5ipeXk5AQHB7u7u0ulUi0trR9//FG91//+++8BYOHChapchC0AzSbccF7CijVB6OjoyLsDd+/eTd2B1eDuXdy2Df/9F01NUZHFFWQy2RdffAEAjRs35vCm/vHHHwPAb7/9xqVWFchksokTJwJA/fr1TU1NAWDo0KFVtnMePnwYANh+Ok2bNqUPZE3Jy8vT1NQUiUQWFhajR4+ufNuQ/Hy0skJNTXxr51aCiCisofxVWlHRk7NndwwYMMDIyGjo0KGBgYH5+fkFBQV79uwpKChQ443Y33C2eiQ3eXl5165dg9ePzOfPny8pKeFwkfz8fLbNnoaGhpeXV3R09NixY99eMIWoXVYWNG4MlpawahVoalZ9vEAg2Lp1a//+/ZOTkz/++OP09HTF75WRkXHmzBmRSMRWDK9O7CVy4MCBL1++FIlEBgYGwcHB8+fPr/yshw8fSiQStljrZ599Rh/ImnLlypXCwsI2bdrExsbevHmTdfq+i5YWNG8OhYWwa1e1FVin1HQSV6CkJCs9/Y/8/HuImJd3NznZJybGISpKsHt3JwAQiUQODg4+Pj5XrlyxsLAAgLlz56rx7lu2bGnQoIGmpubgwYMjIiKUOlcmk+3evZvNcRYIBGyIMwB06tTpvMKbMclksj179sgvAgB6enqp9CBXjdzcUCjE/fuVOyszM5OtTOTs7Kz4ZOfff/8dAPr37690lWqSlZXFmnOtrKw0NTUB4Jdffqn8lLt377LZ9H///Xf1FEnexoZHsZ7aL7/8ssrjjx5FAGzbVpHV3HinNgbhkydf5uRczcu7HRPjFBUF7J8bN3QfPPhsz57dbEfHR48eWVlZtW3bViKRCASCkJAQtdw6IiKCNWeLRCKWYb169QoODlZkllhkZCRbtRIAbGxs2AzrQ4cOsTlbABDu6YlVTvz/558D7u7s+G7dul26dMnV1VXBDzpRi5wcrFeP45S+xMREMzMzABg1alQlnxn5fL7Zs2ezHh1/f3+VilZNUlISWyDGzs5OIBC8PYc1PT1dvgkUW2VbKBQaGRlRu2gNYt827CHmwIEDVR5fUoLNmiEAXrhQDdXVMbUxCFNT/RISPPPz7yckzLl5s2F8vHtGRrBM9p9H7JycHNYDxx6ITE1NVd/y+MGDB2yKjLu7+86dO/v27SvfssDCwsLX1/ddY58SExOnTZsmFAoBoHHjxn5+fuU7WgoLC319fV3t7GQCAUok6OGBFS5NlJiI06ahUFjaoEH3Nm3kF4mOjhaLxSKRSJWVdoni9u4tWwuBm7t377KPTfnprZXM52OfGVW2gFCLe/fusWE1ffv2vXXr1osXL0JCQlasWPHJJ5+waC9PT0+vVatWV5RdBYeoT25urkQiEYlEbAyBgkuPfv896ujI5s2jvd7eVBuDEBFLSjLi4saUluYivvORMzIyUiwWC4VC1h6l4nKuz56lsoHIQ4YMKS4uZnsc1qtXr2fPnmyHaADQ19f38PAovzdmXl6ej4+Prq4uAEgkEg8Pj3fuXPHsGY4dW7a5jpkZ7tv3/9/Kz8cffihb4EtLC7/9VlZuFz1EnD17Nqi2UQBR3CefIAAqP/nz/86dO8c6bAYMGODh4VHJfD4fH5/Dhw9zW0BZ7c6fP8+aRuVN+uWTz8XF5euvv96zZ09MTIyKy+gQ1Z06dYq1ZrN/K3hWQkKWnl4TTU1N6mp5Q20MwrS07YmJixMTF1d5JBvh2ahRIxZFgVz3gs/IwC5dZC4u3nZ2dmwq/alTpwYMGMC66IRCob29PVvpnwWeu7v7nTt3goOD5c2egwcPjlVkCfmrV9HeHgFwzBjcuRO9vXHuXLx8Gc3Ny+a+VnSRV69esbEJtXMHkw9JVlZ2165ZIhGq+Ia2c+dOoVAob2CHd8/nq1VWr17NPvM6OjoODg4eHh4BAQF3796l5KttvvvuO3l7mFJL3A0aNAgAfv755/dXW11UG4MwIyP48eNpGRlVd/vJX93Yiuz6+vocVt/OyytbE9TKCl++/E8D7P379z08PHgPE3wAACAASURBVOTzctq0aWNjY8OaQOWD5bp06aL4QBhExNJS/P13jI8v25azpASnTcOTJ7HSi2zcuJG9RnDYcIcoLjAwEAA++USlLXaZdevW2dnZ/fTTT2FhYa9evVL9gtUjISHh/PnzlHy1HPvGYx2ESm2xe+zYMdbXQ/275dXGIExMXBQVBUlJVSxtzjx69Ii9Dvbo0QMAHB0dlVrwqaQER4xAADQ1xSdPKj4mOTl50aJFbJgcAJiZmY0bN04ikRgaGvr7+3NcXyo3F7/+uuzXCuxsXlJSwl5JV61axeV2RDGDBw+GmpjSR4jisrOzxWKxhoaGtra2QCBQfC+t3bt35+fnsz4gFfeR/sDUxiB89swrKgqSk30UPH7Lli3sdZANdVEqKtatQwA0MsJ7VfUfFxQUBAQEtGvXzsXF5erVqwBgbW2t+I0qMHUq3rqFR4+iYs0UbKMDXV3dGh9Y8aFKT09nM5Q579JHSDVg2xuxxSAV3HunoKDA3d0dAL788ktbW1ttbW3Vd9D8kNTGCfWIxQAgEIgVPH769OlDhgzJzMw0MTERCASLFy/28/O7devWkydPMjMzKzxl1y549AgAoGFDGDcOjh8HK6sq7qKpqTl+/Pi7d+8eOHDg2bNnAMAW4+Bu/Xq4fx90dWHePEUO79Onz5AhQ7Kzs5csWaLSfck7HDx4sLCw0MzMjD1REVI7/frrrwDQokWLc+fOsaW3K5eWljZgwIDAwEC208jVq1dLS0v79Onz/iutM2rjWqOIJQAgEChR29atWzt37ty3b9+mTZteunSJrVjNCASC/v3vPHzY3sAA2D+GhqCrC1evwqZNEBUFgYFK1CYUCk1MTBITEwGAzXnnTioFNzelzvjll19Onz69Y8eOGTNmsE2fiSpKS0tjYmKuvRYRESEQCB4/frxs2TJvb++aro6Qijk7O1+8ePHPP/80NDRkCzFW4tYtWLjQ+6+//jI1NdXS0rp27Vr9+vUPHjzYu3fv6qm2TqiNQZiSol9Q0D07W1fx53ITE5OYmJisrKwuXbpkZ2dbWlqKxeKMjIyMjIzs7OzsbN34+P8frK8PU6aAqyvs28exQhaEqr4RKs/CwmLWrFlr164NCgqiIORAnnxRUVHXrl27detWbm5u+QOkUmlxcfGyZcuaNWvG1uEkpLaZMWNGbm6uj49PYGDgqVOn1q5dy/YDeduxYzBuHCCu7tWr+NWr27dv/9O+ffvg4GC2ZS75v5pum63A1KlTQfm1NoqKithSC4MGDSo/IKqkpOTly6LYWIyKwjNn8NAh3LsX581DRPTwQG7t5PPm/e3i8sv+/f9wOVk1GRkZNIlCWQkJCa6urm/PZIdy8/kCAwONjY3h9eZZqmyrREg1uH//PnurEwiEEycmPXr05gG+vigUIgDa2qJEgs2bPxg58vN3TnTmt9oYhBMmTACA7Upu7M52qzczM3tjdagKBQQgIiYk4MaNeP++0hX27o0AGBam9ImkRjRq1Eg+pa+S+XyRkZEsKZ2dnU3q1Ut2csKbN2uqZkKqJJPJduzYMXBgINsp88cfsaio7LeePEFdXRQKsW/fsq00p01Dte7c+kGpjUHIXvMDAwPj4uIUXHTj+PHjAoFALBZfvnxZ8RtFR2OzZmhlpfTno3VrBMDoaOXOIjXi33//BQAtLa1jx45VuQ5fcHCwSCTqYmLyYsAABMAmTTAhoXrqJISbV69w2rSyRas6dED5V+Dx42hriwAokeDWrTVaYq1XG0eNsk2LNDQ0Fi1a1KRJE0dHx/Xr16ekpLzr+ISEhAkTJiDimjVrlNqx1sICtLQgOhp++025CpOSAACqvYuQcLF//34AcHd3Hzp0qJGRUeUHDxky5ICfX6SGRsPz58HaGpKSwNUVlNlWiZBqZmgIfn4QFgatW8Pdu7BgAQwYACUl8PIl9OsHRkYQGgpTptR0lbVcTSdxBQYMGAAAHTt2dHJy0ny9HZxEIhk0aFBgYGDWf1esLioqYossDB48mMNaCcHBCICGhqhAe2qZV68QAHV1lb0VqRlsPcYwpRqyvbwQAHV0sFUrBMBevbDSXU8JqQ3y83HxYrx0CceMwfXrcf16fPQIa8dCtrWdABFrMIYrFBwc7ObmVlRUBAA6OjqdOnUqKSm5ceNGcXExAGhpafXr18/NzW348OE6Ojqenp4bNmxo1qzZjRs3qnzer5CrK5w6BbNnw4YNVRyZlARNmsDz5zB9OkgkcPAgh7uRanX79u3OnTsbGxsnJSVpaCg8RhoRvvgCAgPBxAREIhg5En75BYS1sfmEkDekpMCOHZCRAYgwdSpYWNR0QXVCTSdxxWJjY319fR0cHORLeurr6zs4OHTv3l3+dXb27Nng4GDWNajKjjB37mCbNtG2toPu3r37xm+lpaWFhhYuW4aDBmHDhqihgUlJOHAglpRgYCDGxan2Q5L3b9GiRcBtN8eCAuzVC0Ui3LYNZTKMiMDr199DgYSo2YsX6OOD6eloYYFvDyUlFaqNb4TlJSQkHDly5ODBg5cvX2b/xdDQ0MLCQigU7t2719bW9tWrVxs3bpw1a5Yqd5k1a9bmzZsHDBhw6tSp6OjoU6dOsfUX4uLibGxSr11rwA4zMoLAQNi+Hfr0AUTo3x/atFH1ByTvVZs2bR4+fHj+/PlevXopfXJ6OkRFQf/+4OUFTk6QlQXPnsGCBeqvkhD1KSyE+HiwtISbN6FVK9DRqemC6oLaHoRy0dHRBw4c2L9//4MHD9h/EYlEpaWlI0eOPKhyG+WrV6/atGnz8uXL4ODg6Ojob7/9lv13be16Li6hOTmOhYWQkADPn8OKFSAUQmYmaGrCuHEUhLXa9evXbWxsGjVq9OzZs/I7IiltxgzYsuU/vyCEfEDqTLeHlZXVsmXL7t+/f/fuXW9vbwsLC4FAYGxsvG3bNtUvbmRkxLY2nDNnjqmpaa9evfr27WtlZaWhoX/6tGN4OFy9Cs+fg54e5OUBAHh5cV+VhlSboKAgAHBzc1MpBQGgtPTNXxBCPiB15o3wDTKZLCoqysbGRtXvuNeKi4s7d+784MGD0nJfdhKJZODAl82a6djaQvfu0LYtFBXBv/9C164QEQFWVqCvr5abk/eiVatWsbGx4eHhbLEY7nbsgPh4KCgAFxcYNEhN1RFCaou6GoTvQ3BwsKenp1Qq7d69u62tbffu3bt06SKRSGq6LsLF1atX7ezsmjZt+uTJE6HqAz5LSkAopIGjhHyQauOi2zVl6NChQ4cOrekqiHrI20XVkIIAoPjUC0JIXUNPuOTDFBUVBQBuSm50RQjhIWoaJR+sa9euWVtby6eiEkJIhSgICSGE8Bo1jRJCCOE1CkJCCCG8RkFICCGE1ygICSGE8BoFISGEEF6jICSEEMJrFISEEEJ4jYKQEEIIr1EQEkII4TUKQkIIIbxGQUgIIYTXKAgJIYTwGgUhIYQQXqMgJIQQwmsUhIQQQniNgpAQQgivURASQgjhNQpCQgghvEZBSAghhNcoCAkhhPAaBSEhhBBeoyAkhBDCaxSEhBBCeI2CkBBCCK9REBJCCOE1CkJCCCG8RkFICCGE1ygICSGE8BoFISGEEF6jICSEEMJrFISEEEJ4jYKQEEIIr1EQEkII4TUKQkIIIbxGQUgIIYTXKAgJIYTwGgUhIYQQXqMgJIQQwmsUhIQQQniNgpAQQgivURASQv7H3r3H5Xj/fwB/3/fd3bkoh0olZ8KYUyjFCIvMHDLbNAyZIca2bGYZtmXHfO0gY1uYQ84ZRhhijHKMjBAqKTrqfHe/f3987F4/h9yHuMv1ej6+j++Duq7P/U737td1fa7PAUDSEIQAACBpCEIAAJA0BCEAAEgaghAAACQNQQgAAJKGIAQAAElDEAIAgKQhCAEAQNIQhAAAIGkIQgAAkDQEIQAASBqCEAAAJA1BCAAAkoYgBAAASUMQAgCApCEIAQBA0hCEAAAgaQhCAACQNAQhAABIGoIQAAAkDUEIAACShiAEAABJQxACAICkIQgBAEDSEIQAACBpCEIAAJA0BCEAAEgaghAAACQNQQgAAJKGIAQAAElDEAIAgKQhCAEAQNIQhAAAIGkIQgAAkDQEIQAASBqCEAAAJA1BCAAAkoYgBAAASUMQAgCApCEIAQBA0hCEAAAgaQhCAACQNAQhAABIGoIQAAAkDUEIAACShiAEAABJQxACAICkIQgBAEDSEIQAACBpCEIAAJA0BCEAAEgaghAAACQNQQgAAJKGIAQAAElDEAIAgKQhCAEAQNIQhAAAIGkIQgAAkDQEIQAASBqCEAAAJA1BCAAAkoYgBAAASUMQAgCApCEIAQBA0hCEAAAgaQhCAACQNAQhAABIGoIQAAAkDUEIAACShiAEAABJQxACAICkIQgBAEDSEIQAACBpCEIAAJA0BCEAAEgaghAAACQNQQgAAJKGIAQAAElDEAIAgKQhCAEAQNIQhAAAIGkIQgAAkDQEIQAASBqCEAAAJA1BCAAAkoYgBAAASUMQAgCApCEIAQBA0hCEAAAgaQhCAACQNAQhAABIGoIQAAAkDUEIAACShiAEAABJQxACAICkIQifCGYeN25cp06dvvnmm9zcXGOXAwAAjyRjZmPX8KwpKCgYM2bMhg0b5HK5Wq02NzcfNGhQYGDggAEDFAqFsasDAID/B0H4/6hJnV6W7mDicKzwWHer7nq0kJKSMmTIkLi4OGtr60GDBmVmZu7bt0+tVhORm5vb6NGjR48e3aRJk6ouHAAA9IQg/E+xujjoepCPtU8Jl1wpufK1y9e6tnD48OFhw4bdunXLzc1NoVB07NgxKioqLS1t1apVy5YtS0pKEod16tQpKCjotddes7a2ruofAgAAdIMg/M/OvJ0F6oLhtYcT0cyUmV2sulwqvjS6zuiGpg21OX3p0qVTp04tLS3t2LHjpUuX8vPzO3XqtHfv3lq1ahERMx84cOCXX37ZuHFjQUEBEdnY2IwYMcLPz2/YsGFP9OcCAIBKYLDMf9Ssllf4B/nq1lcf3/y4cULjHhd7LL29tEBd8KgTVSrVrFmzJk6cWFpa6uXlderUqfz8/FdeeeXgwYMiBYlIJpP16tUrMjIyMzMzKirK19f37t27y5cvHzly5Lx58574zwYAAI+AO8L/FKoLJ1yf8HKtl1WkiiuIe9H2xV+zft2Us6lYXUxEtRW1gzOCB9Ya6OHhUfGsO3fujBgxYt++fWZmZp06dfrrr79kMtnHH38cGhoqk8kqebmLFy++/fbbe/fuff7550+ePPlkfzYAqCFyc3NLS0vr1auXnJzs7OysVCqNXZE+Dh48aG9v37ZtW2MXoh2GCkrVpeeKzuWp8jLLMsVXclQ5kXcifS/6Kk4onDs7E1GrVq1CQ0OvXbvGzKdPn27cuDEROTg4tG7dmohsbGy2bNny2BfKzc0dN26cr68vETk7Oz/ZnwoAao79+/evX7+emUNDQzMzM41djm7UanVMTIy/v79CoVAqlWPHji0sLDR2UY+HO0JtJeYk/vzpz6tWrUpPTyciExOTTp06nT17trCwsE2bNpmZmRkZGc2aNdu6datIxMqVl5dbW1uXlJSYm5sXFRXl5ORoOlEBQMrEYIJ27drt2rXrt99+q1u3rrEr0kpxcfHKlSu//fbbxMREIjIzM1OpVOXl5c8///yaNWtatWpl7AIrg2eE2nKv7f7ll1+mpKTExMQEBATI5fITJ04wc58+fS5dupSRkdG/f/9jx45pk4JEpFAoWrRowcyurq5EJN46AABE1K9fv0mTJnXp0sXYhWglMzNz4cKFTZs2DQoKSkxMdHR0DA0NvXLlSs+ePd3c3E6dOtWxY8dFixYZu8zKIAh1o1AofH19o6KiUlJS6tatW1RU9O233/bp0ycoKOj333+3s7PTvikRmfb29oQgBACigwcPjho1iojMzMwsLCyUSmXl4wyM7tKlS9OmTWvUqNGsWbPS0tI6dOgQGRl5/fr1uXPnLl++fN++fenp6T4+PkVFRdOnTx86dGhWVpaxS34EI3fN1mSDBg0iovXr15eWlupx+ieffEJE3t7eRPTee+9VeXkAUIOcO3euadOmpqamEydONHYtj7dv3z5/f3+R03K53NfXNzo6uuIBRUVFwcHB4oB27dqJRz+urq4HDhwwVs2VwB2h/tzd3YkoMTFRv2Fd4vSioiIiOn/+fNXWBgDGcvPmzZ07d7Iuwy9SU1MDAgIuX77cqFGjIUOGPLnaqsSLL77Yu3fv33//3cLCYtKkSYmJiTExMeLGQMPc3HzRokWbN2+uU6fOmTNnTExM2rRpc+PGjd69e8+aNausrMxYxT+UibELqME0Qajf6aJrNCMjgxCE1dW5c+cmTZp048aN5557zsnJycnJycHBwdnZuX79+s7Ozg4ODqampsauEaqXjRs3vv7662q12tHR0c/Pz9/f38/Pz8Sksk/a3Nzcl156KSkpqVevXhs2bKhTp85Tq1YPeXl5u3fvlsvl8+bNe+uttyqvdvDgwd26dRs9evSuXbuysrK6du0aFxe3cOHC/fv3r169uhotNmnsW9Ia7O+//yai9u3b63d6aWmpUqmUy+WmpqZyufzu3btVWx4YSK1W9+7du/J10uvWrdu2bdu+fft269Ztz549xi4ZjGzJkiXiDWNpaal5k9SvXz8oKGjXrl0PfYZSWFjYrVu3evXqvffee2q1uuprUqs5NZXLyqqqvX/++YeIXF1dR4wYsXDhQu1KUIeHh4urxhYtWjg4OBCRlZXVr7/+WlVVGQhBqL/8/HyZTGZubq5SqfRrQQwpFpdF8fHxVVseGEiMc6tVq1ZYWFjnzp09PT19fHy8vLw6d+7cqlUrR0fHipf5crnc3NxczC4FaQoLCxNvhpCQEGZOSEgIDQ2tOG3Azs4uICAgMjJSc9WrUqm8vLxcXV337dv3RGoqLuZx4/jnn3nCBK6iN+eff/5JRGKmfL9+/bQ/8ciRI2LWtbW1ddeuXWUyWcuWLaukJMMhCA0iJj9cunRJv9OHDh1KRF27diWiVatWVW1tYIiEhAQLCwsiioqK2rJly6PuCGvXrt2kSZPXXntN9JPPmjWrqgpQqbLz8vaUldWw+dTSpFKp3nrrLSJSKBRLliy577unTp36+OOP27Rpo3nbWFtbjxgxIioqys/Pz8vLKzc390lVtnMnb9zIzHzlCn/+eZU0uWrVKiISUzvGjBmj07m5ubmjRo0aM2bMpk2bdM3RJwqDZQwiPv70fsInTjczMyPMoKhOSkpKXn/99aKioqCgoICAgG7dum3dunXJkiWhoaETJ0586aWXunbt6uLiYmpqmpOTc+XKlVq1aq1YsYKIfvjhh6rah/n69SlEJmVlNw1sJzk5efv27WIVCHgSSkpKXnvttSVLlpiZma1du3bixIn3HdC+fftPPvkkISHhypUr4eHhXl5eBQUFUVFRM2fO3L17t52d3dq1a8VYgarHTKJvXy4ntbpKmkxLSyMiMULQ2dlZp3NtbW1Xrly5dOlS0Yi4QawWjJ3ENdv06dOJKCwsTL/TU1JSLl68OHXqVBMTE3t7e83KbWBcwcHBRNSsWbP8/PzKj8zIyDh79uzly5eZ2cfHh4i++eabKqnh+vXg9PSvVKqckpJktVqf+TlXr14NCQmxsrIiInt7e4OGrV+8yNu2cXY2l5dzYiIzc0YGZ2To3+CzIjs7W/zea9euffDgQS3PSk5OnjRpUsXPYaVS2a9fvyVLlqSnp1dlfYWFPGYMb9nCkybx5ctV0qT40OvevTsRff/99/o18uGHHxLRJ598UiUlGQ5BaJCIiAgiGj16tH6nl5eXz549WyaTaZ42mZiY+Pv7b9y4saSkpEorBW398ccfMplMqVT+/fffOp24bds2InJxcdFvXumDCgsTrl2bnJjY5fRpx9TUUO27SePj40eOHCneVDKZTAzcUCgUc+bMKdNj0MSBAzx3Lp84wYGBnJHB77/PzLx9O+/YoXNTz5a0tLTnn3+eiJycnE6dOqXTuXl5eWKg3PLly/39/TVTsORyuZeXV1hYmN4PXO6Xn8+rV/O333JgYJVk4YgRI4ioQ4cORLR582b9GhkzZgwRLVu2zPB6qgSC0CCxsbFE1KVLF2aeOnXq9u3btR84k5+fLyYMKRSKzz//PCYmJjAwUDyXIqJNmzySk4MKCuKeZPlwv4yMDEdHRyL64osvdD1XrVaL50AGPu69dWtRfv7BmzcXpqTMunnz03Pn2sTFUVwcnThhkZw8/u7dM5WcGxsbq5nmrFQqPTw8mjVrdvbs2dDQUDGasUuXLjp/ws6YwWJwx5o1/Mcf7O3NCxbwG29IPAiTkpKaNm1KRO7u7vp15IgJVMeOHWPm27dv//zzz/7+/uJBibiC8fDwCA0NPXr0qEGFjhjBRNypExPxihUGNcXMzF5eXkTUokULTfF66Nu3LxHtqDZvIQShQW7fvk1E5ubmYiSVuDYMDg4+ffp05ScmJSWJYVf29vYxMTGar2dmZoaHhwcEDBCffXFxdP58h1u3FpWV3c7N3Xnr1uLS0irtOXmGJCVxUhIz8759/40V37CBc3K4tJS16RdUq9ViUrCPj49+I4GXLVtGRO3atdN7HPydO7/FxclOnLAoLU1Vq+/VkJ8fe/lyQHy8Ii6OIiN7eXl5RUVFVaywpKQkMjJSs+WNtbW1p6dn/fr1xV/FukVHjhwR45NtbGwiIiIeX0p6OoeGcr9+PHcu37jBzPz99/zXX7gjZObVq1fXrl1b9BDeuXNHv0bGjh1LRIsXL674xYKCgujo6MDAQBsbG/Hrs7KyOnOmsqufx/jiCybibt2YiCdP1r+df4kHe2Ip8JSUFP0aEZeMj/2cfGoQhIaytbWVy+W1atXy8PBo1KiRptPf09Nz6dKlDx0PduDAgXr16hFRy5YtL1y48NBmCwsTUlJCTp2qL+Lwxo2Qa9cmqVRZ5eWYbvhwO3bw9u3MzO+/zwUF9744bhzPns0FBfzhh5yaypX3Ny9evJiI7Ozs9H5SW1xc7OTkREQVL260l5f3Z3y8WVwc3br17cMav3jt2tR27RqKN1izZs0WLVqUlpYWHh4uRi8TUb169by8vDQ7mbRv3z4yMlLTVZubm/v666+Lbw0fPvyRn+Bnz/Lo0WxqykRMxDExPHUqz5/PH37IhYU8Zw4z865dvHu3Hj/js6F79+5yudzDw6NA81bT3ZIlSyws7IODFz/0u4WFhZs2bRJx+8MPP+j9KnzgABNxixZMxJ07698OMzOr1Wpzc3PRhatQKPTpaWdmZrEsc/XZZApBaKiNGzc2aNBAk39t2rR54YUXNKtvm5ubBwQEREdHa67fIyIixPOAAQMG5OTkVN64Wl2clbX+0qWBxcVXr12blJo6u7z8McM3JGvHDn7jDV6wgL29/wvCGTN48WLev59nzWK5nIm4Xj1u25b79eP33rvw/vvvh4eHr1mz5sCBA2K9KCJat26dIWV89tlnRNS/f39dTywsTDh5snZcHN24MaOSw3Jycr7++mvNcDvNHj0tWrTw8vLSPGz28vKKjo5+6I1pVFSU+Hht2LDhfSNo9u7dO/PVV1mhYCJWKHjECD5+XNcfRAr8/PyIaNGiRYY0cvJkkVLJzZtXdoyYmzhlyhT9X6aggE1MWKm89/+G7Q6YmZlJRLa2tkTUoEED/RopLCwkIjMzsyeygIBeEIRVIyEhISQkRPOpZGZm5uHh0a5dO7lc/u8zv03FxcVvvvmm6P0PCQkpLy/X9VXy8vZnZBhwbfhMe+gd4YwZXFbGo0fztGncoAGbmNy7ySHinj0P0P+nUChGjx5dXFxsyIVqVlaWtbU1EZ08eVL7s65fvz5qVP9Dh6wuXx7B/Pg3hkql2rRpk6urq7W1devWrT08PMSPoFQqAwMDHztw4+rVq+JJj1wuDw4OLioqio6OFvNZiehaz548dSpfuaJ9/VLzww8/ENEbb7xhSCMqFVtZsUzGt28/8hjxzEWMQtBf+/ZMpG7evKhFiwwdh4Dd5/Tp0/TvGiCd9b2/vHTpEhE1btzYkEqqFoKwKhUXF0dFRfn7+2suzB0cHHr06NG2bduUlJSePXuKe8SVK1fq2nJZ2a3U1NBr194uKkp8EpU/A44e5SNHmJl//JHv3uXffuO1a/nHH5mZjxzh5cuZmdVqvnmTT5/mHTt47dqTn376aXBw8PDhw3v06CEucseNG+fk5GTgB9y0adOIKDAwUMvjs7OzxeO9oKCR5eVF2r/Qa6+9RkQrV64MCgqysbEJDg7WvlO3rKxs9uzZYgSNpivVwcFhwYIFej/0ko74+HjxaMPAdry9mYh37nzkAfn5+QqFwtTUtKhIhzfGfQ7NmRPcvn0/Ly8i+vbbh/S6ay88PJyIWrduvWvXLr3XFDxw4IDotDCkkqqFIHwirl+/Pn/+/GbNmonPF5lMJj5r3NzcdLpRqCg//3BS0uDU1NAqrfSZlZPDOi1kuH37diISC6cplcrr16/r97pXr169fv26Uqk0MTGZM2fOqlWr/vzzz/Pnz2dnZz/0+JKSEl9fX/HhkpWVpdNrvfDCC+J5ZHp6+mO72R/qyJEj9vb2DRo0aNiwYXh4eKFh/WbSUVpaamlpKZPJdP2V3efdd5mI586t7BhxkXREXOXpZfny5fTvWjAjR47UrxHNeqGiX/3ll1++Xcmd7MOUlZWtXr06NjZ29erVRBQQEKBfJU8CgvDJiouLCwoKsrS0dHNza9y4sSGzZXNzd8fF0YULPlVY3rOqoIDffVe3x1tqtbp9+/ZE1K1bN9J3h8g//vhD5J+jo6NmAIuGubl548aNPT09hwwZMmXKlHnz5i1btmzAgAHicUtycrKuLyfWsUxISNCjVGYePnx43759RSNxcZiooxvRt7xr1y5DGomKYiJ+6aXKjhk3b0AZMQAAIABJREFUbpyBzyMTEhLEe0zvDsmMjAzxRpXJZAMHDhTbiTs6Omr54+fl5YWHh7u5uRFR7969p0yZQkTTpk3To5InBEH4NIjV+QYOHGhIIyUlN+Li6NSpOlVVFdzn559/JiJxH29ra6vrPVZGRoYYMio2W3Zycnr77bdHjhzp4+PTsmVL8eDwQS4uLmZmZqdOndq6dauuO5CIbga9ezLFJgDiwXZaWpp+jUjWO++8Q0Tz5s0zpJFz5/iHH7i0lCvpZVy6dCkRvfbaa3q/Snl5uej5F1MydL0c37Nnj3hj161bd9u2bcx8/fp1sZ6OTCYLDg6uZAWJq1evTp8+XTMVpFGjRt26dRMjJ8aPH6/3T1TlamoQ/v333x4eHvXq1fvss8/0nsvy1Jw7d048YTawnZMna8XFUVkZlrZ6IkpLS11cXIhI3Bp++eWXOp3+0ksvEdFzzz0nl8tNTEwe7MsqKCi4ePFibGxsVFTUokWLPvjgg1deeUWpVMpksldeeYWIZs+erf3LiS2dTU1N9Rt6p1KpFAqFXC4X4+D13kFFstauXUtE/v7+hjRy8CB37sy3bvH06Y88RoxPadq0qSEv1KtXL5FbRDRhwoQbYmLo45SVlYWGhorceuGFFyp+0qpUqrCwMDEA3sPDI0nM4a0gPj4+MDBQM1qiVatWmo04lEpl165dDXnqWeVqZBCuWLHC3Nxc/FKJSKFQvPjii+vWrSsuLjZ2aQ9XWloqNh00ZNYRMycmdo2Lo7y8/VVVGNzn888/p3+Xj3J2dtZ+obvvv/9ejDoRt1mffvqplieKRRdbtmwpk8nMzMwuXryo5YlXrlwhooYNG2p5/H1SU1OJSMxndXR01K8RKbt69ar4BzSkkYMHeflyfuedyoJQpVJZW1vLZDK9BzMXFBSI9f01g9hlMln37t2//PLLy49edC05OdnT05OITExMQkNDH3qppFmlwdbWVrOg0o4dO8SJ4kLNy8tLM8Ha1tZWpyFdT00NC0KVShUSEiL+TcePH79t27bAwEDNHpi1atUKCgqKjY01dpkPIZZTOnHihCGN/P33rBUreu3eXV12s3z25Obmiv5GsYLUCu2WpDp37px4E3bu3Fl0jWp/g1VQUCCenYhVjF+q/HlRBYcPHyairl27ann8fcS4x+bNm4vg168RiRMXPVf0nWeSn88HD/LmzbxsGXftytu28cyZ/NDecTHgfLuYHqSjrKysHj16EJG9vf2uXbvEsjUVO+pbt24dGhp630Pi9evXayabVv6JmpOT8+qrr4qmAgMD8/Pz586dK7phu3btqplR3bhx47CwsEcNGTM6owVhenq6rutKZ2fz66+/La4yKq4RlZOTExERIZ5dC+7u7mFhYVW8jrthpkz5tWfPHRs2pBrSyBdffEFEwcHBVVUVPEg8+xGx9Nxzzz2247G4uFisvCzegbVr19Z12MuaNWuIqFmz7ra2tXv0WPbHH1qt1rFhwwYievnll3V6LY3ff/+diDp16kREfn5++jUicWJBvjVr1uhx7rFj7OjIX3zBf/7J5eX8yivcpAkTce/e2dHR0fcd/P777xPRxx9/rOur3LhRKBYzc3NzS0z8b+ZVYWGhSETNzBnx7CY4OHjPnj1i9xUiGjp0qJbDYiMjI8U+J40bN/7++++9vLzEAjTiPRYZGan3GjRPh9GCcOjQoXZ2dkFBQVruzH7xIru7s6vrlebNWz1qN+czZ8688847miUWlUqlv7//fUv5GcucOUzEH31kUCPiw8vX17eKioKHuHHjhlKpVCqVYoDAY8fFieBs2LCh+CDQ72PxzTe329qqe/bMI+KWLR+zFJzw3XffEdFbb72lx8sx808//aQJ7zfffFO/RiRuwYIFRDS9km7NR9ixg62smIiHDfvvi/Hx3LWrulWrV+mBEZXioqd37946vcq5c9ywIffq9Wnr1q0fNR2ouLh427ZtY8eOrVOnDlVgaWm5dOlSnV7u/Pnz4uG6GBqjUCgCAgIMmfXxNBknCFUqlehEEjp27BgRsamSsW/bt3OtWkzEHTrwtWuPWXdDpVLFxMQEBASIB7nW1taHDh2q4h9Ad6tXMxEPHWpQI5cvXyYDVjYCLYmJ6mLwZ+VJs3v3brGLluj6Hjt2rH6vmJDAJiasUHDjxkzE2mx9MXv2bDJgR7f58+cTkRj7p9MgHdCIiYkhIhcXlwxdtmZcuZKVSibiwEC+b7hleXl5RESEra3t77//XvHrq1evtra2NjMze2g35kMdOsT29kzE3t6cnf34oQllZWUxMTGTJk0SUyPWrVu3fv368+fPa/9zMXNRUZG9vb2pqekbb7yhd4+xURjzGaFYlkw8ru/V64iZGfv7c1QU33cP/cUX91aJHDGCdRprkp6eLobCL1mypGor18PJk0zErVoZ1Eh5ebm47ag+i9U+k06fPi2TyaytrTdt2lT5kaIHVURmkyZNHrrGupamTGEibtuWidjGhlMf14kuppdFREQkJSVdvXpV15d7++23iUg8PaomvSY1zo0bNxQKhUwmE5sIhoeHP3YEe3j4EgeHm0Q8axY/qtP9vt7IX375RYy91OzRRkStWrX66qujj+pNi45mS0sm4sGDdV5bdOLEiUQkRrvMmFHZsrcPEgNc69atW807Qh9k/MEyYlmyV18tFCv9ErGzMy9YwIMGcUkJ79vHwcEsk3FICOu+Nue9JWurw8zNoiJWKFip1KrX61FOnDhRu3ZtBwcHBweHkJAQ7UcYgq46duxoYWFhamrq5OTUqVMnf3//oKCg0NDQ8PDwqKio2NjYy5cvl5WV5eTkjB8//lHzJXSSlcX16t3bMGfaNH7UJEa1Wn3+/PlffvlFTNhfunRp165dbW1ttRzXozF06FAiEouUbtiwwZDKpWzFihXdunUzNTUV+SSXy8VozAfvh9Rq9YwZM4jI3b3T//6nbU6Eh4eL4fEhISGlpaWxsbHBwcFikE6bNvlE7ObGwcEcG8vFxSwGtSQl3dtzKSiI9ZgUs3v3bvp3NVFXV1edJueEhoYS0YQJE3R+VWMzfhBqpKVxeDg/9xwT8bhxPGgQL1zImzbx/v36r4AfHR1NRP369avSSvXUtSt7e/PNm3qevnLlSvH8WYzmIiKZTNajR4/ly5fn5eVVaaVSd/369Vq1amk+3R5FoVA4OTmJHvgFCxYY/roREdynDz+4UExuLu/ezYsWHfPz89MMwxPvBGtra7F0FhGNGjVK+1tScS8rRlIcPnzY8OKlTLOJ4KNGY5aVlYkF901NTVevXq1Nm2q1+t133xX/mX/99dcVv1VWVrZ375+TJ7OT03+LyA8dyg0b8sWLHBHBsbGs90I0ZWVlYo0F8Yxcp613xWpwf/zxh56vbTzVKAg1Dh3ixESeOZPnzuWvvuL9BsyaS0pKEp34VVed/l59lcvK+MCBh3zSVa7ipJGgoKCDBw+6u7t7enpq/qsTmz3FxMRUn21Naq7y8vLevXsTkZ+fX0FBQWpqalxcXHR0dERERGhoaFBQkL+/f6dOnZycnMSK1QqFokWLFlUyIV2t5uhoHjGCmXnaNI6K4vHjuW3be48G3N3jxK/b2dl5+PDh8+fP79+/v/iKl5eX6DN3c3M7ePCgNq+VlZV18uRJEavoWqgqd+/eXb9+/auvvipWchHc3d3FNBUbGxstN6osKSkZOXKkCM61a9c+6rDyco6L49BQbt6cFy3iDz7giRM5IkLnT5j7jB07Vqm09PEZSERz52q73c2lS3ccHJxq166t63SA6qA6BqEgptR06GBQEJaXl1tb12rUqG9OjvFXMejfn7/9lqOiWKexO3l5eWLJEhMTE7He4OTJk8V/YBYWFt7e3h07dtSsLeDq6hoSElLJJFl4rE8//ZSIHBwcHjv9prS0NCUlZdeuXVV4/REdzVOn8rZtPG0aDxly72LfzIy7d+eZM8vWrVt33/C/yMhIcT3k7OwsrscVCoXoRqvkVXJzc8PDw52dnWUymampKbabqHLFxcUxMTGabkwxlN3JySk4ODg2NrbyLdjy8/PFJY61tbX2a5neucNz5/KOHdyvn6FBuGvXTTs7dfPmNxo1KtV+QZuwMJbLy4ODLxn02kZSfYNw714uLeXVqw3dFq1zZzURV4dBvDNm8OzZ/PXXvGULjx+vVRxevHhRLAlRp04dzaSRoqIisdmTuCMRn9qenp6a/YHlcnnLli21XEUJKoqLizM1NZXJZPpNXjZcdDT/+SdPnMhBQbx1K3/zDf/1F1e+YtKFCxfEdEATExMvLy/xrvDw8Lh06SEfSVevXg0ODtb0Jbi7u1eckgtVTozGdHd3rzg/oUGDBpMnT967d++DHQnp6ekdO3YkIkdHR53W38jL44ULmZlHjuREw/ZqKy1lO7t7u1gTsZb75XTpwkS8ebNBL20s1TcImblFCyZiHUfw3u+115iIf/65imrSS2QknznDM2Zwbi63b89vvXXvSr9FCw4N5UeN+Nu5c6d4HNiuXbuHDgtMTk6eO3euZrNymUzWsWPHXr16mZmZkQFrjkhW2V31569HWlhY6DpYrgqJILx4kXVamLbimpDu7u7i6Y6tre26des0x5w8ebLi2o+VbGEPVW7SpEkhISFxcXGhoaGim1Swt7cPDAyMjo4Wy0NeuXJFfLdJkyYPvY6pRFYWb9vGzHz4MD+w8KfOAgOZiLt313b2840bLJOxpaVuA/urj2odhAMHMhFv3GhQI/PnMxHrtalOFVCpeMYMJuLGje/tn37wIB86xLNmsbPzvTg0Ny8ZOvSVqKioimulhoeHi0v7gICAx25KIDZ7Epf59vb2UVFRhHWzdHf43cLIhjkrXz9lxEVrMzNZDJ4/e1bnc/ft2ycWDbexsRHD38W4jNjYWH9/f/HJq1QqAwICjus9/Az0snjx4tatW2v+evz48Q8++KBly5aaRKxVq5a3t7e48O3SpYtOExOFlBT+/HNm5pUrq6ADbMsWFms7iOv1x/r2Wybi6rTDoG6qdRC+9x4T8fz5BjWyYQMTsWE7IPGVK1fatWvn4uLy9ddfa79yW24uDxrERGxiwg/O1Cov55gYDgxkH5+NmkGAQUFB+/btGz16tLjDCwkJqfxxwv9/udxly5YtWrQoNzdXJpNZWFhofy5c21ka2TBnVfOcrMQavA9DxYUfvb29v/nmG/HgUKRjcHCw3hsOgyH2799fu3btB+Pt8uXL4eHhXl5e4jG/Uqn08fHRbzZqSgr368cLFnBAQBUEYVER29hwnTo8bhxv3/7IKY8aEyYwEWs3HrY6qtZB+PPPTMQG7MPFzHz+PBPp1tF0n7/++svR0VFz7aZQKHx9faOioiofHJWYeKVlSzUROzhw5cuA37lzZ/HixeLBgIaNjc2WLVv0rtnZ2ZmIMGpGSwU3y9e2z41smHNhRc0b8Pagn376SQwiFVxcXL766itDJvuDgZKTk2vXrr1QPMR7mKSkpNGjRy9YsEDvDWqq9o6Qmb//ns+cYWZ+YOnT/+f8eRbL4Pz008NXDK8RZMxM1dXRo9S9Oz3/PJ08qX8jKSkUHU0jRtDFi/Tv3iA6+O233yZMmFBUVNSjR48JEyb8/vvvW7duLS0tJSI7O7uAgIC33npL7NpT0c6dO1977bX27X/JyXl5yxb6dxOSxzhz5swvv/yybNmygoKCvXv32tnZtWjRQrO3hk769u27Z8+ebdu2afrE4FFy/lH//VHRrWMq514mfX61IpmxC6oKiYmJw4YNKywsnD9//siRI8VkRzAWlUrVvHnzZs2aiVXZnoScHDpyhPz86OhRql+fmjQxtMFZsygnh374gWbMIA8Punv3/gPu3qWyMqpTh1avpjVr6PPPKTzc0Bc1GmMncWVyc0ufey7IwaGlIZO0Dh3iTp349m3WdXmZ+2bvacajZ2VlRUREVAy/1q1bh4WFiWXP1Gr1Z599JoYtjBw5sqBA58rFYh9ipvOff/6p6+mCWD/+C23WrJS8xF+K9469G9U5t+g2Ro7Ak9KuXbtGjRrVoLUvQkJ43z7+6SeeNo1dXf+buX/f/+bN402bePp0nT9gqxUTI2Sv1mxtlVlZ22/dSk1OTm7atKne7UyYQGFhRETXr1NBAbm7P/6UrKysV155Zc+ePWZmZj/88INYFUIQm2YEBQXFxcX9+uuvq1evPn/+/KxZs+bOnevn55eSknL8+HG5XP7ZZ5/NmjVLM8NPe+7u7seOHRPbo5w/f15sLa1HI0SUmJiox7lSI1fKOs4yN7OTm9d5Jm4GoVqqVatWQkLC2rVrJ0yYYOxatOXtTdu3U0EBvf46ZWXd/11ra1IqqV49srendu1o2TJjlFhFqnUQElHr1q1TU1MTExP1C8KkJCKievWImVatoq++osWLqVMnCgykUaPo/2888p+LFy8OHjz4woUL9erVW79+vdgV80GdO3fu3Lnz119/vXv37pUrV27evHnz5s1WVlY2NjYrVqx4+eWX9SiY/s0wMWRU7yQTmyGcP39ev9MlyKIeUhCeIFtbW7VavXXr1poShM2akUxG779PERE0Z84jD4uLI0tL8vGhS5fo3DlyciJ7+6dYZRWRG7uAxxCpoN8H+rJl1KYN/f47WVlRUBDZ2pKFBdWqRfHxNH06ubrSxInZe/fuVavVFc/asWOHh4fHhQsXnn/++ePHjz8qBTXMzMwGDRoUFRWVnJwcGBjo5+e3f/9+vVOQ/s2wgoICMjgIxVacelciEaY2MoUpUhCerKZNm3br1k0z67f6Gz+eFAqqX7+yFCSizp2pdWuSyahrV/LwoHHjnlZ9VcvYfbOP8eOPPxJR27Zt8/PztT+rrOzepjZE/P77/+9bRUUcFcX+/qxQsI/P/4jI2dk5JCQkKSlJrVaHhYWJx3uvvPKK3sO3DCTWRxXjVJ2cnPRuR+xvhfVlAKqDY8eOXbhwgZl13Sekprh+/d4OiN9/b+xSdFfdg/DgwYNio0gLCwst15W+c4f79Lm3QmMlC8okJ/OXXy6vuCyLeCwnl8vDwsKMuOJGeXm52HhMjBe9b3My7Yk9V3fv3l215QGAHqKiovbv38/MU6ZMMXYtT4qYtG1mpu2qbNVHde8a9fb2nj59erdu3YqLi9evX9+3b98WLVp8+umnN27ceOjxZ8+e9fX1uHjxqpMT7d9PY8c+smU3N3r33TevXLkilmWxsrIyNze3sLDYtGlTSEiIHoNcqopYKZSIxIZzevSOil0x8ZgQoFpZtWrVp59+Gh8fb+xCnpRhwygoiEpKaObMK4WFhcYuRxfGTmJtXb9+PSwsTHMDJ7aEjoiIqLj82ObNm8UyY0OHjnvsBt/3yc3NXb16dTXZj0YsDiJ2jFu2bJlO596+fbt3797z5s377LPPiGjIkCFPqEgA0J4U7giZuaCAhw/fZmNjW7O2560xQSiUl5fHxsaKGziRiLVq1QoMDNy1a5fm8d7IkSMLCwuNXalB5s2bR0Te3t5ENHPmTO1PPH36tLhWcHJyaty4sVwu79+//5OrEwC0dPz48X/++YeZf/vtN2PX8mQlJCSIhztabkFcHdSwINTIzs7+4YcfxNxzDYVC8eWXXxq7tCqwYcMGIurcuTMR+fn5aXnWtm3bxHagLVq0EHtMOzs77zdkO0cAAN19//334i7lioG76D0tNTUINRISEmbOnGljY9OqVaudO3cau5yqce7cOSJydXX19fWdN2/eY4+vON61e/fu5ubmROTj46PHGvYAAIYbMmQIEQ0fPtzYhWilWq81KlllZWVi74iwsLAJEybYVzpD9e7du2PGjNm4caNCoejRo8eBAweIKCgo6LvvvsMKkwBgFFlZWR988MHnn39e+cdXNYEgrKZ69+598ODB8vJyMzOzvn37vvHGG0OGDNHsqqpx48aNIUOGxMfH29jYNGnS5PTp0w+uCQcAAJVAEFZTd+/eXb169ZYtW3bv3l1eXk5Ezs7OgYGBY8aM0eznGR8f/+KLL96+fbtp06Zqtfrq1atOTk6bNm3q1q2bUWsHAKhJEITV3c2bN6Oion7++eczZ86Ir3Tq1CkwMDAwMNDExKR79+6WlpYXL17My8vr0KHDli1bGjZsaNyCAQBqFgRhjXH48OFff/01KioqLy+PiCwtLYcNG5adnb1jxw61Wj1y5Mjly5frt3khAICUIQhrmOLi4m3btq1YsWLnzp3l5eVyuVwmk4WFhb377rvGLg0AoEZCENZUV69enTdvXlJS0uDBg5GCAAB6QxACAICkVfdFtwEAAJ4oBCEAAEgaghAAACQNQQgAAJKGIAQAAElDEAIAgKQhCAEAQNIQhAAAIGkIQgAAkDQEIQAASBqCEAAAJA1BCAAAkoYgBAAASUMQAgCApCEIAQBA0hCEAAAgaQhCAACQNAQhAABIGoIQAAAkDUEIAACShiAEAABJQxACAICkIQgBAEDSEIQAACBpCEIAAJA0BCEAAEgaghAAACQNQQgAAJKGIAQAAElDEAIAgKQhCAEAQNIQhAAAIGkIQgAAkDQEIQAASBqCEAAAJA1BCAAAkoYgBAAASUMQAgCApCEIAQBA0hCEAAAgaQhCAACQNAQhAABIGoIQAAAkDUEIAACShiAEAABJQxACAICkIQgBAEDSEIQAACBpCEIAAJA0BCEAAEgaghAAACQNQQgAAJKGIAQAAElDEAIAgKQhCAEAQNIQhAAAIGkIQgAAkDQEIQAASBqCEAAAJA1BCAAAkoYgBAAASUMQAgCApCEIAQBA0hCEAAAgaQhCAACQNAQhAABIGoIQAAAkDUEIAACShiAEAABJQxACAICkIQgBAEDSEIQAACBpCEIAAJA0BCEAAEgaghAAACQNQQgAAJKGIAQAAElDEAIAgKQhCAEAQNIQhAAAIGkIQgAAkDQEIQAASBqCEAAAJA1BCAAAkoYgBAAASUMQAgCApCEIAQBA0hCEAAAgaQhCAACQNAQhAABIGoIQAAAkDUEIAACShiAEAABJQxACAICkIQgBAEDSEIQAACBpCEIAAJA0BCEAAEgaghAAACQNQQgAAJKGIAQAAElDEAIAgKQhCAEAQNIQhAAAIGkIQgAAkDQEIQAASBqCEAAAJA1BCAAAkoYgBAAASUMQAgCApCEIAQBA0hCEAAAgaQhCAACQNAQhAABIGoIQAAAkDUEIAACShiAEAABJQxACAICkIQgBAEDSEIQAACBpCEIAAJA0BCEAAEgaghAAACQNQQgAAJKGIAQAAElDEAIAgKQhCAEAQNIQhAAAIGkIQgAAkDQEIQAASBqCEAAAJA1BCAAAkoYgBAAASUMQAgCApCEIAQBA0hCEhikupuBg+uwzmjKFCgtpxgwiouRk+t//jF0ZAABoxcTYBdRwW7bQSy+Rry/t30+bNlFWFp07R6mppFIZuzIAANAK7ggNc/cu1a5NRFS7Nt29SwUFdOkSJScbuSoAANAagtAw/fvTsmV05gwtXUp+fuToSC+/TH37GrssAADQloyZjV1DDZecTEePkocHNWlCFy5Qq1ZUVEQZGeTmZuzKAADg8RCEBuvblxITycKCLl0ydikAAKAzdI0azMaGUlPJBMOOAABqJAShwWxsyNqaWrUydh0AAKAPBKHBGjYktZpatzZ2HQAAoA8EocFcXUmtpubNjV0HAMBDrFy58s6dO8auolpDEBrqooPDNubzTk7GLgRqvLt3/7p+fXJGRrixC4Fnx2+//TZ69GgfH5+0tDRj11J9YdSooZKTkzt06HDixInGjRsbuxaoGUpLSzMzM21tb6vVaSrVbZUqs6wsnUitVDYwM2tcu/YQYxcIz45bt27179//9OnTjRo1iomJadasmbErqo4QhIYqLi6uXbt2dna2hYWFsWuBaqqwsPDtt9++cuVKZmbmrVu3srOziejYsbZyeYLmGLnc6vnns+7cWZWfv69x45VEMuPVC8+U7OzsgQMHHjlyxNHRcdeuXe3atTN2RdUOgrAKODg43Lp1y9hVQPX1yiuvbN68uaysTPxVqVTWrVt3wwbPevXyTUzqK5X1TEzqK5WO1tZeMpl5aur7bm7L5HIr49YMz5KCgoIhQ4bExMTY2dlt3769e/fuxq6oepH0M8ItW7YEBQV9++23hjSycuVKU1PTFStW6N1CWVnZtGnTXnjhhTNnzhhSCVRbmZmZZWVlc+bMOX/+fGZmZmlpaVpamqfnhubNdzVuvNLF5RtHx1l16owhkufn76lXb0pOzhZjlwzPFCsrq23btg0dOjQ7O7tv374xMTHanMXMcXFxI0eODAwMPH78+JMu0phYkm7fvh0cHKxQKGQyGRH5+vomJCTo2khqampQUJBcLpfJZDKZLCAgIDk5WddGTp8+7enpKcpQKBSTJ0++ffu2ro1AdVZWVmZtbS2TyRo0aNCrV6+CgoJKD1efPdssLo7y8w89pfpAMlQq1dixY4nIzMxs48aNjzqsqKgoJiYmODjYxcVFxIRCoXB2dr548eLTrPZpklwQlpSUfPnll7Vq1SIipVLZtm1bGxsbIjI1NX333Xdzc3O1aaSwsHD+/PlWVlZEZG5u7u7uLh4QWllZzZ8/v7CwUJtGysvLP/jgA/FWs7W1dXFxUSqVRGRnZxcWFlZSUmLYDwrVxbFjx4hIjKVyc3N77PGpqbPj4ujKlZFPvjSQHLVaPX36dJFtv/zyS8Vv3bx586effnrppZcsLS01d0oNGzYMDAwUQ2wcHBxOnTplpMKfLGkFYUxMTOt/Z76Lu8A1a9bY2dn5+PgoFAoiqlOnTnh4uEqlqqSR6OhozQBRf3//y5cvM/ONGzcCAwPFjZ2Li0tkZKRara6kkUuXLnl6eiqVynr16vXq1evQoUPMnJCQ0LdvXyKSy2S3Bg3i3bur9scHoxB9715eXkT02muvPfb40tLU+HhlfLyytDTlKZQHEhQWFkZPrbltAAAgAElEQVREMpksPDz88uXL4eHhXl5ecvl/T8pat24dEhISGxurVquPHj1qb2/foUMHIqpdu/bhw4eNXX7Vk0oQXrhwYeDAgeJ33KJFi99//118/Y033hBfbN68+XPPPSf+3KFDh4MHDz7YyIkTJ3x8fMQx7u7uf/zxx30H7N+///nnnxcH9OzZ8+TJkw82olarw8LCXF1dHR0d+/fvf+bMmfsO2LJly6+DBzMRE/HgwXzpUlX8A4DRDB8+nIg8PT2J6Pvvv9fmlMuXh8XFUWpq6BMuDaTriy++kMlkJhUWSbawsBg0aNDSpUvT0tIqHvnuu++K/rOuXbuKfq9du3YZq+wn5NkPwqysrJCQEFNTU3E582CvY3R0dJMmTcRboUuXLppucX9//6tXr4pjNM8UH3vXWF5eHhkZ6eDgQERyuTwwMDA9PV3z3dTUVB8fn/r16w8YMCAxMfGRRRcX88KFbGPDRGxmxh99xMx86xbn5TEz5+WxuN3MyTHkXwaeDicnJyJydXUlIi17lvLy/lyzpu3Ysf1LS0ufdHkgWcOHD7eysrK2tg4MDIyKisoTHy8PUKvV77//vuhNFR0bpqamGzZseMrVPlHPchCWlJRERETUr19fk0m3bt161JHh4eG2trbid+zl5SWe/1lYWLz33nsLFy7UPFMMDg7O0SJ+srOzQ0JCzMzMRPrOnz8/Pz//66+/trGxGTZsWEqKdl1emZkcHMwKBc+cyfPn83ff8Ucf8ebNPHs2Z2czM0+ZosM/BxhDUlKSuHgST4Ir73WvSEz2WrNmzRMtD56+4uJiY5dwz8svv0xEkydP/uOPPx43huu/3lTRK6ZQKJYvX/506nwKnuUgHDx4sOj17t2794M9kA/SjAIVj4U7d+4snvmJ/x84cOA///yjUwGJiYkvvviiuL+sV6/e+PHjMzMzdf4xjh/njAyePPneXydM4Nmzec0ajo5mLR44gXFFRkYSkYeHBxH1799f+xN//PFH8WTxydUGT19mZmabNm2+/fZbYxfCarVa3CSIHgtths3/+OOP4uOxZ8+e4oPxm2++eQqlPgXPchCKOzxdf1VHjhwRH1tE9Mknn4g+9K1bt+pdxpo1a8TgUr1b4NLS/27+goJ49mw+dIhPn+Y339S/TajUmTNngoKCfvjhBwPbCQoKIiJvb28imjdvnvYnFhQU2NvbE9Hx48cNrAGqj5UrV4oL6wULFhi3ksTERHHFL0aql5eXa3PW6tWrxeB2b29vEYohISFPutSn4FkOwoYNGxJRx44dmzRpUvFB3WOp1epff/31xRdfVKlUYl6EljMiHio/P5+IrK2t9W6Bmfmjjzgykj/7jNetQ9fok1NeXh4TExMQEKBQKExMTGQyWWBg4GN7jSohRim7u7sT0b59+7Q5paSkZNy4cfv27Zs2bRoRderUaceOHdp0yEONsGLFCnF5PXXq1MrHlj9RP/30ExF169aNiAYNGqT9idu2bROfil27dhXDJoYNG/bk6nw6nv0gFJc8qamp+jVSXYKQmZOSWDzjvH2bxeVbRoahbcK/cnJyvv322+b/bqdlbm7epk0b8ZS3Q4cOl/Qau5uVlSWXyy0sLJRKpYmJSX5+/mNPyc7OfuGFF4jI2dnZx8dHM6NLLpe3a9fu7bff3rDhjO7LNkD1smXLFnNzcyJ64403ysrKjFLDmDFjNH0VYWFhOp27d+9ea2trU1PTDz74QCaT2draPqEinxoE4WNUoyCEJ+PChQvBwcHW1tYicho0aBAaGpqZmRkVFdW4cWM3NzcisrGxWbt2rU7N5ubmTpw4kYhatmx58uRJbU6/evWquIOsX7++iOS6deuOHj3ay8tLRDIReXomE7GLC48cyf/7H588yZMmcUYGJyfzv3OCoAYQWUJEL7/8sk7DZ27duvWoQX86EXPkxdtMzGPWydGjRzdt2rRx40Yi8vHxMbwe40IQPgaC8FlVXl4eHR3t6+srntmIkSlRUVHiCl2tVmtmTWlWKA4KCtJmxZ+LFy+GhITY2dlpRiJ07Njx6NGjlZ917Bh7e2dZWtZt3rx5gwYNiKhZs2aaRa2Ki4sPHTq0cOHCUaMK6tS5N8uUiNu25XHj+N13OSGBIyIM/1eBp+fvv/8Wj4EHDBjw2E+YjIyMyMjIgIAAMzMzOzu72bNnG/LS6enp4r2tUCjMzMyKior0a2fGjBlENHfuXEOKqQ4QhI9RFUFY1qVLirf3Db1bgCo3atQoMbFP3O1Nnjz5/Pnz9x1TWFg4btw4TUaKd0KnTp3EWkIPUqlUW7ZsqZisvXr1evfdd8XMVIVC8fbbb2dlZT303K1b2cqKibh//6s9e56UyeS9evV61MFqNZ8/zz/9xKNH8yef8MyZvGwZ//ADgrDmOXHihBi66e3t/eBjYLVaHR8fP3fu3E6dOmneVHK5XIxSmT59ut6PGDds2CCuz8RL612/GFe4Z88evVuoJmpCEJ49yx9+yLNn85EjOp0nPukMDELRla/3FRMz5+czEVtZ6d0AVLGvvvpKfKY0a9YsLCzsUXkjREZGigd1LVu2FJdWtra269evr3hMTk5OeHi4ZuE9c3PzwMDA06dPi+/m5+e/9957YqzdgAHzfv6Z7/v4iohgExMm4u7d7/0hJOS49ovNzpzJ5eU8aBCCsEa6cOGC+KTq2LFjRkYGV1jzWnOtRkQWFhb+/v4RERGpqanR0dHic2nUqFH6PWJ85513RJcmEX3wwQf6VV5QUGBqaqrlw+9qriYE4fjxrFKxWs1jx+p0HoIQHmr27NlE1LNnzzt37mhz/Llz58SjO2trazHKTiaTBQcHl5SUnDhxIigoSDOkpWnTpmFhYQ9t9ty5c8OGjbK0LBCBV3H1valTWSbjnj3v9XYGB9+flJXbu5eZ+ehRfvR2AlCtJScni2d1bm5uAwYMEKt5CC4uLm+99daOHTvu+wjavXu3OOz3adNY9wX6u3TpQkRi0Ybf9X22vHfvXiLq0qWLfqdXKzUhCN966/4/aAdBCA8lOjx79OhBRD/99JM2p+Tl5Y0cOVJ8NnXv3l3c3olOLdFb5efnt2PHjsdOxlq9mhs0YCJWKHjKFBbvyrIyHjeOidjUlH/9VZ+fKDaWFQr28NDnXKgO0tPTmzdv7ujoKN5RFde8ftQphw8f/rFPH1YouH9/vntX+9e6e/euGMZsaWkpk8m0vBx80CeffEJE77zzjn6nVys1IQiDgzklhTMzOShIp/MQhPBQffr0ISKxmv6DK6dX4rvvvhOjN/39/e3t7V1dXa2srIKCgs6dO6d9I3fvcmgom5qyrS0PGMAbN3JeHs+axX36sH6PWr76inv2ZEtLlslYy8X7oBp66623iOill17SdglGZk5IuHdh5eHBWuxjmpaWtnTp0p49e5qamjo7O+/du/e7777Tu+B+/foR0bOx6GhNCMK7d3nRIv7mG75xg0NDedo0Lc+rJkFYXMwjR/KYMXo3AFWsadOmRCQe+FW29PnDxMfHt2/fPjExUQwl1SlHKzp7ljdu5BkzeOpUTk3lOXP0a4aZ2dOTibhLFybipUv1bweMq1OnTqT1qgv/+ecfdnNjIn7+eX7U0+5Tp3755hsPDw/NRktiE1ZDZjGqVCqxAvN9W1XUUDUhCJm5vJwjI7lDB1YqWaFg7ZbwNyQIjx49OnPmTNY3CMXj56ws/vJLHj+eY2JYrWZ9n0kzM/OaNfzRRzxzJmuxaCpUory83MzMTCaTif/XY9UY0VslxoJq9ifRz4wZnJzM77xjUBCGhTHRvTjUZYUQqEbu3r1rYmKiVCr1WcYoLY3btuWXX+bSUj58+N6gwrIyjo3lkBBu0YKJPu7VS4y48fX1DQ8P37Bhg1iBctCgQfpd5cfHxxNR8+bN9Ti3GvpvM6pqTa2mL7+khATy9qbYWHrnHdq3r/Iz0tPTxQS+JUuW9OzZU1y8aCMtLe2DDz5YuXIlM7dt27a0tJSIVCqVTvXevk2pqZSTQ3fvUq1atGkTeXlRUZFObfyrrIwUCvrzT4qIIJWKpkyhJUv0agiIiNLS0kpKSurVq5eZmeno6FhxM24tyWSy0tLStLQ0ExMTzaZdenNzIycnys/Xv4WXXqJZsygxkeRyunTpn8LChpaWFgZWBU/ZkSNHVCpV165d9XhDkpMT/fkn2djQ3LnUrRupVDR3Lu3ZQ4cPaw4Y7eHRecYMX19fMQuIiNzc3Pz8/LZt2+bn5xcdHS3uEbVx8eLFJk2aHDp0iP7dbvoZIH/8IdWBiQmFhxMRnTxJDV1yu6tz7mx+1LFlZWWLFi1q1apVTk6OqanpsGHDpk2bdvv27ce+SGlp6aJFi9zd3VesWKFUKr28vKZMmaJWqxs0aCDuC7WXnU0xMbR//72/Tp16r/y//qKSEq1bycmhWbPIw4Py8kise2JiQv9OJwL9XLt2jf4d5yJWjdHD9evX1Wq1i4tLxX1N9fDhh0RE77xD77yjfyPu7vTSS3+4u7/evfuLFy60ionZbUhJYBTnztm2bTvex6ePnufXrUtmZnTnDg0aREOGUHo69elDrVtTSAjFxlJKSpOFCwcNGqRJQSLq3LnzgQMHnJ2d9+/f36dPnzt37lTSfHl5uZjR2KZNm5YtWx4+fPjw4cP0DAVhDekaFQb5F7/W48qR3nFxdPZsk/Lyh9zRb9myRSwdREQvvvjiG2+8IQb42dnZhYeHV7LNacXteTt27CiW9pDJZEOGDDmi4/xF5nubJt2+zaGhPHMmM/P8+Tx+PFtZsasrR0Y+7nyVipcs4Xr17o0vXLaM33yTL13iPXv4s890LQYqWrVqFf271vArr7yiXyN79uwhop49e1ZpafqbOXMm/TstbNy4ccYuB3Tm68tEvGmTYa2MH//fH7TbTeLKlSvikXnr1q0ffH6Um5u7bt26UaNGiRVwBDs7u6CgILHVuTabN9UINSkIiwv+iY83jYuTnz3bPC6Obt78tOJ3CwsTTp0aVKeOvfil7t69W3z9n3/+GThwoPgVtmjR4sFJM+fPn+/fv784oHHjxm3bthV/7tChw4EDB/Qr9cQJZuaSEk5IuPdAs6CA167lNm3uzRXz9eWzZx9+blJsLLdvf++49u25eXO2s+OrV/nXXzk6WrcpZvCABQsWaDJD7x1kli1bRkSjR4+u0tL0t3//fvHuJaL69etruaUOVBNlZWxjwzIZG7qG6Nq1PGsWh4TolKhpaWnPPfeceP8kJSUx882bN//3v//5+vqKtBOaNGnSu3fvzp07i14QmUzm6ur6zLzTalIQMvONGzPj4ujcuTYnTlinp9/baLCs7Pa1a5Pj403i4uibb/ovXrz4waFQMTExYk40Efn6+mrGu7/33ntiJ5E6deq88MILmj+Hh4drv5m49srKePFitrdnIra1zZ8xY1bFSTzXr18PDAw0kcvvtmnDjo7cqdO9OGza9F60gsEmTJhA/3bp6L3d4Jw5c4goNDS0SkvTn0qlqlu3Lv3b2fvXX38ZuyLQwfHjTMQtW1ZFW2q1HtfKd+7cESvrOjk5nT17dvfue73rCoWiRYsWXbt2rfgs3NzcfODAgfPnz7927VpVVFwt1LAgVKlyTp92uHo1sLg4OTc3pqjo3K1b/zt1yj4ujuLjTa5dm1xW9sjJoaWlpeHh4WLUjFKpDA4OFjvvKJVKT09PMYZK8/Un+lPcucOTJ/MLL3wo+hnEWiQffviheBJpaWn5gZ8fm5szEdvYcFgY67I4PVROTH4Skwh37NihXyOBgYFE9PPPP1dtbYZYsGDB559/PmDAALlc7urqOnXq1DVr1ty4gRVua4DwcCYy8jbb+fn5Yn6tvb39zp07fXx8evToUXGMYd26dQMDA6OiovLy8oxZ6JNRw4KQmVWqbGZOTZ2Tnb01P//QpUuD4uLon396Fxae1ub09PT0cePGifk0Dg4OAQEBmhETgwYN0iz2/xRcuHBhwIAB4qVFF4RMJvP09KxXrx4RXfXy4oAAvn79qdUjEWItqxEjRrRu3VrXSYQaYhc3nad8PWFHjhyxtLS8b2CXm5tbcHDm99/z6dP3HhupVPc2sszN5ZISFld9RUVswFxZMMicOWxuzsuWGbmMwsJC8YlUcY2355577sMPPzxy5Mgz0wv6UDUvCIU7d1Zfuza5qOh8cfGl7Owtup5+4sQJ8Vkm1nRv2bLl9u3bn0SdjxUdHS0eVpuYmIgp3kTk6ekZf/y4Uep55pmbm8tksvfff9+Q/7DFb+pR21AYxZkzZ8SIhtdff/3YsWPh4eEBAQF16tQxNbW2sLjXxV6rFvv58ZIl3LgxZ2fz4sV8+jTPmsXMHB3N+q4NAAaZPZvLyzk+nk+c4JUrmZlTUthYl1hiZpGlpaWnp+eiRYuuXLlinDqeOhkzU82hVhekp39ZWnqlUaMV5eU5166Nb9Jkg35NMfNnn322Z8+eli1bfvfddwaOgzdESUlJ27Ztk5KSiMjFxWXhwoWvvvqqDNMknozRo0eLSaKDBw/+5ZdfxK6B2igpKYmKikpKSvroo4/EMPSioiIxJtnoLl++7O3tffPmzcGDB2/YsEHzZlar1RcuXIuNbXz4MB06RFevEhGFhFBJCZmZkYsL+fjQvHkUGEjHj5O3N/07aAyenj59KCCAXFzIzIyio2nxYkpIoEOH6K23jFBMdnZ23bp1zczMxNwzI1RgJDVkQj0Rkfr27V/S0maXld0ikltaepSX3zExqUtEeXl/WFt7y+VWj22iIplMNnv2bLERgXGZmZn16dMnKSlp4MCBUVFR+syoBa2J3U1Hjx69devW559/ft26dWIqRSVu3ry5YsWKxYsXp6ammpiYtG3btry83MXFpZqkYGoqBQXZl5TY9O3bdt26dRUv6eRyeevWjVu3pokTiYjS0ujwYXJ1pf37ydqa4uPJx4fs7KhpU0pJMVr9EtehA125QkolNWxI58/Tp59SRga5uxunmEOHDoktqSWVglRTJtTfunUkMdHj2rXxZWW3rK293N2P1a8/xckptH796cnJYy5d8ktPDzN2jVVg0KBBSMGnwN/f/9SpU927d79+/bq3t/fChQsf1S+yf//+gICAhg0bzpo1KzU1tWXLll5eXoGBgXK5vOJzFCO6fZv69aN9++x8fI5v2rRJrAn+KA0aUEAANW1KRDRpEp05Q0RUty61bUuiV37fPoqJeQpVw/8TEnJvtajWrWn2bJowgYiImUpLn3YlYpq82JhFWozbM/tYKSkpgYGBrVrVP3HC5vT/sXffUVFdaxvA35mhgxRBQFCxY8CGWEEFexQ1FtCYSEzsmogtCYlR0ajYEmuMEq8aNGpiIYotURJUbChgA7sSCyAqTRjalP39sc18xAIzw+AA5/mtu+4iMmefFxnnOWefXS47P3sWztiLwcHZ2Yfj4w2Tkt6JixMlJJgUFSXrtdJymTBhAhFt2LBB34UIiEwmCw4O5l3QgwYNysrKUn2roKAgPDyc79ZGRBKJpHXr1s2aNeP/KRaLPTw8Xt3R/u3LyWFt2zIi1qIFU38vHbmc8Z81K4sVFb1YqFkqZfn5rKiIrV9fUdXCa/E9nvfvZ9eusV9+YYyxR49YdDQ7cYItWsQqYA5Xafi0oiNHjrzVs1YClTcIpVJpSEgIv0MyMzOLjl6pUPxnOVqFIv/KlXpxcXT9ese4OMr4I0hfpZYfglBf9u3bxx8Turi4xMbGMsYOHTpkbW3NM8/BwaFnz56qXeKsrKyCgoIqyQgChYJ168aIWOPGLC1NN20eOYIhM5WFXM7Cwt7qGQsLC01MTMRicUXPH6uEKmnXaEpKSrNmzebPn19QUPD+++/fuHHD13eaWPyfbkOx2NTZeRERGf0jazW7Q81319DJk3qqF6qq99577+LFix06dLh//37Xrl1Xr17dqlUrqVT6zjvvdOzYMTMzMyoq6vHjx61btw4LC0tJSVm9ejVfwOXtUC1Xq/qCiLZuJSK6eZOGDqX69enoUfo3qcvL3Jz0N2gM/uOnn8jYmPLz394ZL1y4UFhY2KJFC/W3KKg+9J3Eb+Tr69umTZuTJ0+W+iqldPFHzMCAdenyYkeut9yVoCPjx48norC3fAUI/yosLJw0aRL/F/HOO+/wuYZEZGhoOHz48JiYGH0VxhetZYx99tmLL5RK1qgRi45mO3aws2cx+Q90ZvHixUT0qeo9JySV9/Jv9+7dNWvWVO0k+QYis15B9M0vFBtLTk506RJFRWEMOGjK2Nj4xx9/7NWr16hRo27cuMEYc3Bw+Pjjjz/99FO+q6W+MEaLFhERldwbYNAg2rGD+Lr/Gm6LAvBG1W1DCU1U3iDkayeWzdOTRo6krVupY0f69FPq3r2C64Jqa/Dgwebm5vv27XNwcPj6668rwwhykYj4BJ8pU/7zh1Om0IQJtGKFvuqC6oYxdubMGRLmkNHKHIQaWLyYvLzIz49Wr6bTp8ne/sW0KQAN9e7dmy9GWkmobkfr1qW7d+n8eWralJydqUUL6tuXKscMDqgOkpKSMjMzXVxc9NsFoi/VIgidnGjCBPryS/r6a6pZk2bNoidPyN5e32UBlFdw8IsvvvySiOjZM5LLado0IqI5c/RWFVQ/fMd5Yd4OUlWZUK+W3Fziu0c6OdHTp/quBkDHEhJoxw5Se0k4AA1kZGTwJUb1XYh+VLG1RkuzeTNZWlK3bjRjBm3cSJXgAY+aMjMzfX19r169OnTo0B07dlSGR1MAIDQymUwmkwlzcatqdEc4ejSZm9Ovv9LixVUlBeVy+bp165o2bXr16lVLS8u9e/e2aNHi0KFD+q4LAATH0NBQmClI1eqOsKr5+++/p0+ffuXKFSLq1q1bQEDAmjVrbty4QUTvvvvuytUrmzVtpu8aAQCqPwShHtwpurPqwqp1XdYRUaNGjZYvXz548GAiksvlmzdv/uabb549e+YZ6+np6LnIaZGdgXrTSAAAQCsIwrdKqpQuT1++NH1pkbKo7Ya2QxsNnTZt2ks7Bjx9+nTN0TWL3RYrmMLOwG6h08KxtmMlIom+agYAqN4QhBVIxmR/5/5tb2CvIIWtgW1MXkxwSvBj2WMRiUbWHLnMeZmj4RvXiLxccHnao2nHc48TUSvTVkebHH1U/ChHkdPWvO2ZvDN9LLF6DgCAbiAIK9CEBxNG2IxIlaXKSR6RFbE/Zz8ReZl7ra67uq1ZW3VaOJBzYNqjaY4GjiNqjjASGTUwamAkNjqTd+Zrx68ruHYAAKGoFhPqKyU5k4tJ7FvDl4h+y/ptoNXA+Pz4Rc6LAmsGikikZiMDrAb0qtHrqfzp/LT5/3P5HxE9kz87k3emwqoGABAcBGFFkYgkRaxI9Z/NTZvfa37PUGSoaTsmYpO6RnWJSM7kBiL8vgAAdAwfrBVFRCIvc6+vU78motamrSUiiRYpqDLWbmzQo6Cakpr9rPqVpx0AAHgJnhECAICgVaOVZQAAADSHIAQAAEFDEAIAgKAhCAEAQNAQhAAAIGgIQgAAEDQEIQAACBqCEAAABA1BCAAAgoYgBAAAQUMQAgCAoCEIAQBA0BCEAAAgaAhCAAAQNAQhAAAIGoIQAAAEDUEIAACChiAEAABBQxACAICgIQgBAEDQEIQAACBoCEIAABA0BCEAAAgaghAAAAQNQQgAAIKGIAQAAEFDEAIAgKAhCAEAQNAQhAAAIGgIQgAAEDQEIQAACBqCEAAABA1BCAAAgoYgBAAAQUMQAgCAoCEIAQBA0BCEAAAgaAhCAAAQNAQhAAAIGoIQAAAEDUEIAACChiAEAABBQxACAICgIQgBAEDQEIQAACBoCEIAABA0BCEAAAgaghAAAAQNQQgAAIKGIAQAAEFDEAIAgKAhCAEAQNAQhAAAIGgIQgAAEDQEIQAACBqCEAAABA1BCAAAgoYgBAAAQUMQAgCAoCEIAQBA0BCEAAAgaAhCAAAQNAQhAAAIGoIQAAAEDUEIAACChiAEAABBQxACAICgIQgBAEDQEIQAACBoCEIAABA0BCEAAAgaghAAAAQNQQgAAIKGIAQAAEFDEAIAgKAhCAEAQNAQhAAAIGgIQgAAEDQEIQAACBqCEAAABA1BCAAAgoYgBAAAQUMQAgCAoCEIAQBA0BCEAAAgaAhCAAAQNAQhAAAIGoIQAAAEDUEIAACChiAEAABBQxACAICgIQgBAEDQEIQAACBoCEIAABA0BCEAAAgaghAAAAQNQQgAAIKGIAQAAEFDEAIAgKAhCAEAQNAQhAAAIGgIQgAAEDQEIQAACBqCEAAABA1BCAAAgoYgBAAAQUMQAgCAoCEIAQBA0BCEAAAgaAhCAAAQNAQhAAAIGoIQAAAEDUEIAACChiAEAABBQxACAICgIQgBAEDQEIQAACBoCEIAABA0BCEAAAgaghAAAAQNQQgAAIKGIAQAAEFDEAIAgKAhCAEAQNAQhAAAIGgIQgAAEDQEIQAACBqCEAAABA1BCAAAgoYg1L3CwkJ9lwAAAOpCEOrSqVOn6tSpExAQoO9CAABAXQb6LqBacXJySklJkcvl+i4EAADUJWKM6buG6oMxZmdnl5mZmZqaWrt2bX2XAwAAZUPXqC6JRKLWrVsTUXx8vL5rAQAAtSAIdczT05MQhAAAVQeCUMcQhFAmuVx+6tQpPEuuovLy8vRdAugYglDHEIRQOv78uHv37tbW1r169Zo3b15UVFRRUZG+6wK1/PPPP23btl22bJm+C6mybt+m+fNp0SJ69kzfpfw/DJbRMcZYzZo1s7OzMV4GXvX06VMfH5/r168bGRkVFxer/tzMzKxTp05du3b18fHp0KGDiYmJHouEUkRERAQEBDDGwsPDAwMD9V1OFTR6NIWFUW4uhYTQxIn0zz/k56fvmnBHqGsikcjDw4OIEhIS9F0LVC45OTl9+/a9fv1648aN16xZk5KSsmPHjokTJ7q5uRUUFM36Lf8AACAASURBVPz1118hISG+vr7W1tZdu3adM2fOnj17srKy9F01/MeQIUN++OEHxtiYMWP++OMPfZfz1iUk0N9/k9a9+kolmZiQoSHVrEkyGbm7V4YUJARhRUDvKLxKKpX2798/Pj7excUlMzNz8uTJiYmJI0aMWL9+fVJSUnp6emRkZHBwsKenp0wmi4mJWbhwYUBAQNu2bfPz8/VdO/zHpEmTvvzyS5lMFhg47uJFIf12Vq+ma9eIiKZN0+bwo0cpPZ0KC0mhoOfPyaAyzWJnoGs7d+4kooEDB+q7EKgQCqbIVeRqdEh+fr6vry8ROTk5OTg4EFGfPn0KCwtf++LMzMzIyMiZM2caGRkR0R9//KGLqkGXlErluHGft2yZ4+DA7tzRdzVvzYQJL74ICmL5+czPj23cyAoKyj5QJmMhIUwsZr6+7MoVNncumzePpaVVaLEawR2h7uGOsFq6VXRr5qOZX6V8dTLv5Pqn69U/sLi42N/f//jx446OjmKxOD09vUePHvv27TM2Nn7t621sbFq2bFmrVq1evXoR0V9//aWbHwB0RyQSrVu33MnJMj2devem9HR9F/R2KJXEx5QUFtKRI3ToEI0bRy4uNH9+ztPiNx108ybNHnqdliwhiYT69CF3d5o/n0JCyNHx7VVeJn0ncTVUUFBgYGAgFotv3bql71pAZ8bdH5evyGeMPSp+tOzxsrmpcw9kH8iSZ5V+lFwu52vP2traNmjQgIg6deqUm1vGDWVERAQRNW/enIjc3Nx09jOATkmlrGNHRsTatmVl/UoZY0ypVN64cePMmTMVX1rFOHGCTZ/O5sxhP/3EOndm7doxd3dGVNCkhYmxMjCQJSa+fMS2bczcnBGx/UN+ZrGx+ihaLdUwCE+dOvXDDz88fvxYL2fPyMjo0qULEZmbmxcXF+ulBqgIY/4Zw79ILU794tEXFE8UT5IEicd1j6kPp0ZkRTzNefrSIQqF4oMPPiAiKyurRo0aEVHr1q0zMzPLPFdubq6xsbFEIrGysiKiOwLqfatiHj9mjRoxsZhFRLz+BSkpLDIyatasWb169bK2tiYid3f3t1ujrimV7N49ZmTEiBgRa958fb9IsZgRMZGIffTRf167axcjYgEBLKuMK0Y9q4ZByD96li1b9vZPnZyc3KxZMyJycnI6efLk2y8AKs7slNln8s48kz27UXBjVsqsb1K+6Xyzs3GCMU9EgwsGNSxrNGzYcPz48eHh4ffv31cqlePHjyeiGjVq8HdFixYtnj17pubpevbsSUTt27cnIj5MESqn27fZrl0sKIhducKkUrZmDYuKYqGhbPBgVqcOI2JeXiNUPXBOTk5DhgyRy+X6rrrcHj9mISHM1lbu4GRhVFSnDvP2ZqambNAgtnw5Y4wtWMDy8tjmzezoUX2XqobqFoQFBQWWlpYikSg5OblcDcnlbPp0tmgR+/RTlpGhzhGXL192dnbmPVoPHjwo19mh8pEpZeEZ4SvTV94tvHtBeoH/Yb4iP/p59LzUee9Hv29mZlbyoYO9vT3vGGjVqhURNWnSJDU1Vf3TrVixgvejElG/fv0q5mcCnZk6lU2cyHJy2JQpL+6U+P+srNi4cXu//vrriIiIR48e6btMXcvNvbw5rlGjFz+svT0LDWVjx7Lbt9m0aSwzk61ezdS+9tOn6jahfu/evf7+/h07djx79my5Gjp2jDIzafhwunqVoqOpXz/Kz6eWLd/08qNHj/r7++fm5vbo0WPv3r28RwsERS6XX758+dSpU6dPnz527JhUKjUxMfnmm2++++67GjVqnDx5sk6dOuq3duvWLVdXV2tr6+fPnxsbGz979uyloIVKZeZMeu89SkigzEyKjSVXV2rXjtq1I1dXEon0XVwFUyrp0CFas4ZcXMjDg3x96YcfyMSEVq7Ud2Vqq26jRn/77TciGj58eHkbyssja2siImtrys2l2bOpVSvq1YvOnXv1tZs3b/bz88vNzR01atSRI0eQgsJkYGDg6ek5derUXbt2PX36tEePHrm5uRYWFsePH4+KitIoBYmoadOmjRs3zs7OdnV1LSgoiI6OrqCyQVe6dqXkZCKiP/+kNWsoMJCaNav+KUhEYjENGEDHjtG6dUREpqbUty9dvKjvsjRRrYJQKqWsrM7vvOPp7+9f3rZ8fOi33+jyZVq9mlq0oIcPydSUoqKoU6erEyacOHGCv4oxNm/evDFjxsjl8uDg4C1bthgaGpb31FD1GRgYvP/++0R06NAhd3f3hg0batFIv379iMjOzo6IDh8+rNsKQbdq16aCApo9mwYO1Hcp+mNsTH36kJEROTnRZ5/puxqN6LtvVpd27mRErEsXHTX39Ck7cID98w8bNYoRMXNz1qEDs7PzcnYmIm9v74iIiA8//JCIDAwMwsLCdHRWqCaePHkiFotNTEykUql2LfAVvFxdXYmoXr16ui0PdCg+nhGxJk30XUflsHAhI2JffaXvOjRRre4If/uNiGjYMB01Z2dH/fuTiwt98gn17ElSKcXG3nBzY/Xq2djYnD59esiQIdu3b7ewsIiMjOTjAwFUatWq5enpWVhYqHWvpq+vr4WFxa1bt2rVqvXgwYOkpCTdVgi6smcPEdG77+q7jsrByYmIKDVV33VoovoEYW4u/fknicU0ZIium/bxoWPH6OxZNmDAp/fvnz17Nj8/387OTiQS2dvbnzp1qm/fvro+JVQHfn5+RHTo0CHtDjc2Nu7Ro4dYLG7RogURrV27tqCgQJf1gY5ERBARDR2q7zoqBx6EKSn6rkMT1ScI9+2jggLy8Xnxa9DO3r17ExMTFQrFa77XsaMoMnLF/v3Dhg2TyWR8QtjYsWP54HiAV/GHfAcPHtS6hRUrVjx58sTGxsbBwSEsLMzS0rJt27ZfffXVgQMHsrOzdVcpaO/yZbp5kxwcqHNnfZdSOeCOUJ/q1aP33qORI8vVyOeff+7l5TV//vw3vaBVq1a//fZbUlJSu3btiOhZZdpbEiobT09PR0fHhw8fat2r2bBhw5UrV+7duzczM7Np06ZKpTI+Pn7p0qUDBw6Mixt4/Xrbhw+nZmXtlssziUiplGZl7crPr1LD9aq+v/46V7v2o0GDSCLRdymVg7MzEYLw7bt5k3r1oi5dqEMHKs9w0YyMjOLiYolEUubsi2bNmn3//feElbWhVGKx+N1336Vy9I6uXLly4cKFEolk+/btN2/ezMjIiIyM/Pzzz9u3b29r+zA/P/7JkzX37g27csX+5s3OKSmzjIzqi0QYt/xWbdo05vHjesOHx+q7kMrCxoaaNRsslztIpVJ916Kuqh2EOTkUHU2PH1P9+rRpExUWUnmWB3j48GFOTk6DBg3c3d3LfLGHh4dYLL569WpRUZH2p4TqjveOaheEP/zww4wZM8Ri8datW/nK3dbW1gMGDFi+fHlsbGyrVomurjHOzkssLXuKRIYikbG5ebuMjHAd/wBQqqSkpGvXrtna2nbp4qnvWioLkYiKi69IpU9Sq85dYWXaGlEN2dnZly/fP3++VXw8xcfT3bvEGH37LXXsSNevUzlHEty+fVsqlbq5uanzYgsLi6ZNmxakpaVcv96wdetynRiqrz59+hgaGp45cyY7O/v06dPp6eldunRp0qRJmQf+/PPPU6dOFYlE69ev58vnvkQsNrew6Gxh0dnRMVipLJDLnxgZuVhbD/7nnzENG/5aAT8KvMaePXuIaPDgwQaVaptZfXNycrp3715qaqo6b/XKoAr88uLi4v7+++/4+Pj4+Pi7d+86ONROT39xoWFqSq1akakpEVFwMHl4UGgoFReTkZE2J7py5YqxsfFHH32k5usTfHxMw8LowgVCEMIbWFpaent7Hz9+/OjRo1u2bOFTAx0cHLp27ert7d25c+c2bdqIXll9ZM+ePWPHjlUqld999506M3PEYlMjI5fMzB2FhTeNjbWZvA/a2bt3LxENxYDR/3JyciKilCo0clTfExnLNnnyZFW1pqamHTt2nD49d/Nmdvkyk8kYYywnh927xxhjFy6wOXNYu3YsL0+bE3344Yeurq4y3qg6VqxgRP+/azPA63z55ZcikcjMzMzX17d9+/Z8pRiVWrVqDRkyZPXq1RcvXlQoFIyx33//nd9ehIaGanquvLyzyckfPX36vwr4OeBld+/edXJyMjAweP78ub5r0Zm4OMYYy85mt29r38i4ceOIaOrUqbqqqqJVgSA8ePDgZ599tmXLlitXrpSeUhkZrH59RsQGD2YKhcYnGjBgwIABAzQ44MSJF5tyArxZUlJSzZo1S4afvb19+/btu3Tp4lRiro9YLM7IyDh69CjfuX7OnDlanCsj45e4OLp1q5fOfwp4lUwm41sM+vv7K7T4xKmUPvuMMcYSE9mPP2rZQmJior29vZOTk0gkCgwMTEtL02F5FaQKBKFGrl1jNjaMiE2cqPGxrq6uP/30kwYH5OYysZgZGbGiIo1PBkIilUrPnTu3atWqgIAAGxubl+4I27Zt265duy5dusTExJibmxNRUFCQdieSyTLi4yXx8UZyefW5R6nMEhMT+S90ohafOJVSjx5s4UIWFKRlEB4/fpxfHLi4uBgZGRGRlZXVd999V1S5PySrWxAyxo4fZ8bGjIht2PDyjuGls7e3z87O1uxkrq6MiCUkaHYUCJhMJjt//vz3338/YMCAl0KRp+CECROUSqXW7d+44RUXR1lZv+uwZijFiRMnTExMiGjx4sX6rkUHynNHGBERwf8qBg8enJKS0qxZM76zNBE1adJk165dOq9WV6phEDLGduxgPj43jI3Nd+/eXeaLlUrlzZs358yZ06JFC43P9NdfbM0aduKENlUCMHb37t2wsLDAwEBHR0dbW1sXF5dydrKlpi6Mi6N//hmnqwqhTPv375dIJCKRaPPmzfqupbxmz2aMsZs32datmh24du1asVhMRJ999plCoVAtS+Lh4dG4cWP+dc+ePRMTEyui7HKqnkHIGFu6dCkRmZiYnDp16tXvpqSkREZGhoSE9O/f39bWlv+SJBJJSEiIBudQKtnHH7PLl9nOneyHH3RVOQhTRkaGgYGBkZFROUdeZGdfDg729fPrWp7bStDU+vXricjQ0PDw4cP6rqVcZs5keXnszh128qS6hyiVypCQECISiUSqj1CFQhEeHm5vb8+ff3fs2JE/KTc0NAwKCtK4762CVdsgZIxNmTKFiGxtba9du3b9+vVffvll+vTpXbt2rVGjxktDZ+vUqePq6ioSicRi8Z49e9Q9QXo6U41o0OkTAqlUevToUQ3Gr0K14O3tTUQRERHlaUSpVDo7OxPRxYsXdVUYqCM4OJiIzMzMzpw5o+9atDd8OJs3j50/z7ZtY8XFZb9eJpONHTuWiAwMDDZu3PjSdzMzM4ODg/nDQmtr665du0okEv6x/P333xerc4K3ojoHoVwuHzhwIL/Veyn56tatO2jQoAULFhw6dOjx48f89UuWLCnlJvI1pFI2ZQpjjBUVsU8/LU+pxcXFiYmJ4eHhQUFB3t7exsbGhoaGtWrV4kt7g0AsWrSIiMaOHVvOdvgH08KFC3VSFahJqVR+8sknRGRnZ3fz5k21jjlwgH37LZs7l2VmVnB16po5ky1dyrZsYStXMkND5unJgoJYeDhLTGSvdjHk5eXxvXfMzc1LuRW+ceOGaoue+vXrq5bu8vPzq9gfRm3VOQgZY1KptGfPnoaGhrVr1+7fv39ISEhkZKQq+V6luom8ceNGae0WFrKxY9mlSywsjM2dy6ZNYxp2fEul0tOnT69Zs2bUqFHNmzd/aVkKAwMDPobe29u7oKBAo5ah6rp06RIROTs7l7NT8/fffyciLy8vHdUF6iouLuaryzZs2PCNnzNPnrArV9ihQ+zmzRdX0ikp7Ouv32adpZg5kxUWsu7d2cyZTCRiRP//v759pw4cOHDRokV//fVXTk7Os2fPOnXqxD8w1bkJjoiIaNiwIRHVqFGDP0G0sbF5Cz+ROkSsPKtzVhFZWVkvDc97E4VC4e/vv2/fvgYNGpw9e9bBweG1zdHgwXTiBDVrRklJJNZgvVbG2MSJE48ePfrw4cOSmz0ZGBg0atTIwcFBLBZnZmbeu3cvMTHRx8fn/v37AwcOjIiIePWmFqofxtigQb/ExvY4fNipTRvt25FKpba2tjKZbNu2bf369ePD2eHtyM/P79Gjx7lz55o3bx4UFJSZmZmampqampqXnX3k9m16/JhUqxMvW0YSCc2YQUQ0cSJt2KDHsolo+XKSy6llS/Lzo9hYMjKixo3p8mWKj6fTp+nECTI1bXL//h3+YrFYbGtr+/Tp00aNGv3555+NGjVS5xSFhYUrVqywsLCwtbUdOXLkoEGD+EWb/uk5iCuf/Px8fpnTtm3bvFeXqElOZu+8w4hY7dosPl7Txn/66SdDQ0MiMjAwqF+/frt27dq1a9egQYOXcs7Q0DAxMTEpKYnn94wZM3Tzs0GlN24cI2Ll7NS8ePGimZkZf1IoFovd3NzGjx+/a9euJ0+e6KhMKE16enrdunX5OBEVkUhUwOd12dgwd3fWqxeLiGCjRzO5nCUksKVL9Vvzzz8zkYiJxaV9qt25c2f79u1BQUEdO3Y0NjauXbu2qalpSkqKFqfjfW+VZ8IJgvA1nj59yteK9fPzKzliJT4+/ma7doyINW/OHjzQouVRo0YR0fvvv8+3MyyZfB4eHmPGjPnxxx9jY2NV3aEnTpzgfaSrVq3Szc8GldvvvzMiVp5OzStXrvCB0K1atercuTN//6g+i93d3SdPnvzrr7+mpqbqrmp4WWBgIBF5eHjMmDFj5cqVO3fuPHnypOzOHZaf/5/XXb3KFixgP/6o37nIBw8yAwNGxFauVPeQwsLCpk2bEtFvv/2mxRn5/MK///5bi2MrAoLw9e7cuVOrVi0iGj9+PP+Tw4cPW1hYNKpX7+mgQUyrsb9FRUX8Du/WrVtTp05t06bNuHHjNmzYcP78+cLCwjcd9euvv4rFYrFYvHfvXi1/GKg68vKYsTGTSNhTzVaDeOHWrVu1a9cmovbt23fr1u358+f5+fnR0dHz5s3r3r27mZlZycuvpk2bDh06dNu2bbr+IYB5enoS0cSJEzdv3lz2fJjBgxkRi4l5K6W97Pz5QnNzRsRmzdLsQD5jpF27dpqesbCw0NjYWCwW5+TkaHpsBUEQvlFsbCz/4Fi2bNnmzZt5l+ZHH32k9VpB+/fvJyJPT09NDwwNDSUiU1PT06dPa3dqqEJ69WJE7JdfND7w/v37Li4uRNS6dWs+YP1///vP6tsymSwuLo6v9KZ6cCgWi48ePaqz6oGx/Px8IyMjiURiamoqEokyyxwROncuI2JDhujk7BEREZMmTTp37lwpl9cqt27dcnZu0KnT/cDA1wwKLV1+fj5fQV7T6SJnz54loubNm2t2voqEICzN7t27xWKxapec2bNnl2eSMt9VbqlWDwM+++wzIrK1tVV3WDZUWXv2sJ9+Ynl5TKNf9aNHj/iQPHd3d77M1bRp00p5vUwmi42N5Ut+LFu2rLxFQwmnTp3iN9xE1KxZs7IPSE9nJiZMImF37pTz1MuXL1cNQTcwMOCPh8PDwxMTE1/97Hr06FG9evWIaODAQdpNWp41a5ZYLA4K+k6jo1atWkVEY8aM0eaUFQNBWBqZTMYfC1tYWKxfv748TRUUFFhaWopEouTkZC0Ol8vl7733HpU+LBuqhYgI1r07k8lYqUH2H0+ePOEbSru7u/MFSz8ta2Lr5cuXu3fvzseF+fr6lrdoKOH7778nos6dOxPRqFGj1Drm448ZkQa/8tf55ZdfRCIRfxLcuHFj8X8HtNvZ2fn5+c2fP/+PP/7IzMzMzs5u1aoVEXXo0OE1owLVk5LypFGj2wYG7J9/NDhqxIgRRKTZDgcVDEH4RtnZ2T169CAiCwuLdu3a/fzzz+Vpje9k3aFDB61bkEqlHTt25B92GP5XjUVEsLVr2cqVbNo0duQI27ixjFvDrKysNm3aEFGTJk14h+eoUaPKXLD0wYMHIpHI3Nzc0NDQwMAgKytLlz+DsA0bNoyIvLy8iOhHNdeuvnRJaWl5rndvrdcei4qK4gOjvv/++127dhGRmZlZ8+bNvby82rRp89IumCKRiL9V3N3dMzIytDsjFxjIiNjnn2twCO+6uHLlSnnOq1sIwtdLSUlp3bo1ETk6OsbFxT1//tzR0XHTpk1aN8j/baxYsULrFrKzs588eWJjYyMWi1evXq11O1DJRUSwmBj29dds+HD23nsv5jLXrs2GD2fr1yte6uPKycnhA/BcXFz4UKwhQ4aouThfixYtiKhly5ZEVJl3Bqhy+JPaBg0aEFG82pOshvTty2NMizNeuHDBwsKCiIKDgxlj27dv5+PeS3J0dOzUqVPPnj09PT3NzMxsbGxMTU1v3bqlxelKSkhgRMzSkqk58OXZs2f8CqxSLSGJIHyNq1ev1q1bl4jc3Nz++fee/+zZs1ZWVi+NPlCTVCo1NzcXiUT379/XuqpGjRqp1nHX7kEjVHJyOVuxgv32G4uJYTk5rE0btmUL8/dnDg4v4tDdPY+ILC0te/bsuWTJkmPHjnXt2pWI6tWrx2etvfvuu+oMkeC++uorIurSpQsRffzxxxX6owlHeno670YSiUQmJibqL6d54MABfkGjaULcvn2bL/3x4YcfvnSRFBMTs2TJkv79+/Mx8CqrV6/28PAgIp2MRffxYUSs5MV5YSFLTmanTrH9+x+tWrXqyy+/DAwM7Nat24YNGw4ePFgJe+OrcxDK5fJevXqZmZm1bt161apVanYnRkVFWVlZ8Z6Np/8dw75gwQI7O7sfNN9o4tdff+XPDDQ9UOX8+fNExD/sLC0tse5a9aNUstGjGREbOvQ13712jW3YwL74IoFPk1cRi8W1a9fmUyZ69eqlfgoyxk6ePElE9evX52+tarPHun7xweG8P0mjf/JKpbJZs2ZEpM7mcSopKSn8N/jSpOdXG79x48bWrVs//fTTtm3bXrhwge/PM3LkSPXP9Sa//87s7dm6dYwxdv06q1Xr/1dla9fuccm368SJE+fMmaO6c608qm0QSqVSPrpENebTyMiof//+27ZtK2Xyys8//8ynSfj7+782bN577z0bG5uV6s87ZYwxNnjwYCJas2aNxj/Gvz7//HPVUwd1H79DlTJzJiNiZmZl7255586dzZs3jxo1ysrKSiQSrVix4qOPPvLy8srNzdXojHK5nE+95+F6/vx57auHf82aNYuI+J36zJkz1Tzq4MGD+/fvX7duHRE1a9YsJiZGKpWWeVROTg5P3Pbt22s64OXevXtEZGVlVf694xUKtmgR43NwQkIYETM0ZI6OzN2dde+e1aPHh126dPHy8mrZsmWjRo34OPxyjj3UueoZhM+ePeM72tSsWXP37t0+Pj5t27blCUdExsbG/fv3Dw8Pf2mi65IlS3hqBgUFvenqODc3t3nz5nZ2duo/7cvOzjY1NRWLxSkpKdoNSVAqlfyijy/oV9U3PINXff01I2JGRkyj3+2yZcv4hZFcLtdu4N/7779P/45v1GwzTngDPsKOT6hX88nrpk2bDAwMTE1N582bZ2hoyIexSCQSNze3wMDAsLCwxMTEVz+RioqKevbsSURNmjRJT0/XolQ+alQnnyczZ7JPP2UFBSwoiNnb/2epbm/vOy89rXR3d9eu4IpTDYPwzp07fAZPgwYNrl+//ueff/K/fVNT0/bt27dr1041z8bExIQnYnZ29oQJE/ibbx2/w3+zuLi4OnXq2NnZfffdG2fPlNz419ramu88vmfPHhsbmxjN1484c+YMf9ZNRDY2NuW/goM3yc9/sQdbefYNXbduXZcuXebNm3f27Fl1nvd8++23Pj7BhoYsMlKzEyUmJhJRrVq1tO7V3LZtGxHxx0VaLBECL5HJZJaWlkT0xRdfeHl5qTMmQHX9zft7RCKRt7d369atX9qRxtraunfv3nPmzDl48OCTJ0/kcrm/vz8ROTk5/aPR3IUS5s2bR7rY9osxNnMmu3GDLVrEpk5l9eoxIyNWty7r1IkNGcLmzn0cGhoaHh5+7NixpKSkyjk+uboF4dmzZ/lj4Xbt2vH5dmlpacuXLy+5tqeVlVXHjh3d3d1V82z4sGNzc/MDBw6oc5bFixebm5vb2touWLCAMaZQKK5du7Zt27Y3bfzLV6hRbVlSxh5Pr5g6darq34lO3rXwJuHhjHcQar2/5N69e/mSeKpfvbe3d3Bw8LFjx17b2c7nnEkkkn37tBlNzrsKtO7VzMjIkEgkxsbGvNMiLS1Nu3aAS05O5jP5goKCylxZTS6XT5o0if/2+U25RCIJCwvj35VKpSdPnly+fLm/vz8fu1cSnw5hY2Nz9epVrau9evUqb6r8Azh5H/DChWzMmMqztaIGqlUQRkREmJqaElGfPn1efRfevXs3NDSUd6lzNWvW9PLy8vDwqFGjhpmZmbr78TLGGONb/hobG7u4uPCByyXVq1dv8ODBCxcuPHz4cHp6+oEDByQSiUgk4h0mDRo0UH9SvEKh4I9w+GjsY8eOqV8kaCo8nH3/PYuMZAMHanP4n3/+yS+qfHx8xo8fz8c+qJiYmPj4+MydOzcqKoo/Adq0aRP/3Hx1a281TZ48mcrXq8mvz/g7c8uWLVq3A1yPHj34HV7dunV37tz5prWoCgsLAwIC+GcI/8s3MzMr5UI8NTVV1clkY2NjYGBgYWGxcePGffv2lScLXV1diSg6OlrrFri//mKMMamUqXcrUelUnyBctWoVvwwfO3Zs6Rc4ycnJq1at4g8RiejgwYP83RAXF6f+6XJzc/lsIa7MjX83bNhARIaGhnwFkNfv8fQ6J06cIKI6deoQUa1atSrV5JvqJzyc7djBLl9mH3yg8bExMTF8VZepZDbDJQAAIABJREFUU6eq/vDx48e7du2aMmVKixYtSq70YWhoWK9ePT5wQN0516/DB6OXp1czNDS0U6dOo0ePJqI2bdpo3Q6onD9/nl9eEFH79u3Pnj370gsyMzP5rBVra2s+m7NmzZrqX4jL5XIeonxIzuTJk7UulU+hmcL3Bxaw6hCESqXyyy+/JCKRSKTRpXFiYuL8+fOLiopGjhxJRKpOCTXFxcWFhob+8ccfT9XbKWDGjBlEVKNGDb6+X+nDnVX4JT/vF500aZJGFYKmtO4aPXv2LO8SHz169JtuAp4/f37s2LHg4GBvb2++KLajo+OSJUvKU3B+fr6ZmVk5ezWLioo6d+4sFou9vb3LUwyoKJXK8PBw/lxfLBYHBgaqro9TUlL4IgYODg68Z7t+/fqaPi45fPgwEfFZ846Ojlo/JObzspydncuzinI1UOWDMDMz09fXl/cw7Ny5U7tGVq5cSSV2XKogSqXyww8/5P8AeBd/mWeUy+V8qizPzuPHj1dohZCQ8GL2gkbzjC9dusRXdfnoo4/U/EjKyclZtWrVuXPntCrzP/r161eeXk25XM6XPbKzszty5Ej56wGVvLy8kJAQ3ltuYWEREhJSWFgYEREhFoubNGnCY7JFixaPHj3StOXi4mL+luOPD7Xel0apVPKeLZ28FauuKh+ES5cuFYvFZmZm5QkJPrNYiw2SNFVQUMCfijdq1Ig/zix9jZjCwsK1a9f27duXX/fJ5fKKrlDgIiKYjw/LzWUlejfLcOPGDX6xov7aZrr1ww8/EFFAQIAWxyoUCn5xZmVlpf5iYKCRW7du8Z5MImratOnBgwdDQkL44NLu3btrvbgo78fiXazqT1gsKTs7Oz8/f9q0aUT0xRdfaFdG9VDlg/CLL74gok6dOgUFBYWGhmrXSG5urlgsNjIy0mhhDu08e/aMP5Js06YNH0GzdevW174yJycnOjr6u+++4+uGVPQNKzDGIiLYL7+wOXPY1Kls82Y2fTrbt489e/bG19++fdvJyYmPz3oLb57Xun//PhFZWlqqv5oXp1Qq+awhc3NzLWb1gEYOHz7M/+HTv6t8jBgxojxToSIiIoiIjzmoX7++pn2bBQUFXbp06dChQ2hoqEgkql27ttaVVANVPgh5Hzdfzrw8Oz3yAX5v56L43r17/B6iQ4cOFhYWqv6o58+fx8TErFq1KjAw0M3N7aWxFdih/i3gC14vW8befZf16PFiRrBYzFq0YNOny3bt2lVyJNSDBw/4M54ePXrod9E7/mkYHR39008/9e7de8GCBTExMWUGM1+uyNTUtPyDBkEdxcXFq1atMjExEYlEH3zwQTnXtMvPz+crGPOVFxMSEtQ/Vi6X8+WuateuzT+LunXrVp5iqroqH4SFhYWGhoYSiYT/v9Yba/EOore2RdaFCxf4CMN+/fotW7Zs+PDhTZo0Ua0Gx5mYmLRv337SpElr1qzB3vQVLTeXjR3LIiLYxYusqIh9+CE7cYLNnct8fJiJCSNirVtn8t9Ls2bNxo8fv3jxYn751alTJ03XNtM53i8SEBAwZMgQ1fvHwMDA09MzODg4MjLy1WUF+UpgRkZGhw4d0kvNgpWSkqLFQ8HXGjp0KP27MNDs2bPVP5Bv9G1packnZfn6+gp8+eIqH4SMMT41kG/LcObMGe0aWbFiBRFNmDBBt7WVIjIysuTMa/p3ckVgYOCqVavUuaIHXcnPZ926MSL27ruv+W5hITt5kq1Zc6l3794l54xKJBJPT89Slq59a7Zv385XELSwsGjRooWXl1fDhg1LXlcZGRl5e3vPmjUrNTWVlZjFj92XqrTt27fTvxtpubm5qXkUX/ba1NS0efPmfLRO5Vzt5W2qDkE4ZswYIuKb1q5du1a7Rvh0vbZt2+q2ttKFhoa6ubmNGzdu8+bNly5dwhxBvSgqYv37MyLm4MDKHMQuk8nOnj27bNkyHx+ffv363blz563UWAalUjl69OiXNl+1tLTs0KGDr69vy5YtVQvtpqSkrFmzhqfgjh079F04lMvz589NTEzEYnHNmjWJ6Nq1a2Uewic0SyQSvplzgwYN+LWRwFWHIPzxxx/58zYi+uSTT7RrRDVeBit5CopMJhs6VEHE7O2ZGh8jld3du3e3bNny8ccf825bFXNzcw8Pj969e0+cOJGvZfPWngJAhfLz86N/5xmXuanvvn37+AA9vpyInZ2dpvMXq6vqEISxsbGq8TItW7bUogW+VSEf06XRM2eo0vjkAS+v9+3sZNVv7kBaWtquXbuCgoI8PT1V3aS8K17rjhOobDZt2sT7w86dO1f6wNHo6GgTExPVM0UzMzOtHyRVP9UhCAsKCkqOl1FnH6+STp8+bWdnt3bt2rZt2xLRjBkzKqhOqFSUSuW4ceOIqEaNGhcuVP2bwVLxUBw3blzjxo2nT5+u73JAZ548eSKRSPj+zAEBAXx4wasjX27dusX3G/fx8eHDEf744w+9FFw5VYcgZP9urMW369NoiYQdO3bwdR/at28vkUjw4EQ4MHkAqodvvvlG9QxYNeDcy8tr2rRpO3fuvHfvHmNMLpePGzeuY8eOfHnb8PBwfVdduVSTIORLBvPHhGVuKKiiWqfb29ub9x199NFHWL1FCHbv3k1ExsbGf/75p75rASgvmUyWkJCwfv36jz/++J133ik5Fp2I7O3tBwwY4Ofnx1e4LfNRogBVkyBct26dKghHjx5d5uvlcjlfzFokEvGj1NmSF6oNhUIxZcqU/fv367sQAN1TLc0REBDA58urppbi0c9riRhjVPXFxsZ27NjRxcVlx44dHh4efBnPN5FKpSNGjDhw4ICxsbGbm9vFixfNzc137tw5YMCAt1YwAMDbkZycfO7cua1bt3br1u3zzz9/6X4RiKiaBGFubi7fq8/JyWnIkCEBAQGq3s6XZGRkDBw48MyZM9bW1vb29rdu3XJ0dDxw4AAfKQMAAEJTTYKQiFavXr1w4cJnz57x/6xfv/6wYcOGDx/O541yN2/e7Nu3b3Jyct26dRUKRWpqauPGjQ8fPsy39QIAAAGqPkHIJSUl7d69+5dffrl79y7/ExcXl/feey8gIKBz58737t3z8vKysbFJS0vLycnp1KlTZGTkS+txAACAoFS3IFSJj4/funXrnj17UlNT+Z80aNBg2LBhubm5mzdvLiwsHDp06LZt20p/mggAANVetQ1CTqlUnjlzZvfu3XwDHSISiUSMsc8//5zv6KvvAgEAQM+qeRCqKBSK6OjodevWXbp06d13312/fr2+KwIAgEpBKEEIAADwWugbBAAAQUMQAgCAoCEIAQBA0BCEAAAgaAhCAAAQNAQhAAAIGoIQAAAEDUEIAACChiAEAABBQxACAICgIQgBAEDQEIQAACBoCEIAABA0BCEAAAgaghAAAAQNQQgAAIKGIAQAAEFDEAIAgKAhCAEAQNAQhAAAIGgIQgAAEDQEIQAACBqCEAAABA1BCAAAgoYgBAAAQUMQAgCAoCEIAQBA0BCEAAAgaAhCAAAQNAQhAAAIGoIQAAAEDUEIAACChiAEAABBQxACAICgIQgBAEDQEIQAACBoCEIAABA0BCEAAAgaghAAAAQNQQgAAIKGIAQAAEFDEAIAgKAhCAEAQNAQhAAAIGgIQgAAEDQEIQAACBqCEAAABA1BCAAAgoYgBAAAQUMQAgCAoCEIAQBA0BCEAAAgaAhCAAAQNAQhAAAIGoIQAAAEDUEIAACChiAEAABBQxACAICgIQgBAEDQEIQAACBoCEIAABA0BCEAAAgaghAAAAQNQQgAAIKGIAQAAEFDEAIAgKAhCAEAQNAQhAAAIGgIQgAAEDQEIQAACBqCEAAABA1BCAAAgoYgBAAAQUMQAgCAoCEIAQBA0BCEAAAgaAhCAAAQNAQhAAAIGoIQAAAEDUEIAACChiAEAABBQxACAICgIQgBAEDQEIQAACBoCEIAABA0BCEAAAgaghAAAAQNQQgAAIKGIAQAAEFDEAIAgKAhCAEAQNAQhAAAIGgIQgAAEDQEIQAACBqCEAAABA1BCAAAgoYgBAAAQUMQAgCAoCEIAQBA0BCEAAAgaAhCAAAQNAQhAAAIGoIQAAAEDUEIAACChiAEAABBQxACAICgIQgBAEDQEIQAACBoCEIAABA0BCEAAAgaghAAAAQNQQgAAIKGIAQAAEFDEAIAgKAhCAEAQNAQhAAAIGgIQgAAEDQEIQAACBqCEAAABA1BCAAAgoYgBAAAQUMQAgCAoCEIAQBA0BCEAAAgaAhCAAAQNAQhAAAIGoIQAAAEDUEIAACChiAEAABBQxACAICgIQgBAEDQEIRV082bNHcuzZ1L9+7RsWP06BER0ebN+i4LAKDqMdB3AaCVZctowwZSKumzz8jTk5ycqE4dSkig0aP1XRkAQBVTUXeEFy9e7NWr17fffltB7QudoSEZGpKxMUkkREQ//USLFtH16/ouCwCg6qmoO8IHDx5ERUWZmppWUPtCp1CQVEoKxYv/HD+e3N0pLU2vNQEAVEkVFYR5eXlEZGFhUUHtC928ebRiBYnFNH8+3b5NtrZERD4++i4LAKDqqaiuUSEEYVpaWkJCAhGdOXMmOzv7rZ7b2ZlCQigkhBwcqHNncnQkIgoIeKs1AABUCxUbhDVq1Kig9iuDtLS0S5cuEdG5c+eysrLe9umVSpLL3/ZJAQCqnYrqGjUw6Nily8+1a9eqoPYriFKZn5cXY2LyjpFRPXVef+jQobS0tNOnTw8ePLiiawMAqOry8vKOHz8eFRV19epVPz+/GTNm6LsioooLwpQU75gY7/79K6j5ivLw4fSaNUfI5U/UDEI/P7/Ro0evWLFC/VMwRiLRf77Q0qZNJJPRxInlaAIAoMLJ5XT+vPLYsQVRUVGxsbEymYyIDA0NY2JimjRpMmDAAH0XWIFdo0REVeURYVHRnadP12dl7TY2bpSbG2VoWLvMQxQKhbm5uZOTExHVq1dP/fGxs2ZRbi4RUVBQOSomooYNqWHD8jUBAKBLP/xAMhmlpVFcHN27Rz/9RMOGUa1a5O0tDg8/e+rUKcZY8+bNBw0a5OfnJ5PJ/P399+/fr++qK3DUKFHlDsLnz3OUyr+fPz/6/PnRoqJ7RGRh4e3qekomS01J+ap+/Z+JqJQLhbFjx169epVPlPT399fo1AkJZGZGUmk5qieibt3KdzwAgI4dO0YyGXXvTuHh9MMP///nDRvKmjZtZGvb9tq1a4mJicnJyRkZGfPnz1+8ePGwYcN27949cOBA/VUtsCBUKBSXLl2KioqKioo6efJkRISTo+M/RGRgYFujRg8rq37Pnm0sLn5kaFj3wYPPFIqs+vW3iUSv+SvKzc09derUnTt3wsLC+vXrp2kZ2dlUVFTekS45OTlyudyWT5wAAKgEmjShzEy6f5+aNqXatalxY5JI6NYtSk42zMs7/eTJZZFI1KJFi169euXn54eGhhLR4sWLAwIC9JuFFRWEYjFZWJC5eQU1rzG5XP7JJ58cOnRINbzT0NAwPb17mzYNLS17m5t7lrz5Kyy8eeNGO4Uil0hSv364SCR5qbVly5bdvXvX3d39559/1qKY7t2pRg06cEDbH4aIiK5evZqTk+Pn51euVgAAdOrLL2noUBoxgpycKCbmxR86O9PIkfNbtMjr0aOHI5/uRUREoaGhjLElS5boOQtZBTh8mMXEMMbYb79VRPPaWLRokYGBARE1bNhw/Pjxu3btysrKKuX1ubmnL160jIuju3eHKZWykt+Sy+WtWrWqVavWoUOHtKjk2DH24AFjjB04oMXRAACV148/MsbYvn3sjz/YwoVs4EC2Zg27dq2Mo7766isiMjIy2r9//1so8lUVEoSLFrEPP2QFBWzatIpoXhtjx44losmTJ6t/SF7emYsXreLiKClpvEz2/1m4efNmExOTKVOmaFfJokVs9GjGWHn/cpKSkhISEsrTgkKh2L59+86dO8tVBwAAY4yx7GxWowYbMIAplRofq98srKhRo5MnkyZzCircX3/9RUSjNdmcwdy8U9Omf0kkrUaMiHz//ff5kF8i2rBhQ+vWrb///nuti+nalXbv1vpoysrKmjp1qoeHR4cOHfr373/v3j0tGrl06ZKvr++oUaMCAwO7d+9++fJl7QsCACD6+2/KzaXnz7WZGLZ48eKvvvqquLg4ICAgMjKyAqorjY6D8PBh6t2b5HJydSWFgtLT6dgxun1btyfR2P3795OTk62trVu3bq3RgWZmnnL5xgcPCvfu3cuz8PTp0zdv3ty6dauhoaHW9fj50YkTlJ//YsXQ4mJ1D5TL5evWrWvcuPGaNWsUCgURHTp0yN3dfdasWbl8ToYaMjIyJk2a1LZt25iYGBMTE2Nj4+joaE9PzwkTJjx58kS7n0jIGGNJSUnr1q3r1q3bxo0b9V0OgN5ERRER9eql5eGhoaHTpk3jWbh8+XIdFlY2Xd1aPn3KPviAETEi9tlnLC+PSaVs9mxmacmsrdnhw7o6jzb4x9OQIUO0OzwhIYEPzuzXr5+Xl9eKFSs0beHRI3by5IuvV6xgz56x5GTWrx8zNGRErEkTpk5nwPHjx1u2bMl/a927d7969WpKSsr48ePFYjER2dnZrVq1Si6Xl9KCQqEIDw+vVasWERkaGgYFBWVkZLRv397b29vY2JiIzM3NQ0JCCgoKNP0BhUYulycmJoaFhQUEBNjZ2fFfikQiEYvF27dv13d1jDG2Z8+eHTt2ZGdn67uQqiErK2vQoEFisdjLyystLU3f5bxVt27dmjx58tq1a4uKisrZVJMmjIidO6fl4UVFRUqlMjAwUCwWu7q6lrMYjegmCCMjmZMTI2KmpmzJEqb6NM7NZf7+jIiJRCw4mCkUmjWbkhKSmjo/P/9yOct7//33iWjdunVat6DKQktLy9mzZ0dHRxcWFqp/+JkzrHZtlpPz8p8fOcLeeefF1UOPHuzq1dd/bD169CgwMFAkEhFR3bp1w8PDS343Li6uS5cu/LPYw8Pj+PHjr20kOjr6pRxljB08eJD/Sb169by8vFRfv3QKYIwVFBScOHHi22+/7d2790urydepU+eDDz7w9vbmcbh79259F8vatGlDRH/88Ye+C6kCdu/e7eDgQET8mrJOnToXLlzQd1EV6+nTp7t27Ro/fnz9+vX5e9jW1nbo0KHFxcVat3n/PiNi1tas1Kvx0qxYscLR0TEwMJCIOnfurHUlWihvED5+/CLqiFjnzuzmzZdfoFSyhQuZWMyI2MiRRbm5ueo0q1BI5fK8O3eGKJXa/2L+LUDJR+veuHGjPO2Eh4dLJP8/j8LU1LRnz54hISHHjh0r5d0TERExd+5cxlhYGHv27DUvkMlYWBizt2c2Nhm2tnaBgYGPHz9WfTc/P3/JkiX8Y9fMzKyU27XIyMgGDRrw2vr373/nzh3Vtx4+fKjK0UaNGu3atavkgX/99ZcqIFu1atWkSRP+ta+vbzkH41QbS5cudXNz4zfNKq6urmPGjAkPD7937x5jLCsrq1OnTvyKxMjI6LBe+0BSUlJEIpG5uTlu7kuXlpamWg2jc+fOZ86c6datGxEZGxtv2bJF39XpmFQq/fPPP7/44ovWrVuLSjzEq1WrlpeXl5mZGRENGzas5MBAjWzatKV5845Tp2o/+K5v375E1LFjRyJav3691u1oQZsgvHKFpaczxtiuXaxmTUbELC3Zhg2ljRQ6fJjZ2rJ27ea7urpee/NY2sLCu+npq27d6pmQYJKRsfP587+Tkz95/vz1tzhq4sNAnJ2dy9MIY4wvItO/f//p06e3bNmy5DupZs2aQ4YMWbdu3fXr11Wvz8nJefToUVpa2oYNG8psPDOTLVy4hz93tLKyWr58eVFR0UvZ9s8//5TeCE9NS0tLVc/n48eP1clR3mVqb2/PL4q9vb1596lYLA4MDHz06JGmf1fVyenTp/nEG7FY7ObmNn78+PDw8Pv377/0siNHjvCX+fj48L/tEydO6KVgxlhYWBgRDR48WF8FVAm7du1SdfOsWrVKoVAwxoqKiiZMmMB/3QsXJml9c1N5/P7776Ghod27dy95JWdmZtanT5/ly5dfvHhRqVQyxhISEmrWrElE/v7+2mXh8OHDiehHPn9Cc0VFRRYWFiKRiP9SSl7KvwXaBGFw8Iuh/1OmME9P1qcPe+Vj4TVu337i5uZGRDY2NiWvl1NTU8PDw9eunXbpkn1cHPH/xcdLUlNDiovT8vMTU1K+ycjYIZNlaFEqY4yviD1q1CjtDlfhH3ARERH8P9PT03fu3Dlu3LiG/13w09nZ2cvLKzs7OyIi4sqVKxqd4saNG6oJ8kZGRvwLDw+Pk6oHjGpISUkZNWoU7+Th22CJRKIPPvigzDzLysoKDg7m/1rMzMw6derEazA1Nb356p2+YPCH9m3bts3IKOMduG3bNrFYLBKJOnfuzD9e9dXDxmcl/+9//9PL2Su/5OTkXv+O6OjXr9+rlzXr16/v0SOUiPXpwzIzNWi5uLj4woULWt9U6dyCBQv4RwGPdk9Pz+Dg4GPHjr32gjg2Ntba2pqIZsw4oOlPoFAo+NXz7du3tSs1OjqaiHiPVP369bVrRGtaBuHWrezIETZ16uu7+94kNzeXd0SIRKIPP/xwxowZLVq04L8kS0uThASzy5cd794NePo0rLg4VaksfPJk/ePHy5882RAXJ7p2zUMm0+Rk/+LRsnXrVi2OVZFKpcbGxhKJ5LWfhqmpqbzDvU6dOqqfTutz8fk0/Paiffv2pY9/eZP4+PhmzZo5ODg4OztrlKM3b95ULQbfsWNHBwcHiURS/suIqsvX15eIOnToYGtrGxUVVfqLN23aJBKJRCJR+/bticjOzi4xMVH9cyUnJ5erVsYYYwUFrFevWS4ujVNSUsrfWjWjUCjCwsJ4H4mNjU1YWNibXnnqFHN0ZESsUSN29WoZzd69e5ePnLKysqpTp46Tk9PTp091XLpW2rVrR0RdunTZs2dPmVdyjLHY2Ng+fdYSseHDmUZZGB8fT0QuLi5alzpr1ixeKhGNHz9e63a0o2UQymRs4kQ2aZLGxyqVyiVLlohEItUqO+bm5n5+fqtXr87MfP0zvOLix0lJ7nFxlJTUSiZ7otHpZDIZ7yp8+PChxrWW8Oeff/LbgtJfplQq+caE08oxW/6XX34houbNm5fzRva7774jooEDBwYEBGzbtk2jY/mDw99++42n8uLFi7Uuo0rLzs42NDQ0NDTkH51l9k4zxlauXElEEonE09OTiBwcHEp/OM0/QwMDA+vVqycWixs2bKjmc/Q3OXyYEbGy3qpCdPnyZd6vQ0QBAQFPnpTxYfLgAWvThhGxGjXY6dMvf/fRI/bzz2zkSNahw3+Wv+d9Ki1bttR7FmZmZkokEhMTE6lUqv5R8fEvHnj5+6ubhUlJSbwT4qOPPjp79uzYsWO1uCfm1458httL4xjeAm2CcOlSJpez69fZpEnszh129Ki6Bz5//rxz585r1qzhY7QCAwP//vtvdcbsFhc/TkpqHhdHiYnvFBenql/q6dOniahZs2aMsfJ8vnz1ldzN7fzSpdFlvrJx48ZEFBsbq/W5tm/fTkSdOnXibyyt2+F9wvwK64svvtD0cLlcrlQqv/76a/p3PUAB+vXXX1X/OFu3bq3mUbNnz+ad2zwL69atWzJBi4uLT58+vXTp0v79+/OeKBU+Gqtbt275+fla1/zpp4yIhYRo3UD1dP/+fd7VX6dOnQNqL29YUMBGjWLNmrEhQ9jBg0wmY5Mns6Ag5ub2YoQgEfPxmebg4BAQEBAWFvbgwYP09HR+Fav3LNy9ezcR9ejRQ9MD1cnCx4+fb9u2bdSoUc7Ozvzd6+jo2LhxY/6ffNa1+mfMysqSSCRGRkampqZisfjt/71pOWo0O5tNnMg6dWJEzN5e3QV1Nm3axN8fvBdYocl0iuLix4mJbidPWo0Y4VdyXOWb3LhxY82aNe7u7kQ0ePDgjRs31q5du5RxOqXz9GREZUf+/fv3icjKykq7/kxu586d9O/QqZEjR2rdDr814UE4c+ZM7Rr55ptviGjhwoVal1Gl8ZHc/O9w9uzZ6h/4+eef80etvPO/cePGu3btCgkJ6datGx+ep1K/fv3AwMCNGzdev379/v379erVI6LevXtrND+npPr1GRGr7uP/NbZkyRKJRGJjY5Pz6jSmsmRksBkz2KefspwcNmUKMzB4cZvIF9K8fv3lq5b09HT+yaPfLOSjfrTrzjl3jllZsT59GH8acPcuy8lhUik7dowFBzNPT+bs/I/qPVy7dm1/f3/+YOidd97hl3cBAQHqZ+GePXtUV5xldrxVBC2DUC5/ccnApw+qOcyef6Dwe5358+drelKZLP3DD/sTkZub22snvebm5kZGRpacHENENWrUMDU1bdWqFRE5OztrMe4jK4tJJMzIiOXllfHKzZs3E9F7772n6SlK4nchPAjL86xx9erVqg/xGTNmaNcIv7lZsGCB1mVUXXK5nE+Wd3FxIaKzZ8+qf6xSqeTL29aoUcPV1bXkxBsiatiwYWBgYFhYGJ96UdLNmzd5f8mQIUO06F/6P/buO6yp8+0D+J1A2KiIoCjgQMStOIoLJ+7R1hZtVarWSt3aasVRxbYOrNZdFUertq/9iVoVbavi3gP3RnGgCAoqe4bc7x8PUrQQQgImcL6fq1cvTc45eSIh3/Psq1eZiB0ctFnssXSLiYmRy+UWFhba3WF8/TXfvcszZ/KkSbxmDZ84UUCzoSFkYYcO42QyudYjtq5d4+horlqVb9/m1at54sTsBUDEf1ZWPGDAF4sXL772ugc1Ojq6Tp06RFSrVq3CZqHIbPFlNXXqVO0KrAvt5xF6ezMRt27NRBwQUPDx9+/fl8lkFhYW5ubmMpksPDxcixd9/vy5qFDWqlVLjAXIzMzabrIzAAAgAElEQVQ8duzYjBkzPDw8cn/d2NnZffrpp7/88suQIUNEw73IwooVKxZq/AIzb9/ORNy+fcFHDhw4kIiWLVumxVvL8WTXrpuenqd79brp6Xlr0iStr7Ns2bKcz5bWfZYzZ87U7q6lFDhx4gQRiSqanZ1doRowmDkrK+vTTz/19fVdt24dEdna2n711Vc7d+4s8Gvx8uXLNjY2omG8sC966hS3bMnDhxfqJKkQFY5Dhw5pca64k5w7lzX/jdQuC1NSUrZv3677kkDh4WLVKmVhP0K5xcXxtGns68urV/OiRWxkxE2bsp8fh4RwnrcTUVFR2mWhGHtfq1YtrX9AOtI+CNesYSJ+773sVVEKNH/+rZYt+7dv79O69cBu3Xpq/boxMTHiA12hQoWOHTuKsTCCqalpx44d582bd+HChZwfv0qlGjNmTO4stLe3v1bgOLBcRo1iItakUiTax2/cuKHdW8sWFMRE7OHBRPzpp1pfZvny5TlBOH78eO0u4u/vT0SzZs3Suhgll+gfbdu2LWk7aikzM1OlUolbsR9//FHzE0+fPi2G54wePVrzs7y9+dUrvnqVsZ5MnkR79bRp0wp74osXPGkSP33KqakcFlaIEzXPwpxxp9bW1gqFwtraurCTr96yejUTsbe3LtfguDj+7jv+5x/u1IkvXmRN0jknC93c3DTMwrS0tM8//7xBgwZaVNnjlUr/Bw/WPX16vcD2OrW0D8KHD7MbyjVpNszKYmdnJuL69ZmIdVzA69WrV82aNROT5CjXFoP5tf6rVKqxY8cSkYmJSbNmzUQWavI5Uyr53j2+d4/nzy+4+ffGjRuixqnSsVlq27Z/g7B/f60v8/PPPxORmNM2btw47S4ya9YsIvKX5NAL0b0nbp60HsaWlZUlmjoL2z998OBBMzMzDb+4VSpOTOTPPuMpU/jUKcbOWnnau3cvEb333nuFPXH5cibi7t21eVE1Wfjw4cO1a9f2799fzMATRBhocb/+lo8+YiJes0brCzAzx8ezuH8bMCCPVcPyU9gsVKlUV65cGTRokLjvLFQJX2Rmrn36VPs672s6LbHm5sZE2atlql9Sav9+JmJHR5bJ2MqKdRsfzswcERHx7bffTp8+PULsclsQlUo1fvz43FloZ2dXYBYmJLCjI0dE8Jo1XGB7quiT06VXL5toihV17X79tL7MypUrc2qEY8aM0e4i3333HRGJVeIkJSIiQiaTidtzhUKhfhtnNU6fPi3u1bQ4d9euXWKxoTxH7SqVfP06Bwayjw87OvLw4TxxIq9YwUuWIAjzpn42sBru7kzEWg/pz8nCRo0a3b9/PyQkxM/PT4wozuHg4CDGnUZGRqanp4u5vJp8R+UpZwzHf/qgC+fCBe7YkdeuLfSJudtIRY3lvwPgo6Kick+/FmM4bGxsCtWi9iIzc2RY2LqnT5/ptmK4TkE4diwTsacnE/FXX6k78tNPmYjbtmUiHjZMl9fUnkqlmjBhgshCMWfFzs7uypW8V/ROSuI9e/jiRZ44kUeP5jVr+OBB/u03fpr/3A0xk+aXX37RtaA7dvwbhB9/rPVlVq1alVMjLFQLW24//PADFXLAZOkg6tNiyFLHjh21vs6PP240NzfXehvnbdu2iZ7vn376iZnT0tKOHTs2Z86cbt26ubll5IxcEL9cEyeyUsmdOvEff3BhZo5JiFhKdPv27ZqfcuECE7Gtbd69YhqKioqqXbs2EeVemtHGxqZv374rV67872osOmbhzZtsYsI1a2pfYGHOHCbSZr44v1kvtLW13bx5MzPHxcXt3LlzzJgx4l8jh5OTk4+Pj+jzqly5soZDGve+eHE3JWWdmi9ljekUhLt3s1zO77/PU6fyuXPqjuzZk42Ns4eYHj+uy2vqSnT85MzxatCgQe7O5OvXOSCAvbzY1JSJ+Jtv2N+f//c//ugjnjEj+xunbl0eO5Z37uS4uH9/M5RKpWgE0GTOdQF27mQibt6cifijj7S+jFhwUgThqFGjtLvI7NmziWj69OlaF6OEEssBfvnllyNHjtRl/eXGjdnCIvnAgcItBJHb2rVrxWo1zs7OorFUaNUq3MGBvb05MJCvX2eVig8eZGa+epU3bOCKFfX8i2aY5syZQ0QjC/PVLuZlatvJ/q/IyEhHR0czM7Ocdc7Ub/WQOwsL1Ub611/89CknJbHuS+y1b89EXJjbhjc8fvxYzKuuWrXqmDFjWrZsKRbMEsqWLfvBBx+sWLEiZ8WJlJSUTp06iQ6mAuuF22NimoWG9r1+PTQhQcvy5aJTEMbH85QpzMwnTnCBKzM/eMCzZnHnzvof2C3mxikUio4dO966dSs6OlrU0J2dXaysVCLtjIy4RQtevjx7YrKXF//8M/fowVZW2XEol7OdXZ2cz/SxY8eIqFKlSkVTxNBQnj2b168v9M5VuaxZsyYnCEeMGFGoc1Uq1e+//37z5k3xxaHF+IKSrnv37nK53MXF5ZlYYF4rkZEsk7GlJeu4CcTs2bNFvVAulzds2HDMmDH/+9//IiPzDdcvvmAitrHhy5d1et3S5+zZs0RUU+O6UmpqaufO6xo0iM+n5ajQCrXnX04WFqq/cOzY7PY5HcM7OZlNTdnIiAvZkPyGx48fV61aNWc8v7Gxcc53Zp7/FMnJyZpk4Y6YmOahoc1CQzfr8OuZm05BmJTETZvyrl28fj3v3ctBQbx3Lx87xqGhHB7OUVH/7sDn4cE3b/L167p23hYVPz8/8VPJ2d5B6Nnzoa8vb92a70q7GRl8/DjPmsUffxyfe5P6nJVtT/53LabCevWKv/ySVSo+cIB12ItkyZIlRNSqVauQkJBCjdS4ePGiiM9OnTqJtWGH6as5W38eP37s7u5ORA0bNixsl1IOMXLvgw+KoDxnzpzZuHHjS81WgFYquV8/JmI7O9Z2DYnSSalUij0W/juDM0+bN28mPU3xFtLT03v16lVgFiqVfO4cz53LX33FEyfy5s28d6+uQSjW6vPw0OkizHzu3LmPP/64d+/ef/31lybLexWYhTkp+EcRpSDrHoQzZ/KIEbx8OX//Pefuscj9X+fOPHYsf/klX7tmKEHIzEOGDBEbD1lYWHh5eQUEBISGhhbqCsnJyaLfW+wbIu563N3ddZm4w8x85gzndDR++aXWl1mxYoXok/D29tawwfb58+fDhw8XoW5vb9+qVSvRKDdjxgyti1FyPX+evV+Kh4dHglbNL717M5E2Yw10l57O3boxEbu7RxbJWt6lxkcffUREazX7qXh5eZEOWwsVCTVZeO/evQ0bnn/0UfbQGCI2MWExQnzkSNa2Yzqbv/8v7dr9PX9+wct4FTk1Wbhq9eqBJ04UbQpykQThvXtcvz6vXs3e3ty5M7duze7uXKMGV6zI1tZMxN268cSJHBLCU6YYUBCK5aQ//fRTXTZlFk6dOiWTyczMzMQ8Qg1/x/L19Gl2i/OdO6zDIp8qler9998XvUqWlpbff/+9mhUsMzMzAwMDxUIqCoWiVatWlpaWRGRubu7j46P7P1EJ9eTJE9FmoMX6n1lZXK0ay2Ssr00gkpO5b9+HTk41XFxcsBNFDjGaum3btuHh4S9fvlQzrP/Bgwdyudzc3FzDinjxyZ2Fhw8fFl054pPZvv1fIgJr1uQRI3jbNl6+nJn55k2eP5+7deNdu7R8UTF96MgRnbaD1VqeWbhq1SqZTGZmZRVU1BvD6RSEaWm8ZQszc2Agq6lypKSwWOpy8GADCkKxQcneIpp7LNaU8fDwEB9WrUfbZ9u8mb//nv39dZ9oEhERkbM9fZUqVTZu3PjfaY6HDh3K2Q+rSZMmOTss9urVS8MWpFLs3r17lStXJg3W/3z0iH/7jX19+Zdf+NAhvnSJs7J46dJ3VtI8xMfHi8+5m5ubJiv0SsHly5dzd2qIuz07O7saNWo0bdq0Xbt2vXr1+uSTT3x9fUV7gLW1dZJuk7WLRGpqateuXXP3whBRhQoVRoxYsGZN3tMkVq5kIjY15T17Cv1y0dHRMpnM0tJS6zVvdZc7C2/evLlmzRqx3+fSYvil0ikINSeWY4iNLXhMzbuRs9h5UX3Eo6KixBo3DRo0+LJBg1gDm4F+5swZscQrETVv3vzEiRPi8cjISLFvlBjZJWZYElHt2rWL6hahFFCz/ufNmzcDAwMnT94k1osQ//XsyXPm8MCBnJlZBKMNdfTq1SvR2dmoUSO912wMxOzZsytWrFitWjUbG5vcufJfYpSj1gszFa3U1FR3d3dXV9fOnTvPnz8/9/pZ+ZkyJbu9tLD1wt9++42IevTooX1xi0JycnLHjh2JqEyZMsWXgvzOgtDQ7Nixgwq/ioF6c+fOda9Y8WrnzmxszAoF67jQWlFTqVRBQUFi5UzRcfjgwYPY2FhbW1tLS8t27dqJfdRsbGyWLFliOFtsG4i31v+8d+/ehx9+mLMgiJtbYyIuV46bN2dPT27alGfP5v37eckS/QchM0dFRbm6upqamha4sbA0JScnR0dH3717NzQ09NChQ7t27fq///u/Ll26EJGDg4NCoZDL5cdL7GSUCROy64X799/T8JTExETRuLV48eJiLZsmkpOTa9eubWJiIpPJim8el0SDUKw+WrRrSaelpWU1bPjvEgOF3wbsHUhOTvb39zc3NxejhCZPnjxq1CjxhS6Xy318fHSZLVC65V7/8/nz56K1uWLFii1atOjefWyNGiyT/VspHDOGY2N52jT28dF3uZmZ+dGjRyEhIfouRUmSlpYm5oOLxWbd3NxSdZwEoz9TpnC7dvNNTEx25V8xVCqVoaGhAQEBXl5e4p7Y2dn5oob7ChWnlStX5qxCUKVKlbBCLfaqMYkGofiI57QQFpldu1hUDcQorh07ivj6ReThw4f9+/cXHy/xf09Pz0uXLum7XIbuwIEDYvCRh4dH27Ztc7Ykbd68FxFbWnKnTjxrFh88yBs3cnw8v3rF0puBWXocOXJEJpOZmJhUr17doWLFawsX6rtE2hOLapmamv7111+5H79169by5cvff//93LsXGBsb169f3xB2IV2zZo0YuL5w4ULRRlqpUiWtt5VVQ4pBGBkZKfrAi2UwZPfuTMRt2jAR16ih61Tq4nTixInq1atXqlRpw4YNui4ULhm7du0yMjLK2VzXxsamd+/eixevPH2apTq0tjQbMWKETCab1r37y/LlWaHgoppXrw9i8rSJicnatWvFuFOx0WaOnN0LdB3rV0TW/PqrSMEVK1Ywc1JSUvv27UW9MFyzJaY1J8Ug3LRpExH17Kn9VlDq3L3LpqYsl3PdujxlCtZ8LH02btw4ZMiQ5cuXX716Vdc5o2DY4uPjD3bp8m9/h7t7ARvyGrCcjQdy79tqb28vFvsugrUhi9SfMTHdL11y8fDIvb2rGDvTY+bM7lev3i/SOoaMmdUMmiqVhgwZsnHjxkWLFn311VfF8gKTJlFYGAUE0IULpFTSJ5+QuXmxvBAAFLe//6aePcnCgmxt6fFjWrCAJk3Sd5m0xMzjx4/fuHFjs2bNevXq5eXlVb9+/dzrgBuIoJiYBRERRDSlUqWPXndACMkpKZMePz6flGRvYhJYq5aTqWmRvKIUg7BatWqPHj26cuWK2Oy+6GVlkZERff01ff45mZrS4sW0cmWxvBAAvAMDB9LmzdSoEV25QhYWdO0avZ5rC0Xuz9jYeY8eEdE3Tk797O3/e0CaSvXVvXvnExOLMAvVzaEpZV68eBEUFOTt7f3o0aMKFSrUr1+/uF5JtDykplL9+uTqStK71QAoVZYtI3t7unKFPD1p0iR6vX8eFKGErKyXSuWBV69ECk52ds4zBYnITC5fVLNmE2vr5xkZo+/ejc3ISFAqM3T7mjUu+JASLTOTTp+effDg7r17xfxT8bCrq6v6ibRFQKn8twwAUHLZ2tLixbRwIS1ZQo8e0cKF1LkzNW+u72KVKnMfPXrP2rqiQtG1fPmGlpberyfp5slcLl9Ws+bE8PD25crNe/y4RZky7lZWNXXogSqlTaP379OBA3TgAIWEUFzc+MaNl12+bGpqWqdOnaSkpAcPHigUikOHDuUstlIszp6lHTvIyIg6daKOHYvxhQDgHVCpKDiYEhNp0CCaMIEmT6Y3u69AFzMePPCysalmZuZsZqZhpyUTvcjMXB4Z6WVj09jKyjrXIKDCKkU1wkeP6J9/yM2NXrwgb+9/H69Ro0e1asdlslu3bl2+fFk8lpWV1blz5z179ojxuMXCw4M8PIrr4gDwjsnldOYM+fmRTEadO9OlSwjCIqSQyx1MTa2NjDQfuiOOtDQyslMoFLoN+SktfYQJCfTdd/Txx3TvHiUlka0ttWxJnp7k4ED377cJC7t06VJGRobYE3Lfvn2ffPJJcnJynz59Tpw4oe+iA0AJUb06hYUREYWF0ZtbmYKOzOXyWubm5d9cD10TdgpFbQsLM926ukpL0+jJk/TgAQ0aREolTZhAp07RpUvZTzk6cteu2zp37tCpk9hmiIiysrKGDRt2ZOfOay4u1gsWoOkSAAqWlkY//khyOVWoQCNG6Ls0pcrLzEwtUjCLOSEry8ZY16bN0hKE4eG0dStNmUKPHtGmTcRMZ85Qly7UpQvVrZvnGSqVKm7ixPJLlpClJe3ZQ8XXRgoAAAastAQhES1eTMnJFB9PU6aQra1GpzDT6NG0ahVZWNCuXeTlVcxFBAAAg1OKglA7KhV9+SWtW0fOzhQWRkW0TgEAAJQUkg9CImImPz8aOJCMjGj7djI3pxEjKCSE+vQhhYK2bKH+/fVdRAAAKC4IwteYaehQWr+eoqJo2TJipu+/J3NzGjuWli/Xd+EAAKC4lKJ5hDqKi6MqVcjIiBwdKSGBrK3pxx/J2JiiovRdMgAAKEYIwtfKlaOnT4mZYmPJ0pKIaPLk7BohAACUXgjC12QyGjmS/P3J2JimTaN9+0jMTWnWTN8lAwCAYoQ+QgAAkLTSssQaAACAVhCEAAAgaQhCAACQNAQhAABIGoIQAAAkDUEIAACShiAEAABJQxACAICkIQgBAEDSEIQAACBpCEIAAJA0BCEAAEgaghAAACQNQQgAAJKGIAQAAElDEAIAgKQhCAEAQNIQhAAAIGkIQgAAkDQEIQAASBqCEAAAJA1BCAAAkoYgBAAASUMQAgCApCEIAQBA0hCEAAAgaQhCAACQNAQhAABIGoIQAAAkDUEIAACShiAEAABJQxACAICkIQgBAEDSEIQAACBpCEIAAJA0BCEAAEgaghAAACQNQQgAAJKGIAQAAElDEAIAgKQhCAEAQNIQhAAAIGkIQgAAkDQEIQAASBqCEAAAJA1BCAAAkoYgBAAASUMQAgCApCEIAQBA0hCEAAAgaQhCAACQNAQhAABIGoIQAAAkDUEIAACShiAEAABJQxACAICkIQgBAEDSEIQAACBpCEIAAJA0BCEAAEgaghAAACQNQQgAAJKGIAQAAElDEAIAgKQhCAEAQNIQhAAAIGkIQgAAkDQEIQAASBqCEAAAJA1BCAAAkoYgBAAASUMQAgCApCEIAQBA0hCEAAAgaQhCAACQNAQhAABIGoIQAAAkDUEIAACShiAEAABJQxACAICkIQgBAEDSEIQAACBpCEIAAJA0BCEAAEgaghAAACQNQQgAAJKGIAQAAElDEAIAgKQhCAEAQNIQhAAAIGkIQgAAkDQEIQAASBqCEAAAJA1BCAAAkoYgBAAASUMQAgCApCEIAQBA0hCEAAAgaQhCAACQNAQhAABIGoIQAAAkDUEIAACShiAEAABJQxACAICkIQgBAEDSEIQAACBpCEIAAJA0BCEAAEgaghAAACQNQQgAAJKGIAQAAElDEAIAgKQhCAEAQNIQhAAAIGkIQgAAkDQEIQAASBqCEAAAJA1BCAAAkoYgBAAASUMQAgCApCEIAQBA0hCEAAAgaQhCAACQNAQhAABIGoIQAAAkDUEIAACShiAEAABJQxACAICkIQgBAEDSEIQAACBpCEIAAJA0BCEAAEgaghAAACQNQQgAAJKGIAQAAElDEAIAgKQhCAEAQNJKcxCqVKoDBw7069fP2dm5adOmiYmJ+i4RAAAYHBkz67sMRS8yMnL9+vXr16+PiIggIiMjo6ysrNq1a+/YsaN27dr6Lh0AABiQUlUjzMqi3bupTx/65BM/f3//iIgIZ2fnDh067N69u0GDBrdv327evPm2bdv0XUwAADAgJTgIY2Lo+nUiosuXKSKC/P2pWjXq04d276bkZN927dq1a9cuMjLy8OHDYWFh586dGzx4cFJSUr9+/aZMmZKVlaXv4gMAgEEw1ncBtHfrFk2cSIcP04YNFBpKJ08SEVWvTtWqkUJxfv/+o0Rkbm7u7e3dpk0bMzOzDRs2tGrVasyYMfPnzz979uyWLVvs7e31/B4AAEDfSnAf4bFjdPkyxcZSQgI1aUJr1lBKCl2+TMxkbx9dpUrPoUOHDBo0yMbGJvdZx48f79evX3R0tJOT0/bt25s3b66v8gMAvGMZGQ+NjGyNjKz1XRDDUrKD8NUrCgujAwdo506qXJni4sjMjHr3Jl9f8vLK98TIyMiPP/74zJkzZmZmK1euHDp06DssNQBA0Tt27JiZmZmRkVHOIzVrWpuZ/dvmZ2RU7tWrrVlZcSYmjuXLD9RHGQ1XCQ7CU6coPp46dSJPTzp7lhYsICsrGjiQypQp+Nz09PSxY8euXbuWiHx9fZctW2ZqalrsJQYAKAZjxowJCgqKiYnJ/eCFC67Md3P+qlBUqVx5VkbGY3v70cbG6BV6QwkOwpQUGjiQ6tWj2bO1vEJgYOD48ePT09ObNGly4cKFIi0dAMA7UrNmzfDw8GrVqtna2uY8+MsvVnL545y/yuXWdeteTku7HRk53cVla4keKVnkSnAQXr1KjRpR3bp044Y2pyuVyqSkpMuXL3fs2NHU1DQ5OVkuxycDAEqYy5cvu7u729raLly4sG/fvmXybxOLj/9LqXwZF7fTxWUbkexdFtLAleCv/rAwIiJXVy1Pv3r1qo2NzTfffMPMzs7OSEEAKIm2bNlCRHXr1h06dOgXX3yh5sgyZbqZmzcoU6bzixe/vavSlQwl+Nv/7l0iolq1tDw9LCyMiBQKBRG5ah2nAAB6JRYJefnyJRF5e3urOVImM8rKio+IGBkVpW1/UilV4oNQ6wi7e/cuEZmZmRFRLQ3idM6cOUSUlJS0bNkyLV8SAKBInT9//t69e/b29jdv3rSwsOjRo4f6462s2hgbV0hPv5uWdufdlLBEKMFByHzOw+NprVqp2p0uglAsMaNJjfDp06dpaWkpKSnPnz/X7hUBAIqWaBd1c3Nj5j59+lhaWqo/XiYzKlu2JxHFxe18F+UrIUpwEP79d++zZ6vUrPlSu9NF02hCQgJpFoRRUVE///yzmHGhoV27iIgiIykiQrsyAkBpExUVtXr16qZNm44ePVrHsYrMLNpFY2Njiah///6anFWu3PtEFBe3S5eXLmVK6hJr8fHxz58/t7S0rFy5snZXEDXCqKgo0qxptHLlyhMnToyPj1+wYIGGL+HvTyYmpFBQWho5O2tXTAAoDe7fv7979+6tW7eePn1apVLJ5fKLFy+mp6cHBgbmngVfKKdPn3706JGDg8Pt27etra27du2qyVllynS5d6/p0aOmM2dGV6pUSbuXLmVKao1Q1OdcXV1lMm0GAb948eLly5fW1tbPnz83Nzd3dHQs8BRxt2Vubt69e3fRHFGgTp1o1y5KTSWlkn7/neLitCgpAJRUKpXq5MmTkydPdnNzc3FxmTBhwsmTJ83MzD744IMBAwZYWVmtX7++b9++aWlp2l1ffBG5uroy8wcffGBubq7JWXK55ebNVVatOrJ7927tXrf0KdlBqElNTs3pTk5OzOzi4qLJ3AlPT08iCg8PHzVq1IgRI06fPq3m4MxMUqlIJqOvv6Zly+jKFfLxoQoVqE0bWrqU0MkIUIqlpaUdOHBg/PjxTk5Obdq0WbBgQVhYmK2trY+PT1BQUHR09LZt29LT052cnGxsbIKDg7t37y76aApFpVJt376diKKjo0njdlHh/fffJ6Jdu9A6+hqXNCkpKUFBQXXr1rWysmrZsqVSqdTiIhs3biSi1q1bE1Hfvn01P/HFixf16tUjoi5duuR3TGIid+/OI0fynDnMzLNn86JF3KkTGxkxEROxiQkPGTJv/fr1L1680KLwIEEPHz7cvHlzz549N23apO+ygDrr168XY9EFFxeXiRMnHjt2LPc31dOnT11cXIioRo0aonGyadOmz58/L9QLHTlyhIicnJyIqFy5cunp6Zqf++zZMyMjI1NT04SEhEK9aGlVkoLw/Pnzvr6+1tbZ66ZbWFgQUadOnWJiYgp7qW+//ZaIOnToQER+fn6FOvfs2bNOTk52dnaXL1/+77NRUezuzkRcqRJHR3NICHfvzkuXMjO/eMEbN3KvXuzsnCmTyYlIoVB069Zt3bp1T58+LexbgNItMzMzNDR0yZIlPj4+1apVE595IyMjIyOjdevW6bt0kK8yZcrI5XIXFxd/f//Q0ND8DouKimrcuDERVa5cuWrVqkRUu3btiIgITV4iKyvrxIkTTZo0IaKhQ4dOmjRp2rRpGhbv6tWrLVq0uHPnTqtWrYjop59+0vDE0q0EBGF8fHxgYKD4qQtubm5du3YNCQlxcHAgIkdHx7NnzxbqmosWLWrUqFHbtm2JSIuvlTlz5lhaWvbu3futx+/d45o1mYhdXPjuXWbmXbvCmjXr1rv3B7kPi4mJX7NmTZcuXYyNswcrVa5c+caNG4UtBpQyUVFRf/7558SJE1u3bp27VkFEtra2vXr1atq0KREZGxvv3r1b34WFPDx8+FDUz9auXXvr1i31B7969apNmzbieNHL4+zsfPv27fyOT01NDQkJGTduXM4IwTJlytja2j9n/MsAACAASURBVO7bt0+TsimVyrlz54olRN5//31HR0cxNqJ69ep+fn4S//4x6CAMDQ319fW1srISP/WyZct6enq6ubmJv548eTIyMrJly5ZEZGpqunbt2sJevEqVKkSk3XfKRx99ZGtrm/tTe+rUKU/Po0TcogXn1FHj4uKCg4P/+OOPkydP/vcisbGx69atE2sDBgQEaFEMKB2mTZtWoUKF3Mknl8vr1as3fPjwX3/99datWyqVKjk5uUePHqKv2tzc/OjRo/ouNbxt8+bNRNSsWTPRWFXg8cnJyd27dyciS0vL+vXrE1H58uXPnDmT+5jY2NiNGzf27ds39xzBmjVrjhw50sPDQ7QTzJo1S30n0cOHWR06dCUimUzWpk0bsdmOg4ODnZ1dzjUbNmw4f35aWJiu/wglkSEGYUxMzIwZMxo2bCh+PDKZzN3dPfc9soODw7Rp0548ecLMmZmZfn5+4nFfX98CG8oTEhICAwPFnTURmZmZValS5a1PniZSU1MbNGjwwQfZVb2dO3daWFiUK2czdGh4cvIbRw4dOvTs2bM7d+5MSkrK81I//fQTEX355ZeFLQOUDufPnzcxMZHJZFZWVq1bt/bz8wsODo6NjX3rsIMHD4omhPbt24vawIULF/RSYMjP2LFjiUg0Nc2YMUOTUzIzMwcPHizu5t3d3YnIyspq//79Dx8+DAwM7NWrl6jDCXXr1s3d4qpUKv39/cXsi86duzx9mpXnSwQFsY0Nt29/2s7OTnyvymSy0aNHp6SkZGVlHT9+fNy4cfb29nXq+IhBDHXrsr8/h4XxgwcsOi7v3CmifyBDZYhB2Lp1a/ELX65cOU9Pz5zZ7nK53MvLKygoKCMj461TfvvtNzF0uFmzZo8ePcrzsmfOnBk2bFhO/bJChQq+vr6ixVWLCiUz37x508rK6tGjR+vXrxcF/vzzzzMzM3Mfk5GRMWLECPXXOXr0KBE1adKksAWA0iEgIEB8exbY2/3bb7/JZDKZTPbee+8RkZ2dnZqWNHj3xB12gwYNiOjvv//W8CyVSjVhwgRRtxOVvNzbo5qYmHTt2nXVqlXi1v+/Dh8+XLly5Xbt5tvZ8T//vPHUq1c8YED2GL0WLVSVK8fWqNHD3t4+ODj4rYtkZGTs3/9k8GAuVy77eCL+4gseNoyZecKEwv5LlDAGF4QqlUp8CPz8/HI+DVWqVJk5c+bDhw/VnHjx4kUxpsDOzu7QoUM5j4suRnGrJTRt2jQwMDA5OZkLX6F8y+rVq0VTrUwm++GHH/I8ZvDgweovkpSUZGRkpFAoUlJSCvXqUDqI5v333ntPoVAU2FAvlrpVKBSi/c3JyUnDERZQ3JKSkoyNjY2Njc3NzWUyWWHHhM+YMYOIunfv3rx5c3t7ezMzs169em3cuDEuLq7Ac6OjYzt3VhGxXM4zZnBOK6mPDxOxpSW3apWdbcOGxT579kzNpdLSODiYfXzY2Zm//57XrOEdOxCE79zjx4+JqGLFipmZmY6OjqIK+FY1Kz+xsbFeXl5EZGxsHBAQILoYcxrWbWxsfH19r1279t8Tf/vtNzEGVU2F8i05Fy9btqxCoVizZk1+R27cuHHq1KlTpkxRk7JiSoYWLbRQ0kVHR8vlcnNzcwsLC7lcHhUVVeApU6dOFd2EouZRr149zMMxBIcOHSKi2rVrix+KFlf4448/kpOTRcvqjh07CnVuVhZ//332HK127ViE3ZMn3KIFOzoyEVtY8OrVhbvg3Ln8/DmPHMmlvt/G4IJQfJjatGnDzFrUkDIzMydOnCiqaDkNqp07dw4KClJf27t48WL16tVFhfLgwYP5Hfbq1asVK1Y0atQop/9SJpMZGxsnv9Ux+KZ169Z9/PHHakaRDRkyhIiWL1+uyXuE0iQwMJCImjdvTkStWrXS5BSVSuXr6yu6CcVow/feey8xMbG4iwrqzZ49W3x3EdHw4cO1u0hGRoaFhYVMJtNiVhgzHznClSuzqyt37Mi3b/O9ezxqFBNxs2asRSP64sUcE8P37nFh5lqXSAa3soxYAlT8emu4YlBuaWlpM2fOnDVrlqmpqbW1tZ+fX1hY2P79+729vU1MTNSc6O7ufv78+c6dO8fExHTt2nX+/PlvHXDhwoUvv/zS0dFxzJgxV65cEfXLq1evNmjQQKlUXrlyRc3F9+/fv23bNjWL0YjvwdDQ0MK8V9CzY8eOibVqdSFW98gZ1K7JKTKZbNWqVf369UtISHjx4oWjo+O5c+c++OADrVfqgiIhfsEzMzOJSDR3a+HSpUspKSlubm5vjSLWULt2dOkS7d5N9erRkiWUlUX16tHWrXTqFL0ebl8IEyZQQgItWqT9bnclhr6T+G2TJk0ionnz5ml3+sqVK4moc+fORPTZZ58V9nSlUunn5ydqkwMGDEhOTo6LiwsMDMypAooBOxs3bsyprQ4bNoyIloo58/n48ccfiWjkyJH5HXDu3Dkiqlu3bn4HpKSkhISEjB071szMzM7O7pdffinsW4OideDAATMzs4YNG758+VLriyQmJpqZmcnl8vLlyxNRoUa+pKWliY4AJycncXrOGGZ491QqlfgpiJVitB7EtHjxYiL6/PPPdSzPxIm8dy/7+/PPP2t5BaWST5/mefOYiB0ddSyOoTO4IOzTpw8Rbdu2TbvTv/rqK3o9vjy/0SsF2rJlixhcamlpmXvOxtSpU8PDw986eNWqVUQ0aNAgNRc8fPgwETVr1iy/A9LT001NTeVyeXx8fO7Hr127tnDhQi8vr9zTq2UymVwu/+GHH1QqlXZvEHQXGxtbt25dIvLw8MhvYkyBgoKC6PUgwzp16hT29OTk5FatWvXu3XvSpEkymaxWrVraFQN0d/PmTSKqWLEiEdna2mr9u9mvXz8i0mIQ+1smTmRm/uwznYLQ0pJlMi5TholYg87rEszggrBOnTpEdOXKFe1O79mzJxG1aNGCiP73v/9pXYzbt2+L6fZq5mwIoj1TbIyZn4SEBLlcbmJikpaWlt8xYhDgkSNHEhMTg4ODfX19nXNt3SSXy5s2bern57dhwwZvb28xc6hnz56vXr3S+j2Cjp48eSIGKnt5ean5yaoxcOBAer2e+9SpU7W4wqtXr5RK5aBBg4ho4cKFWlwBisS6devEXRER/XfNKc2J1V50X+dFrP8YHc337ml/kZYtmYgbNmQi1ngySIlkWEGYlZVlamoqk8m0vsUWnYvi/xcvXtSlMOHh4XXq1Clw8baMjAwzMzOZTKY+k0TAnzt3Ls9ns7KyPvroIyJydXXNPX/Wzs7O29s7MDAwZzHSefPmicqljY2NOD7PcbDwbty9e1dUAj799NOsrLynM+cnIyND/BDFd5/WY4ZzrhMmzUVBDIO4m3n//fc3bNjw119/aXeRR48eEVG5cuUK+1kqJmPGMBF7ejIRa9u+VjIYVhDev3+fXu+OpIXMzEyFQiEGoxORjgur79mz57333tPkSDG7Wc1YU2b+7LPPiOjnN9spnj17FhQU5OvrKxZNFYyMjJo2bSrWj/hvA8uRI0fEN2/VqlXFpAsrK6ugoKDCvjsoKpcvXy5Xrpz6PuA8hYSEEFHNmjVFw7vWjWkHDhwgovr162t3OhQJPz8/Y2NjMzMzrVOQmf/44w8i6tGjRxEWTBe//so2Ni+6dTvfuvXGsWN1ba01ZIYVhHv37iWijh07ane62GVQ3F87ODjoWJihQ4f26tVLkyNHjx5NBS0Wunz5ciIaOnSo2FXA39+/adOmuXcVtrW1JaKyZcsWOH/28ePHInrNzMzEWG2ZTDZu3DgNZ1tCkTt8+LDoxPX399f8LPGxEZPGClx+SA2xrNe3336r9RVAd+np6Z9//jkRGRsbaz2Wbdy4cboMbihy167dJCLRR+Ps7Kzv4hQjwwpCkRZar7q5Z88eer3ibdu2bXUsjKenZ//+/TU5csOGDUT08ccfqznmzJkzRGRtbZ2zxpsYjNOzZ8/ly5evWLFCfJN2795dk1dMS0sTo1VFD5NoTW3Xrl10dLRG7w2K2q5du8Qye4sWLVJzWHR0dHBwsL+/v5eXl7m5uVwuX7Vq1Zw5c/Jck11Dop/y/PnzWl8BioRKpfL39xc3poXa3iguLu706dP8eqCA+rald0mpVIpJjeJbq7A7JpYghhWE4oZo4cKFp0+f3rBhQ2FPFyOP27VrR0RffPGFTkVJSXlUtuzZ9u01OfbGjRuirVLNMampqa1atRJVwBo1avj6+gYHB6empjLz8uXLxeCXYcOG5TckJ0+BgYFicmSjRo3s7e1Jqx2poKhs2rRJLLDw66+/5jyoVCovXbq0YsWKgQMH1qhRg3IRHwZXV1f1S16pd+HCBSKqUqUKhhAbiKVLl8rlctJgo9Nnz55t3LixV69eJiYm5cuXT0hIUCgURkZGBrU2ghh4KAY27927V9/FKS6GFYT169eXy+V9+/YVIzZHjx5dqMU/R40aRa/nTsyfP1+novz9N5uZsWYzEbOyssRWSuq/0URvkIeHR8eOHcWw2Ny3kIVqVctx4sQJ0b9YqVIl0WVoa2trUL9IkpKzEOiYMWO+/fbbjh075m4AEE0CXl5eM2fO/OeffyIiIsQazbpMRpw5c6b4TSnaNwK62LRpk2geGDVq1H+HvVy9evWHH35o1qxZTs+IsbFx48aNxXAbFxcXvZQ5P6IBX+xh/t133+m7OMXFsILwu+++EzdTHTp0EANeWrduHRkZqeHpYn6x6D/7888/dSqKjw9bWrLG+z5rsvGK2HgsODj4999/t7GxadasmZjsYWxsrMu0oefPn4uPqampadu2bX///XetLwW6E2u4i4+x4ODg4O3tvWTJkuPHj79V44+JiRFLU7Zs2VK7kdJiV539+/cXUfGhaAQHB4tvsAEDBogf+tmzZ7/++uvcrQJWVlatWrVq3bp12bJlxSMKhUK7WTTFJzIyMiYm5tNPPy1fvrxCoRDrgKtfUbIkMqwg5FzrX9euXVsMe3lrNwk1Ro4cWb9+ffFR03VSgZ0dGxnxggUaHt67d2/xUXZ2dh43btzx48f/21QlGn5F58GzZ89EF7SRkdHkyZN1bNfK2UNjQqlfJd7gZWVlDR8+3NXVdfLkyTt37iyw2fPx48dVq1Ylol69ehV2uNODBw+IqGzZsoXdNQXegSNHjoiGop49eyYnJ48ZM0Z8RZQvX97Dw6Nx48a591pq2LDhjBkzNN+56Z1RKpWipU0ul+dUYcuWLTt48OD9+2ML05Nj0AwuCJn50qVLYv3r8uXLi/0CxW4SBZ6YmZm5bds20U+j05ZGKSnZqyloPPorNTW1S5cuokVXqFq16sSJE0+fPp0TcqLdbMSIEVFRUeJ9VahQoXHjxtbW1s2bN1+yZImOwz53795dqC5GMBBhYWGii3fQoEHqJ5BFRET88ccf48aNa968+YkTJxYtWiTqHO+sqFAooaGhYgt4Dw+PX3/9tVOnTg0bNsxpLTAyMmrdunVAQIDBbiqZlJQklvoyNTXdvHlzRETEkiVLWrduLZPJLC0rmpuzjQ37+HBwMGdkcHo6i/ux5GTOyGDxZVZSdpYzxCBk5tjY2C5duogIbNeunbgTGThwYH5V8idPngQEBIg7a7lcruucqogIbtWKGzXio0cLe+r169f9/f1dXFxyEtHJyUnUEf/++2/R2Cs6C11cXO7evatSqX766ScXFxeFQiHuCktfswMU6Ny5c6I3ccyYMbkfz8zMvH79emBgoI+Pj7g7zDF37tzGjRsT0ZYtW/RVbCjQrVu3nJyccv/gLC0tP/zwww0bNsTGxuq7dOo8e8Z9+nwjKiTHjx/P/dTdu3eXLg0RK86I/+zteeLE7DEV48fz1q185Agz85sfZ8NloEHIzEql0t/fX9w9tWrVSmwr2Lhx4/v37+cck5GRsX379m7duuXcZNWuXXvatGn5beWsqb//5jlzeNMmVql461Zm5rQ0LmjH1NxUKtWpU6e++uqr3MukidV4RVFbtmyZ+9fgxYsXohVeLpe7ubmNHj0aO8xJzcGDB0Vb2Zw5c5j5n3/+adOmzVsbsNjY2Lz33nsdOnRo0qSJ2L/QzMwMy+wZuFOnThGRtbX1sGHDgoODS8T+2/fusasrOzgomzX7QE2F9f59DgjgOnWYiAMC2M+P9+7NDsLFi/ngQf7ww3dZau0ZbhAKwcHBoifZzc1NVJtOnDjBzI8fPw4ICMi51TI1NfX29g4JCSmCQeS3b7MYwLl5M+/cyWI8XkICa9uJLeqIrq6uRCSTyUxMTPr06ZNntW/37t2NGjUSUylcXFy03tIMSqgdO3aI0YZLly4NDg4Wn21HR0cPD4/mzZvnvqkSnyU7O7t169bpu9RQgN9//510W4D0HTt9mu3smIibN2cNZybfusWbNvGlS+zryyNG8NatvHIlnzrF3t7FXNYiYuhByMx37twRy/xbW1tPnz49ODg4Z9VpEZABAQHabWKZt61bOSSEmTkqiv39+YMPePZsnjlT6yAUVCrV2bNnly9ffvPmTaVSmd9h6enpX3/9tfjK8/T0HDduHDMnJSUZ2lgyKCaBgYEymUz0Hrm7u1tbW+cOPysrqw4dOkyfPn3Pnj1oMygpxAyEuXPn6rsgGtm+nc3NmYi7duVCLVIpgvDmTW7Q4I2mUaWSt29nnVcRL14lIAiZOT4+XuxZmrMbkbm5+eDBg0XtsIhducJiFf9//uE//tC9RqiFO3futG3b9sSJE59//vnly5dPnz5d4ORcKDW+++47Y2PjnBF6uWdfYHRoSeTu7k5ER0QyGIBDh1iMZc69Pc/s2Zyayo8f89SpTMRffMGFHboXG8uinevBA46LYzEbKDKSMzM5NVXzcYf6YUwlQZkyZXbs2NGjR49jx445ODhMmzZt0KBBYqXjotewIV26RLNnk4UFjR9PSUlERAoF1a9fJJffunVr3759c2q0eapVq9bRo0eJaPXq1Y8fP8bO45Iyc+ZMW1vbffv2DRkypGXLlrkXZIcSJzk5+dq1awqFonnz5vouS7Zr16hKFbK3pxMnqH//7AevXKFFi6hnT3J1pePHqU2bQl/W1jb7D9Wq/ftg5crETEFB1LmzrsUuViUjCIlIJpM5OzunpKT8+OOPoqmhGA0e/O+fv/iCiMjMjAYMKJJrlylTJjU19a0FR/JTrly5Xr16JSUliV0PQSJGjx5d7B9yeCfOnrWsVCnV0/OBmB5tIFavJltbunPn30dEB7R4RIsUVCMhgRQKeviQHB2L8rJFq8QEIRHdvXuXXu81WHJ17dpV84PFHHxzc/Phw4cXW4kAoLicPElPnhjb27vquyBvGDGCatWi6GgioqwsEu1TX31F779Pn35axK9Vtix5exfxNYtcSQpCscuSGH5ZcqWlpV2+fFksZVsg8WaNjIxyT0wEgJLi9GkiopYt9V2OXNzcqEwZIqJmzSgujvbtIyJq2JDMzcnPj9R22pRaMmbWdxk0kpycbG1tbWJikpycrL6DzcCdPn16/Pjx+/fvL64+TgAwDMxUoQK9fEkREfTmrHoDcu0axcRQx476LodelZgaoSI8fE+zZs+rVy/RKUhELVu2PHfunL5LAQDF7uZNevmSqlQx3BR8/Jh+++3fITOSVWKC0OTOnR7nz1OuxTxLtKysrJKe6ACgRmQkVahAW7bQkyf07BlVqEBGRhQZaVjfYU5O9OOP+i6EAZAXfIiBCAsjIirhI2WEHj162NjYxMTE6LsgAFBcfv6Zli+nfv3o8WMKDKSXL4mI5s3Td7EgLyUnCO/eJSIq4SNlhB49ejx58kSpVF65ckXfZQGA4mJjQxcuZP/5jz/ol1+yB2qCoUEQ6sHt27fLlCnz9OnTS5cu6bssAFBcRoygwEBSqYiIOnWi7t2pfHl9lwnyUnKC8MMP6ZNPqE4dfZejCFy7dm3OnDm//PKLvgsCAMXI2JgGD6aICCIie3tycCATE3r2jLZseWMyO+hdCRksM28eqVRkb0+ZmfouShFo0KDB9OnTL1y4cO3aNX2XBQCKxYwZZGpKrVuTuzsZGZGJCRHRggVkZkY9e9Kff5Kbm76LCK+VhBrhvXskk9H06fTtt7Rihb5LUwTENHlra2uxQyEAlD45W0laWJCpKYlF1M3N6eVLWryYCrPAFBQ7ww7CU6fo88/pwQOysyMiKl+eEhL0XaYiMH78eCKqVatWt27d9F0WAHinZDLq0aN0tG2VHgbZNBofT1u20MqVJAZV1qpFt25R27b011/Uvbu+CwcAoL3y5TFkxuAY1hJrx48fX7t27fpTpxTh4UREFSvS0KE0fDiVKUMhIVSrFjVtqu8yAgBAqWIQQRgXFxcUFPTzzz9fvXqViEI6dPAyMaHhw6lPH1Io9F06AAAozQyiabRz585iv73KlSsPHTrUZdgwql5d34UCAABJMIggHDp0qL29/fDhw3v16mVsbBBFAgAAiTCIplEAAAB9MezpEwAAAMUMQQgAAJKGIAQAAElDEAIAgKQhCAEAQNIQhAAAIGkIQgAAkDQEIQAASBqCEAAAJA1BCAAAkoYgBAAASUMQAgCApCEIAQBA0hCEAAAgaQhCAACQNAQhAABIGoIQAAAkDUEIAACShiAEAABJQxACAICkIQgBAEDSEIQAACBpCEIAAJA0BCEAAEgaghAAACQNQQgAAJKGIAQAAElDEAIAgKQhCAEAQNIQhAAAIGkIQgAAkDQEIQAASBqCEAAAJA1BCAAAkoYgBAAASUMQAgCApCEIAQBA0hCEAAAgaQhCAACQNAQhAABIGoIQAAAkDUEIAACShiAEAABJQxACAICkIQgBAEDSEIQAACBpCEIAAJA0BCEAAEgaghAAACQNQQgAAJKGIAQAAElDEAIAgKQhCAEAQNIQhAAAIGkIQgAAkDQEIQAASBqCEAAAJA1BCAAAkoYgBAAASUMQAgCApCEIAQBA0hCEAAAgaQhCAACQNAQhAABIGoIQAAAkDUEIAACShiAEAABJQxACAICkIQgBAEDSEIQAACBpCEIAAJA0BCEAAEgaghAAACQNQQgAAJKGIAQAAElDEAIAgKQhCAEAQNIQhAAAIGkIQgAAkDQEIQAASBqCEAAAJA1BCAAAkoYgBAAASUMQAgCApCEIAQBA0hCEAAAgaQhCAACQNAQhAABIGoIQAAAkDUEIAACShiAEAABJQxACAICkIQgBAEDSEIQAACBpCEIAAJA0BCEAAEgaghAAACQNQQgAAJKGIAQAAElDEAIAgKQhCAEAQNIQhAAAIGkIQgAAkDQEIQAASBqCEAAAJA1BCAAAkoYgBAAASUMQAgCApCEIAQBA0hCEAAAgaQhCAACQNAQhAABIGoIQAAAkDUEIbwgPD1+xYsXx48f1XRAAgHcEQQhvOHny5NixYwMDA/VdEACAdwRBCG+IiooiIgcHB30XBADgHUEQwhsQhAAgNcb6LgAUp6dPac0aysqivn2JiGQyatyYfv+d+vUjE5M8z0AQAoDUoEZYqs2ZQxMn0nff0dKlFBVFUVFERFeuUFZWfmcgCAFAalAjLNWyssjamojI2pqUSvrzT7p4kc6cUXMGghAApAZBWKqZmVFMDJUpQ0lJZGxM/ftT9+4UF6fmjOjoaEIQAoCUyJhZ32WAYvPqFQUGUkYGdelCZcoQEdWtSzt3Us+epFD89/DExMQyZcpYWFgkJye/66ICAOgJgrC0e/GCGjakKlXo3LkCjw0LC3Nzc3Nxcbl37947KBoAgCFA02hpZ2tLJ05Q9eqaHIt2UQCQIIwa1b+MjIzY2NiEhITiegHNUpAwUgYAJElyQZiYmKjvIrztypUrdnZ2nTp1Kq4XYKaPP6adOws88PHjx0RUqVKl4ioJAIDhkVAQPnz4sG7dui1bttR3Qd6WkpJCRBYWFsX1AjIZjRhBbduqOSQpKWnp0qWzZs0yNjaOUzusFACglJFQH6Gjo+PTp0/j4+MjIiKcnZ31XZx/FXsQEpGXV37PPH36dNmyZYGBgSL/Klas+NNPPxVjSQAADIyEaoTGxsai+XHfvn36Lssb3kUQEm3fvv2tR+7evTt+/HgXF5f58+fHxcW1bt06KCgoMjLSzs6uWEsCAGBQJBSERNS1a1ci2rt3r74L8obU1FTKJwgfPnx44cIFItq/f7+Oo2lUKlXOn0+cONG7d283N7dly5ZlZGT06tXr1KlTJ06c8Pb2NjIy0uVVAABKHGkFYffu3Yno0KFDmZn5Lrb57nVTKo81bDi1SpX/PhUVFXXnzh0iCg0NTUpK0uVVvL29VSrV7t27W7Ro4enpuWfPHgsLC19f35s3b+7evdsAu07BMOn4OQQwQIbUR7hgAWVkUGIiTZ+evUJmUXNycvL23nbkSJtTp4zatSuOV9BGhbg4z6tXqWPHPJ/dtWvXgwcPjh49OmTIEE2u9vLly9jY2BcvXoj/iz/ExMTExsbeunUrLCyMiCpVqjRmzJiRI0eWL1++CN8IlHrffvvtsmXL9u3bhzsnKE0MJggvXSJzc/rmG7p2jdavpwkTiul1nJ0/iomhffvIcIKQUlKIiPLpI3z//fcHDBggk8nyO3v9+vXz5s0zNTUVyZeV/84SZcuWNTMzmzt37ogRI8zNzXUuN0hOVlZWYmLi6tWrEYRQmhhMEEZHk5MTEZGzc/ZuQcWjWzf66Sfau5fmzi2+Fymk1FQiorySydbWVgRb1apVFXmtDnrlypURI0Ywc07+lStXzs7OztbWtkKFCra2tuIPdnZ2FhYW33zzTXx8fHp6OlIQtDNy5MgFCxZs2bJl4cKFGFQFpQcbiOfP2deXExJ46VLet6+Ag9PS+ORJfvKEmfn+/ewH799/+fLl8+fPmTk8PDwzMzPPU9PT2cqKZTKOjCy6wuvo66+ZiH/6Kb/nBw4caG1tfePGjbcez8zMbNq0KRF17979+vXr0dHRKiP4PgAAIABJREFU+b1rISQkRCaTmZiYXL58uWhKDtLTs2dPIvrxxx/1XRCAImMwg2Xs7GjiRAoMpPLlydRU3ZFKJY0YQamptHo1HT5MixZlP/7TTxcvXjxx4gQR/frrr/l16ZuYUPv2xEz79xfxO9Be27Y0fjw1aZLf899//31MTEzdunXfevyHH364cOFC9erVg4KC6tWrV7FiRWNjdVV8Ly+vkSNHZmRkDBgwIC0trWgKX5wSExMnTJiwbNmyPXv23Lx5s0SUudQbOXIkEa1evTr3OGSAEs1gdp9QqcjJiaKjSS4nlYpSU8nEJO8jr1yhU6do5EjKyqLx4yk1ldzdxeMHP/nkt99+q1ev3r59+7Zt21auXLk8L7BrF716Rd7eFBlJtWppX+TMzMyJEyc+efKkd+/eQ4cO1fIqjx7RokVUoQJlZdGsWZqfd+nSJQ8Pj6ysrMOHD7dVu2pMbikpKe7u7mFhYVOnTp1rQK3Debt8+bK7+OG+ZmNjU+M/qlevrqYPFYqWSqWqWbPmgwcP/vnnn27duum7OABFQQ+10H/+4ZkzeepUfvz4jcednZmIK1dmIg4Pz/f0O3d4wQJm5sRE/uorHj2a4+I4Lo5HjTpw4EBQUFB6evq0adNevXqV3wWCgrhzZ87M5AkTtHwHKpUqKCjI1dWViORyuUwm8/HxiYmJ0eZa33zDL18yM8+fz3fu5HfU2rVrp0+fnvPXtLS0Bg0aENHXX39d2Bc8deqUkZGRXC4/duyYNgV+hyIjIxcsWDBy5MiuXbvWrFkzz15SIlIoFKKjFN6NefPmEVGfPn30XRCAovHOgzAzk7/4gpk5IYHHjn3jKU9PJuKGDZmIDx9Wd5HJk3nhQh41im/f5jFjsh8cPfrgwYM7duxg5pkzZ8bFxeV3dlAQ//wzL13KEyZwRER2DGlu9+7djRo1El/Brq6ubdq0MTU1JaKKFStu3ry5EBeKi+OTJ3n0aFYqmZnXruXz5/M79vTp0xcuXMj569SpU4nIzc0tJSWlcKXPdXqNGjUSExO1OF2PXr58GRoaGhQUFBAQ4Ovr6+XlVaNGDXEvcj7/fz0oWjExMWZmZkZGRg8fPtR3WQCKwDsPwthYnjYt+89ffvnGUwMHMhG3bMlEvHGjuos8fcpbt3JwMDNzVlb2g6//EB8fP3fu3FGjRuV3dlAQnzrFU6fyJ5/woEFsasq9enFQEGdkFFD2U6dOtXs968LR0TEwMDAzM7N///7Ozs45LXgdOnS4k3/FLlt6OgcGcsWKXKECb9/O8+fzlSv82Wecnl7AiczMfOHCBYVCIZfLjx8/rsnx/5WRkSFG2aj5VypBfH19iejLtz5O2snM5F9/5R9/zB6KBfkYMGAAEX377bf6LghAEXjnQahSsY8Pp6TwjRs8c+YbT02bxkTcti0T8fffq7uInx8TcZkyeT45duxYmUzm4uKSmpr632cTE3nnTj53jl+9Yk9P/vBDNjJiIiZie3uePj3x4sWL/z3r2rVr3t7eIupsbW0DAgLExePj4+vXr09EMpmsTZs2Yn66ubm5v79/ep6plpHBq1dzlSrZL9muHd+/zzdu8M6dHB+v7i0zh4aGvnjxIi0trV69ekTk5+en/nj1bty4YWZmJpPJ/v77b12uYwhu3bolk8msrKzUNANo6vvv+cIFTkjgQYNYpSqK0pVOx48fJ6JKlSrl/TkHKFHebRDGx/N33/HhwxwQwKtWvVUBiti06Uj79uv69Jnk7h6gvvtu40YmYmvrPJ+MjY2tXr26iYnJX3/99dZTYWFcoQIHBLzxYGQkL1nC7u5MxO3bHyeiunXr+vv7i2af27dv+/j4yOVyIrKysvLz83vr2zYzM3PJkiWWlpZEVLZs2RYtWoi8bNiw4ZkzZ3IOE92KzRs0UDo4MBHXr89BQQX+g+V29OjR27dvT5o0iYjq1KmTZ8wXiujpqVy58osXL3S8lN517NiRiJYvX67rhXL6GmfM4GfPdL1aqdawYUMi+t///qfvggDo6t0G4YYNTMSNGnGzZrxp01tP/v3330TUpEkTIurSpYu665w9yyYmbGeX3/Off/45EQ0ePDj3g4mJXL8+E/GHH+Z9rx8aytOm/ZwzTdjIyKhevXpiQoK5ufmkSZNiY2Pze8Xw8PAuXbrkRGC1atXEOBpfX9+EhIQ9e/Y0btxYPPvHRx9xUJB2tQ0xzsXY2PjcuXNanP4WpVIpYrtdu3a6X02/tm7dKu4PVDpW48aNY9Fv+uWXBbeVS9vKlSuJqGbNmuvXrz9y5EhERERWTj8FQInyboOwa1cm4tatmYj9/d968vr160RUvXp1MQxE3XWePmWFgj0983s+Nja2Ro0aLVq0yP1gv35MxG5uBbRBKpXKkJAQHx8fMzOzypUrGxkZ+fj4PHjwoIC3xszMQUFBIkfNzMxatmwpQrRs2bIiAp2dnX/55RelGBpTeFFRUVWrVhXdkBs2bNi7d+/Vq1ef6VZrmTx5srGxcdeuXXW5iCHIzMysUqUKER05ckSb8zMy2Nubjx/nx495yhT298/ugYb87d6929zc3DTXrF+FQlGjRg0vLy9fX9+AgICgoKDQ0ND4gtr8AfTuHQbh8+dsbMwKBdvYMBH/Z52UxMREUfcS/1d3a5+VlWVuntatm5pXGzJkSMWKFcVCM8y8YkU0EZctq2aGwtsCAwOJyMvLa9OmTWfPntXwrJiYmMGDB4tpbfXq1XN1dXVycrKyssrpVtTOX3/95eDgUCWvHSoUCoWjo6OHh0efPn1GjBgxa9asr7/++n7Ogjv5UyqVYgZI6WjdmjlzJhH1799fm5O/+oqJ2MmJFy9G16AmIiIixD1f+/btBw0a1KpVq0qVKuU5uUUMqA4NDdV3kQHy9Q6DcMUKJuJmzZiImzTJ8xAx2MTExISIItWugTbUyWmc2mlMMTEx9vb2q1evZubDhw+bm5u3a7di585ClHft2rVE1Lp1ayLy9fUtxJnMR48erV279vfffx8QEEBE48ePL9TpucXFxX322WfiC6V169azZ8+eNGmSj49Pp06d6tWrl+f2EQqFolq1agVOE/y///s/InJxcdG6kmpQIiMjFQqFQqFQ/8nJw86dLJOxQsG1azNR9ixVyF9GRob4vfDy8sr94UlLSwsPDw8JCQkMDPTz8/P29m7atKnoPtewTQVAL95dEEYO/P/27jwu5vx/APhrZmqmGroLHbQhVN9EdAih7P4QVrRrEXZRziJZtwgrOdbiW5Ir64ho5V6F/RIlVtqUr6O+FRFF9z0z798f73Y2HdPMdEw1r+fDH5n5fD7vd45e875er+lEQYHY2Ij4WUOn/uhwSkVFxdnZOTg4+E19G9mtra2XL18uusVZs2aNHj367du33bp1A8m3ev/yyy8AMGzYMABYKvnZ+7KysoqKio0bNwLAhlr7Y8UWFRVlaGhIh8j+/v71rsGUl5enp6ffv3//t99+27dv3/r163v27EmnZEUcrRMIBPRI/uHDh6XrWxs0adIkANiyZYsE9zx/TlRV/5mx79GDNLwSjKjly1cDQI8ePUSsmgsJBAJcPkRtXCsFwoyMDAaDMUBfP2zEiEILC5KRUfeawMBAGgL79OlDTwhQDAZj0KBBGzZsiIuLE/53srOz27t3r+hGc3JyunbtWu9HV3HQTZU0e9ka4dlHCa1cuRIAtm3bJumNpaWlK1eupLtVbWxs/vvf/4p/L4/Ho8e81NXVG4qFV6++Nze3MzQ07Ejb32/cuAEAhoaGYv5dFxcXB7m4CNTUyJAhBIAoKRGcwWtMWBjR1s4aONCpWXZsIdQWtFIZptOnTxNCOIaGU//4Y/jw4f/p3r3WBfv37/f09ASAXbt2eXt7A0BGRsbvv/8eHR19/fr1R48ePXr0yM/PT0tLa9SoUc7Ozjo6OnTck/e5/Pz8mr8tLS29d++ekZHRmTNnWCyWRH0uo9WRAODvlUsplJaWAoBKA7UGGxIfHz9z5sznz58rKCisWLFi8+bNDWUXqxeLxQoNDS0vL4+IiBg3bsLNmy/Nzbm1rtm0Sffp0/vBwe/YDeV0bYecnJxMTExevHhx5cqVCRMmNHq9h4fHyYiIOzY2h4qKVABg/36wsmr5brZjz5+DuzsUFupt3hw1eLCse4NQc2mdeEtzktFsJkFBQbXeFfj5bba2ZjKZdd8ihJSWll69enXRokV0QynFZDI7i1fFns1mLxamYZMEPbFHR4S7Gq6RJNqcOXMAICQkRMzrq6qq/P39adgzMzOrmVZNUhUVFZMmTRk27H86OiQp6bO3oqIIANHWJsXFUj++jdq1axcAaGhoBAQEnDt37vHjxw2dst+/fz8AcLlcIyMjTWXl/65a1cpdbXeKioipKQEg330n664g1KyaYUQ4d+7ce/fuqaqqqqqqamhoqH5OTU2tqKgoMTGxU6dOSUlJCgoKLi4un92/ciUjIGAdlzvk5MlRU6fWfb6ysvKYMWPGjBkDAGlpadHR0fv27UtOTqa7TDX+pq6urvE5dXX1jIyMVatWhYSEuLu70yUx8dHBHK01I+mQrtZDxLz9999/X7NmzePHj5lMpqenZ0BAAEd0RSqR2Gx2WFj4lCmQkwOOjnD7NgjrONGyE97ewK09UGz3Jk+eTFOu//jjj8IX69asKCoqWr58OQCYmZnFx8dbWFgYrl8vu163Dz/+CCkpYG4OISGy7gpCzavpsXTEiBHiNETX/8aOHfvPnQIBWbqUABBFRRIeLmZzlZWVdE/N8TpH8uvl4eEBAAMGDKiU8Hz07NmzAWDIkCEAECo692nDJk6cCAA0FbhoSUlJdJbSyMhIysNw9amoIOPGEQDSpQtJSSGEkLg4Qk+SNFyfo31LTk5evnz50qVLJ0yYYG5uLuJTCC3Upa6u/urVK1n3Wgbevn3r7Ow8cODAmTNnbty48fjx4zExMe/e1f5n8b//VacWePiQjBxJ6Go1ZttGHUkzjAhPnTqVl5dXWFhYWFj49OnThw8fqqmpqaioEELoi/n5+ZmZmS9fvoS/N2FW+/e/Yc8eUFKC8HBwdhazucOHD2dkZJiZmU2fPl2c63ft2hUdHZ2QkLBjx441a9aI/33RwRyfz4dWGRFGRUVVVlZ27do1KSmpU6dO0jVXF5sN4eEwfjzcvAlHjsCOHaCvD4sWQdeu0EC5xnbP1NR0586dNV/Jy8tLq09+fj6DwTh69Chdb5Y3ixcvvnbtGp/Pf/z4sfBFB4dH8fFWPXuCsXH1r7/+gn79wNsbTp4EMzPo0wcAYOdO2LdPZj1HqHk1QyDs1q0bPZ8AACkpKWFhYfRrNTU1U1PTu+bmLBsbMDVdffx4wJkzERERP9rZMe/eBSMjmDMHoqNhyRJwdBSzraqqqu3btwOAr68v3VHZKC6Xe/DgQScnp02bNo0fP178CdKagbAVNsvExMQAwKZNm5oxClLKynDxIhw4AACwciVs3w6KirBuXfM20qZpaGhYWVlZfb4RZvfu3cuXLzc2Nv76669l1TEZ+uWXXyIiIrhc7rZt21RUVIQfDlgsvbIyePoUnj4FAOjcGebNg+JiSEsDACAEgoMBAPLzZdl5hJpZ8w4wo6Oj3d3dhw0bpqWlBQBGBgbVZRYACEApgzETIH74cEIIOXeOnDkj6fMPHjwIAKamppIeS1qwYAFIOEFK8zjTbT63bt2StKsULc/U6J6XqqoqOk0nTkYYqe3eTVasII8fS1+RuCMpKipSVVUFgKRaW4mkUlxcvHPnzps3b75586ap+U5bXmxsLJvNZjAY4fUtSRQUkMePyblzJCCAbN5MvL1JcTFZvJgsXUoWLyY5OSQnhyxY0Pq9RqilNPPxCUdHR8e/h3c5OTnvnj2DlBRIToZnz+DZM+W3b1UZjNCXLy2fPVP88kvYvBm++Ub8h9MdlQCwfv16MYeDQjt27Lhx40ZCQkJAQMDatWsbvV4gEOTk5ADA6NGj7ezs6Kqk+IqLiyMjI6dPny7miDAuLi4/P79v3741d8a2hAULYNs2kHait0Pp1KnTjBkzAgMDg4OD9zVtmq+8vLxPnz5v374lhAAAm802MDCotT3HxMREzH3OLe3Dhw+urq6VlZU+Pj5Tpkype4GqKgwYAH9X2ITly4HLhZEj4eZNYDJBWxsAQMKzSAi1ba0advPyLs2fX8FmE2trcvcuOXhQoruPHDkCAL1795YuJditW7cYDAabzU5MTGzompycnLNnz7q7u+vp6QGAtrb2iBEjJMoOVVFRERwcTPMu3r59m04aN1rIe926ddC0TGzi2L2bvH5N/vMf0v6rTTSPpKQkALC1/T9acEJq33//PQAoKytbWFho00BRHz09PRsbm6+++kqGeaj5fD4tk2JnZyfm7EhpafUXJSX/FOTAyhyoI2n1wrwFBURLiwCQr74SsyA7xePxTExMAODXX3+VuvGFCxcCgKWlZc0fATweLyYmZt26dYMGDao50DQwMKAf4blc7s6dO6uqqhrt4ZEjR4RjR3NzcysrK0VFRVVVVTs7u+Q6ScZrGjx4MAC0dI3c7Gzy55/kxAkSHd2i7bQnU6a8ACAHDkj/BDpdr6ysnJCQQPcYs9lsQ0PDgQMHDhs2zMHBwc7Orl+/fsJZAQaD8X8i88W3KLpfrEuXLvVmLkRIPrV6ICSE3LxJGAzC4dQ+5i1SaGgoAPTq1avRgCRCcXFxr169AMDPz+/9+/dnz551c3PT0NAQBj9lZWUnJyd/f3+aLD87O9vNzY2+1b9/fxE1KKKiomidUgAwNjYWVh+kxxkBgMPhbNy4sby8vO69OTk5TCaTw+EUt/z5dk9PAkD27GnpdtqNU6eqS2RK58mTJ3Qj1bFjxwghNOdRvcNBBoPRtWtXX19fBoPRuXPnwsLC5vw2xHP58mUmk8lisW7cuNH6rSPUZskiEBJC3N0JAKl5plAkHo/Xp08f4Y+bpqATpLXSrfXp08fLy+vatWulwmmgGq5evVqr0G7Nd6OiogYNGkSfo6+vP2zYsFrl7PPy8jw9PemLvXr1iq4zHDt16hQAjB49uonfmjg2bSIAZP36VmiqfaioIF26EABy/77E9+bl5RkbGwPAgs+3jpSVldUtwqCioqKgoFBZWTl06FAACA4Obpb+FxYWFok3sZuenk63sG3fvr1Zmkaow5BRICwsJIsWkaws8scf4owLT5w4QUdaTRkOUgKBQF9fX1NTk8ViGRkZrVixIoWeMxeptLTU19eXZj7T09M7d+4cfV24875Lly5Dhw6llXjZbLa7u3t2dnbNJ9y9e9fU1JSODNzc3HJycoRvzZo1CwB27tzZxG9NHP/+NwHALX+fWbWKABA3N8nuEggEtNjF4MGD6x3o18Lj8V6/fk3+rn7VX+pBaA1hYWF0PoOeD3F1dV25cmVwcHBUVFRqamrNzavl5eX09Mj48ePb/qZWhFqZjAIh5eFBoqNJUBA5dIh4exNLS/LVV2TGDLJ48Yfvv/fbsGHr1q1BQUFHjx6ln2SbJVRcunRJuEaydu1aTU1NAwMDV1fXiIiIRgvnPnnyxNramkY+Z2fnzMzMTZs2aWho2Nvb0/kxBQUFEeXsKysr/f39ada0Ll260Gw1AoGAbqhplk38jTpzhgAQV9dWaKrd+N//iKoqWbJEsru2bt1KI5CkJ14qKiq6dOkCAPelGITWkJqaqq6uzmAwGtpBraqqamlp6eLi4uPj4+DgQCck8jpqPiGEmkB2gTAvj6xcWf21hweZPLm6Dg6XS5SVK9lsy27dTE1N7e3tFyxYQDdhzpkzp+nN0ki2e/du+ls+n//rr7/a2dlxudwePXo4ODh4eno+e/asodt5PN7PP/9Mz7yrqakNGjSIfs1kMr/77rsXL1402oGXL18KT5iMGTPm6tWrdE61dT6nR0cTFovn7Fx/Hmq5IvxYtXMnOXCAnD5NCBG3KO+tW7dYLBaTyZRuf9OqVasAwE3SQWgNZWVlAwcOBIAJEyZUVFTUnYlV/zxvUJcuXTgcTlNyuCPUgckuEJaWVn8I5/OJhwdZtYoMHUpcXMiyZeTCBf7nEztPnz5VUlJiMBjXr19vSpvXrl0DAG1t7brLKtevX3d0dKQ7HXR0dAYNGjRjxow//vijpKSk7nOysrImT55M4x8AODk5SfQjRiAQHDx4kE5q0fyiP/zwQ1O+L/ElJiYBgIWFRes015YJS5IsXky2biVz5pCPH4mXF7lzh8TGkvfvG7zx3bt3dBAvdb3ljIwMFovF4XA+fPgg3RN++OEHOsJrqLYGISQ3Nzc+Pj4sLGzz5s00dUBsbKx0zSHUscl0anT3brJpE/HyImL8//zpp5/oyKkpczt0n0JAQEBDFyQnJ3/77bd0awx1puH0Nxs3bpw2bVpYWJh0nRFuSTU0NJT6R6qk3rx5Q5c5W6e5tmzePLJlC9myhcyaRbZuJcnJZMUK4uVFBg6sToXUqROxsCA//FDo7e29f//+q1evPn/+vKSkhObLHTVqlHTnWalx48aJ/qcoQtnRo19ZWamoqIg4EVsLHYPOnDlTiuYQ6vBkGggJIWJvfqmqqqKzmu7u7tI1FRUVBQBaWlqN7lx///79kiVL6MLkgaYcMRMDrRY0ePDgFm1FqLy8nA5DccdErRFhbi4JDCSTJpE5c4iVFdHQqA6H1tbvap2CYDAY+vr6Ug/mqMuXL9P9X5ImCyQJCURZmc9kJpw9K/5NTR+DItSByToQSuLZs2d0gvTatWtS3E5L7P70009iXk/r1W3btk2KtsRx4MCBly9flpaW0vnYO3futFBDtdAsATJMbtJGCI+xREeT+/dJaSnh8cjf24EJIeTTJ/LoEYmMTPf393d3d3dycvriiy/oic+pU6fOnz/fw8ND6tb5fD5NpyfZbH9eHunZkwAQyZseO3YsAOwQcxUUIXnSngIhIYTmGpVigvTWrVsAoKmpKf5BZtrWSuGOnuaWmZlJv/D19aW7HlqooVr09fUBQJx9PaguOq+gq6vLYrHYbPZ7EWuJjdm2bRsATJw4UdwbBAIyaVL1+f/6DryKFn316tnhw4scHIikY1CEOrp2Fgj5fL69vT0AzJ07V6IbR44cCQCbN28W/5bg4OCmzMQ2JC4ubsWKFTVf+fDhg7KyMoPBEOdEYxPFx8ezWCwGg5GamtrSbXVUZmZmAECzKPj7+0v3kLdv3+bk5HA4HBaLdeLEidTU1MbPyBYXk7FjiaYmka5ECZ9PvviCAJCm7ThDqOORrIaDzDGZzEOHDikrKx86dIhuARXH/fv3b9++raamtnjx4oauWb9+PQC8e/cuKCiIvkJ3debl5TW515+haSdpmUNKR0dn1qxZhJA9e/Y0b1u1lJSUzJgxg8/nz5w5k6ZEQVJwd3eHvwtVBgUF1fyrFNP9+/eNjY1DQkIMDAz09fVnzJjRs2dPZWXlnj17TpswAebPh4AAOHcOHj+urvsXFARbtsDPP8Nvv0FsLEhXooTJhHnzqp+GEKpJ1pFYGrQ2r76+/qdPn8S5fvTo0QDg6+tb88Wqqiq66y8lJeWXX36ZN2/e+/fvExIShAmo6CSYk5NT/Q+9d48sX07WrSNHjpAHD8iyZWTbNnLkCLl0icTFFWdk1Dp3UVRU9OWXXzY0k/bixQu6+PTu3TtxviPpzJ49GwDMzc0bTR2ARMjPz+dyuQwGgyZYv3LlikS3v3//ns5O092nXC53yJAhhoaG9CiOq4lJzRKeBIAEBpK9ewkh5PZtcvRok7r+4QPhcAiLRRorh4KQXGnmeoStw8fH59KlSzExMd7e3lu3bs3Ly6MpPYVq/vbDhw9paWlcLtfLy+vZs2evXr0aP348ANjY2Bw8eNDKyurTp09nzpzR0dGJjIysOf5rZER47BgEBwODAR4eUFQEP/9c8834ESNG/fEHl8vV1dXt0qWLjo7OsmXLhgwZsnHjxsDAwLoP692794QJEy5cuBAYGOjn59eMf1ZC58+fP3bsmJKS0qlTp5SUlFqiCTmhpqb23XffHTp0qHv37hkZGUFBQXQfijgEAsGMGTOysrJMTU3v37/PZDLDw8PHjBkDABUVFenp6ZWvX8N//wtpaf/8Egigb18AgH794PbtJnVdRwdcXOD0aThyBDZtatKjEOpIZB2JReHxeCdOnKBfP3nyJDc3lxBSUFDw4cOHZ8+esdlsmtWlUerq6ioqKunp6Z8+fRKujd29e5cOKHNzcyMiIhYtWkQIyczMFI4IX716BQDGxsb1d064bc/Li2zfToYPJ8OGkSFDyKBBpF+/UEfHWsEmPDxcIBCISEoZExMDAJqami1Rg+L169eamprQ8qdB5ERCQgIAqKmpKSkpMZlM8StWrl69GgB0dHR0dXWhzixF/dLSCF1UPnyYSLVf+jOPHpEDB8jt24T+RxAuN0q37ohQh9AWA2FISAgNUQKBQEFBgU5gfv311xEREYSQBw8eXLhwobCwsHPnzkpKSrq6ujQTm7Ozs5ubm6en54YNG37++edjx45FRkbeuXMnKSlpwoQJADBq1CgRh+fi4+MJISUlJcLCgR8/fqSRqf4bduwgEREkLo4sXEjmz681nbXD1hYAVFRU9PX19fT09PT0QkJCGv3G7ezsAGD//v0S/5GJxOfz6V6hsWPH4vHB5mJjYwMA9K9szZo14txy6dIlJpOpoKBAK3Y5OjqKeyT/zh2yZQuJiGhSj4UWLiTXrpGdO8mpU2TJkupNpMJjlQjJnzYXCG/fvg0ARkZG9KDxkiVLaGmk4uLimtV0acpje3t7cZ6Zk5ND0xxLNB7i8Xi0eFuDR57v3CGXL5OKCvLHH2T3brJyJZk9mzg7ExubNY6ONA23kLe3d6Mtnj9/HgC++OKLpqQsqWvLli0AoKenV7PkBWqiY8eOAUC/fv3oCK/RAhTCKkh0adDQ0FA2Z9tzc8natdVfe3iQJUsTH7IFAAARHElEQVTI3r1k3z7y3Xcy6AxCbUObC4R07OLn5yfimuLiYnoIvW5tv4acPXsWAFRV1dLTxdpfQ6mpqQGAiHSOohUXF6empu7atQsAHBwcGr2ez+f37t0bAA4dOiRdi3U9fPhQUVGRyWRGRUU11zMRIaS8vJz+I+zbty8AnDp1SsTFZWVltArS4MGDGQyGoqJiTExMq3X1M4WFhH4m4/GqA2FeHsnPJwsXyqY/CLUBbSsQ3rt3jy69iD4vT3eN2tnZSfTwefN8Bw7MdXQk4s8O0qSj4q8A1ev9+/cAoKqqKk4yrbFjx+ro6DCZTFdXV+EkrdSKi4tNTEwAwMfHp4mPQnXR3EPDhw+fP3++iIolhJC5c+cCQI8ePWhan2af/ZbMtm1k+3bi5UXu38epUYRIWwuE9Z5zqKWkpIRuNJC0EkVOTnUt8qAgsa5PSEigm3EuX74sUUN1GRgYgBjJXHbu3AkAdBmJfuHi4vLo0SOp26UlfwcMGFBRUSH1Q1BDXr58yWAwWCzWokWLDh8+fPv27YyMjLofd3Jzc42MjOgxQQD49ttvZdLbz5SVVcc/4SR8s87GI9S+tKFAGBsbS0dOHz9+FHEZnWm0srKSYt/HhQsEgHC55NWrBq8pKys7e/ask5MTXdvT1dXNysqStKFawhYujHdw+CRys8Phw4dpQufDhw+vXr3awcFBuMpob29/8eJFMdvi8XhxcXHbtm2zsLBgsVjKysqiByuoKczNzemnFiFFRUVjY2MnJyd3d3d/f/+zZ88+evQoPT2dfsjr06cPZnlFqK1pQ4GQnqZat26diGvKysr09PSaMkr75hsCQEaOrGeC9PFj4uOTTSu3AYCGhoanp2fz1DL19SUApOG0pWfO3GcymQwGIzg4+OPHj3Qkqq2t7ejoKOwPDYcNhf/U1NTg4GBXV1d6/JFiMpnibNJBUisvL1+/fr2vr6+bm5u9vT2tU1gvBQUFLpfbCln0EEKSaiuB8M8//2QwGFwuV/RWOpqEbMCAAVIfA8jJISYmJDj4n1fKysjZs8TJqfrsg7m5nZWVVXBwcHOe54uMJACkgSQ1v/1GOBwydOiRmkltbG1t6Q/QTp062dvbCwuOW1hYhIaG0m2lNPi5ubnRTCVCxsbG7u7uoaGhTV9lRJIqLy+vWy9eWVlZRUVl+PDhsu4dQqgebSUQ0mwvq1atEnFNeXk5/YkfGRnZlLb4fDJjBqHV3KZPJ6qq1SFQQ4N4eZGUlHpK0jfVmzfVDdSJ39euETabAJBNm2rfdPfuXWdnZxrbOByOra0t3aZIt13QkbFQ9+7dZ8+eHRoa+vr16+bvP2qajIwMBQUFNpudnZ0t674ghGprE4EwISGBDgdFF7XZv38/AFhaWjb9VPjy5cTLixQUEE9Poq9PrKxIcDApaYEI+I+uXQkA+XwD6r17hMslAMTLq8H7YmNjx48fz2AwAIDNZo8ZM0ZfX58ei9TV1XV1dd2zZ09TNtSg1jFx4kSQpBwmQqjVtIlAOGnSpEa3+JeUlHTv3h0Azp8/3/QWly8nmZlk7VqydCkRL3F3k7m7k6lTSY2NowIBsbUlAGTBgsZPdCQlJbm5uSkoKKxevXrjxo0AMGfOnJbtMGpW169fpwP35s2WgBBqOtmXYUpOTo6MjFRSUlq2bJmIy06dOvX27Vt1dXVLS8tZs2aVlJQ0sV1DQ9DWBgCosbmkpaSlwS3WaOjbN2VZSNrvLy0soLgYLl2CDRvAzw/27wcGo5EnmJubHz9+PCUlxdvbOzMzEwAGDx7c4v1GzefLL780MTHJzMwUv3wYQqh1yD4QlpaWDho0yMPDo9aiVy005UpRUdHkyZOPHz++cuVKqVu8dAnU1KCsDBYtAm9vqR8jAX4FT+NRVLaH7+9DN6sd3WNqCgEBUFkJnTrB+vXAFPsvoXfv3tra2mlpaQCABQXbFwaDMW/ePAAIwnKACLUxsg+EgwcPfvDgAU0WI4KDg8PSpUv5fH5hYSGHwwkMDKT1AiUlEMDq1bBhA5w5A4qKYGgoVaclxCgpflOiceUKPHnGYRCBgQGoqUFSkpRPw0DYTs2ZM0dFReXatWu0sAlCqI2QfSCkOBxOo9ds2bLFzMwsLS3NxsaGEOLu7l5UVCRpQ+fOQXIydO8O06ZJ1VEpvHgh4Hbu1Sl7zoScyV3vVXU1BIAlS0C6GbLKysqsrCwWi0VXTFE7oqGh4erqSgg5dOiQrPuCEPpHWwmE4uBwOIcPH2axWPfu3TM1NU1PT1+1apVETyAEtm4FAFizBtjsFulkbdHRYG3dLWAZe98uCA+3MchS2rjKzQ3YbAgJgehoaKjub0PS09P5fH737t0VFRVbpseoBS1YsAAADh8+XF5eLuu+IISqtadACAA2Njbe3t58Pr+8vFxJSSkoKOjGjRvi3x4ZyfvrLzA0hNmzW6yLNR06BGPGQEFB56pPPQeqwcKFXZZ8o6bB7N8fAMDfH/z8wN9fskfivGi7ZmNjY2VllZubS0tuIYTagnYWCAFg8+bNdILU2tpaoglSQsjWrcPs7Q9u2FAkxkRskxBCyPr1MG8e8Hiwdi38+it8npESAFauBCYT9u6FzEwJnoyBsL3z8PAAAG9vbx8fn8DAwOvXr7948aKyslLW/UJIjsny7Ia04uLiWCwWk8mkZVHnz58vzl2RkZEA0K1bN1rpt+VUVFTMmDFj9YgRhMUSXepi6lQCQL7/XoKH+/j4AJ7Lbs+Ki4tpMaaa1g4eTHr0ICNHkjlzyNat5PRp8uYNIYQ0Vu8XIdR07TIQEkJ+/PFHADA2NlZSUmIwGOKUZKIH7/bs2dOiHfv06dOIESMAoHPnzm9u3hR98atXhM0mLBZ5+lTcn3cuLi4AEBYW1uSeItnIycmhdUVMTU3t7e0tLS0NDAzODB9enehP+OvkSbJgAdm5k8yb11pJHxCSU7Xn69oLPz+/K1euJCcnDx8+PDExsaCgQPT1V65cefjwYdeuXelZrhaSlZU1bty4xMTEbt26Xb58WX/gQNHX9+wJK1ZkRkUtXrWKXLp0SZwmcGq0XRMIBG5ubmVlZQCQkpIifL1nr16grw86OsDlApMJlZWQnQ3jxsG4cfD4MYSFwYIFsus1Qh1cew2EHA7n+PHjtra2MTExa9as0dTUDA8Pz8vLy8/Pz/scfeXjx49MJnPFihUqKiot16tjx44lJib+61//unLliqF4RxSXLlXZt+8/8fGFt27dGjVqlIgrs7KyEhMTnz9/DhgI262NGzdev35dW1vbz88vPz8/7W/65eWQlQVZWf9c6u4OXC4AgIoKVFTIqsMIyQVZD0mbZOnSpSwWS8zv1MrKKj8/v0X7IxAItm/fLmkrfn5+AGBtbV0zmXhVVdXTp0/Pnj3r6+vr7OxMs2wDAIfDUVNTa2L9DSQTUVFRdG37xo0btd+rqCAvXpDr10lgIPHxIdOnk9xc8sMP5O5dsnAhSUuTRX8RkhcMQkhLxdiWV1hY+P333z948KBfv34aGhrq6uoaNdT6LVP8VGatq6yszMTE5M2bNxs2bFBVVf3rr78SExNTUlKqqqpqXqapqWlpaVlRUXHv3r3OnTvfvXu3Pz2HgdqDzMxMenDip59+Wr16tVj3FBRAYiKYmlZnxUUItYz2HQg7jL179/r4+NSKfN26dbOysrKysjIzMzM1NTU1Na2srJw7d+7Lly8fPHigp6f34MEDAwMDWfUZia+qqsrBwSE2NnbcuHEXL15ss5/JEJJP7XWNsINRVVWtqqrS1tZ2dXW1tLTs37+/ubk5ly4R1XDlypUTJ06w2WxLS8snT55MnDjxzp07dS9DbY2np2dsbGyPHj1CQ0MxCiLU1uD/yTYhLCwMABwdHe3s7KZPn25jY1NveHNxcfHx8amsrMzIyOjRo8fjx4+//fZbPp/f6v1FEjh9+vSBAweUlJTOnz+vpaUl6+4ghGrDqVHZ+/Dhg76+PpPJVFZWLigoSE5ONjU1behigUAwZcqU3377zcDAoLS09NOnTytWrAgICGjNDiPxPX361NbWtqSkJCQkZO7cubLuDkKoHjgilL2wsDAej2dpaVlQUGBlZSUiCgIAk8k8efKktbX1mzdv9PX1ORzOjh07sMRd21RcXPzNN9+UlJRMnz4doyBCbRYGQtk7efIkADAYDACYPn16o9crKytfuHChe/fuSUlJdOOol5eXdNUZUYvKzs7m8Xj9+/cPCQmRdV8QQg3CqVEZS01N7d27d6dOnXg8XkVFRWZmpr6+vjg3Jicn29vbFxQUDBs27O7du6qqqvfu3TM3N2/pDiOJFBYW5ufnY/FIhNoyHBHK2IkTJwghFhYWZWVlo0aNEjMKAoCZmdnp06cVFBRiYmKsra0LCwtHjx798uXLFu0tkpSqqipGQYTaOAyEMnb69GkAKCkpAfHmRWsaM2bMrl27CCFaWlpaWlrZ2dkXL15skV4ihFDHhecIZenhw4fPnz/X1dVNSkpSUlKaNGmSpE/w9PTU1dV1cXHp3bv3x48f9fT0WqKfCCHUgeGIUJboNpm+ffvy+fzx48erqalJ8ZCpU6c+ePAgMzOze/fuU6dObe4+IoRQB4eBUGYEAkF4eDgAZGdng+TzojXRgDp9+nS69RQhhJD4MBDKTGBg4Nu3bw0MDDgcjoaGxpgxY6R7TlVV1blz5wBg2rRpzdpBhBCSC7hGKDNKSkpMJrOgoODRo0eEEDabLd1zrl279vHjR5qetHl7iBBC8gBHhDIzefJkc3PzoqIiZ2dnVVVVqZ8jnBdtvq4hhJAcwQP1spSbm2tra5uamurq6nrmzBkpVviKioq6du1aXl6enp5uaGjYEp1ECKGODUeEsqStrX3x4kV1dfXw8HBfX18pnhAREVFaWjp8+HCMggghJB0MhDJmamoaFhamoKCwZcuW48ePS3o7zosihFAT4dRom3Do0KF58+YpKir+/vvvI0eObOiyysrKp0+f/vXXX4mJiba2tiNHjqT1m969e6epqdmaHUYIoQ4Dd422CXPnzk1OTt6zZ8+UKVNiY2NNTEzo63l5ecnJyX/++WdKSgr9ory8nL41bdq0d+/e8Xi8SZMmYRRECCGp4YiwrRAIBC4uLpGRkT179oyLi0tLS5s4cSI9ay/EYrGMjIz09PTYbHZZWVl8fDyPxzt69Ojs2bNl1GuEEGr3MBC2IaWlpSNGjHj48OGwYcNCQ0ONjY07deqkr6+voaHBZrPz8vJSU1NLS0tr3mJmZhYTE6Ouri6rPiOEUHuHgbBtefPmjY2Nzdu3b7W0tJSUlLKysmq+y2AwjI2N+/+tb9++ffr0kVVXEUKoY8BA2Ob8+eefQ4cO5fP5VVVVbDa7V69eVlZWVlZWZmZmAwYM0NLSknUHEUKoQ8FA2BZlZmaePn3666+/7tWrF4vFknV3EEKoI8NAiBBCSK7hgXqEEEJyDQMhQgghuYaBECGEkFzDQIgQQkiuYSBECCEk1zAQIoQQkmsYCBFCCMk1DIQIIYTkGgZChBBCcg0DIUIIIbmGgRAhhJBcw0CIEEJIrmEgRAghJNcwECKEEJJrGAgRQgjJNQyECCGE5BoGQoQQQnINAyFCCCG5hoEQIYSQXMNAiBBCSK5hIEQIISTXMBAihBCSaxgIEUIIyTUMhAghhOQaBkKEEEJyDQMhQgghuYaBECGEkFzDQIgQQkiuYSBECCEk1zAQIoQQkmsYCBFCCMk1DIQIIYTkGgZChBBCcg0DIUIIIbmGgRAhhJBcw0CIEEJIrmEgRAghJNcwECKEEJJrGAgRQgjJNQyECCGE5BoGQoQQQnINAyFCCCG5hoEQIYSQXMNAiBBCSK79P4Nuv+f8JJStAAABhnpUWHRyZGtpdFBLTCByZGtpdCAyMDIyLjA5LjUAAHice79v7T0GIOBlgAAmIBaB4gZGQYUGIM3IxpAAopghNDOczw6mmaB8JiaYPAdEHi7OwaABEmdicwDTLGwOGSAaaBAWBhFK0NRyMzIxMDEzMLEwsLAysLIxsLEzsHEwcHAycHIpcHFnMHHzJPDwZjDx8iXw8Wcw8QskCAhmMAkKJQgJZzAJcyUI8yWIgLzNxiXMx8vDzcYvICgkzCf+C+QFaKiAg4PB+kCEA4hWffPxwPT5DvYg9p9VJw94+7XsBbHv6J05EM94Yj+I/enpvAOnjsqC1UzwzD0Q2ee7D8Su2S9+4Pf1r3Yg9p7tQgcqjf6C1QRW9e0/XrUGrGbXuRS7RJUNYDV18/baJ+h9Aov/69tsL+TxB2z+ZU8th8Q8owMg9rPL9Q41t9jA7Mu5TQ5/P0iD1dw1Wuuw5cskWxB777b1DkdfnwDbNaW03cH6gATYL8KJlg5rIm6BxYMjTRz6HoaA7RUDABrDaV0h2Dg5AAACBnpUWHRNT0wgcmRraXQgMjAyMi4wOS41AAB4nH2US24bMQyG9z4FL2CBL5Hiogs/gqJoYwNtmjsU6LL3R0k7ziioUHkAjzSfSQ7/n95Bre/nr7/+wPvi824HgP+5IgJeBRF3z1A3cHz6/OUCp5fD8XFyuv68vPwAxrpun4/s4eX6/DghOP0GbHhbIE2Guch2gvB6+PZpTw+e4QR7b90Q3RLzzip94h+gFGhNkIkZ9gmYGvKC1DdyoGe9e8rg3HVFdrjAXltY7xb53Mg4YgFahZTmWSP1Ss5ZrowF6UVyEye0SqkDyWQBDrgWyMFqCtTCB+EKjIpIjUgIR+UWseG6IAkzZtbGolotzC/kVZGUKmVKHST5uhlSXTB/vSD5TmYcpCojHENXLaISiJsZerd6Mx8ew1dkCSQtIpOOIgkdx0rz7PUJtGXEQKs6DYPUVmQp1JsSa79V51RlLEC/g0HYHcobYbHMPW65WaRk4X+N/A7G7cVHuSh3aZI+hBZgmvEGkkcvazD6iJUtny7nDzN1n7Lj9XLepoxycmQbIsr50G1Uatu3eaB0um2mp/Szb9amNO3Y/Fvb2FxKaUCazEhlM6LJc1p+Ip7MpeUbkslEWv4gncyi5QPqkylqm0JO4mvpSj6JrCUgjUlNLaUoJtm0JOFZH63ebzUzvp30ueNzf2v/+AfM+91fAQz+8atlUikAAAEHelRYdFNNSUxFUyByZGtpdCAyMDIyLjA5LjUAAHicLY8xbsQwDAS/ktIGZIJLSqQYl+pzDwiSxm2ecI8P6TsVEjDiLnfX2tb+tdb22NfjwpVH6rog9L3+fj6e2+E0jHk2Jh/SdbTzMFIWSDuY2LqxvOFkT4gUyOiJOoWN4Sk1mEQkUnJ2Q0mF2XUmE1IHW471yTC9kYR0a6DwiQQgQHHrVG162qeDaO8jdfmwpBXSAb2GuivjBvVxlA9HxhQyywAtN/j0iqQU4Yoi4BxqZyf2Efcu40DGOAd1VJ4s7PAx5o2iUlfd8FKJpk2WmeZam2a1z3/nMV8AHhVX2GdINmj6nt7bLz4Rz3+2g1K/8dHcUwAAAaV6VFh0cmRraXRQS0wxIHJka2l0IDIwMjIuMDkuNQAAeJx7v2/tPQYg4GWAACYgFofiBkY2Bg0gzczCAaGZYDQbgwKQZmFjSABSjMzYaSYmDNoBYhybQwaIZmZEYuCSYYdYiWGmINgJjDiEuRkYNZgYmBSYmIGGMjCzMgD1M7AzsHMwcHAycHIxcHFnMHHzJPDwZjDx8iXw8QMpAQUBQQZBIQYhYQYBEQYRUQZRMQZ+rgQRRqB5bFz8fLw83OJyQA4jNKQYxE3iZh3g/71+L4jTf6P/wOWQDfYg9mv9EweO5XLsB7H/VL8+sHvmdzsQewUj28G1k+XA4iu+nDqwRew0WD17CvvBg8wHwGw3lbwDzLK9YDU3G4QOLDytDmbnXpy+X5n5Gpidt7ra7sPpOWA2m4Sw/XyXErD5+ZkMDj31+mBzJjK6OxiUrdwHYrt/M3QQ2PQUrH7z0jX2C0v4D4DY9UETHdJmvbUFsSfM2+IQ3p4GVuNe8MjhmeELsF6de0yOpzX3gMVVbsx20NY7BTb/9sqTDus2MTqA2A36Vxw+xsSD2WIAB+ZtwLqE9JMAAAIrelRYdE1PTDEgcmRraXQgMjAyMi4wOS41AAB4nH1UW24bMQz89yl0AQt8iuRnHAdFUcQGWrd3KNDP3h8lFaSroELlFSFqZylSM/Sp1fh6/fLzd/s76Ho6tQb/eSKi/WAAOL22WrTLy6fPt/b8eLq87zzfv98e3xpxPVC/j9inx/31fQfbcztLd5IM2c7QwTXIWy7mOL6ldi+khKJrw85m6rEBcgFHJ1WXqJDKFKQbpNTh1lndvd6Ls8YOqAX0PFIFtEIODBHcIEchR2chHpWl+hi5/S/Q3kJKRiIsIADi7mwvIHcjiCHtjB2BRHY3FIWkTh6IMrNUFd1liVDQDOUDLGo1DMO20GIIOolavk8kkYTJDkkTqSY6b5PYVXgH5ARSbg/hAg7PPHd3hEUQZ8EhdTZ0ZgjfInWGNIeho7K05CdshyyGUj3iDjavS1BiW4+1W5Ougkx1JuIA3IYsirQPyXJGpRkACtvKiyLrYINgIkVZc7VRezL0q3lHi0ywKhID2KqYiqFsIQPkKTkL5V1BVASlNgHDpQigobzjPNs2Dx89lWvhyYBkRVvJvdyuH9r5rcEv99v1aHCqeXRxir3x0avpNDkaEnPq0XbljqO3yrWjgyqUH32SToujGbDmKnmcBhdlSxmkRcFSBnmRqpRBWTQpZVAX7ZWbylo0hhNji5ZwGl9Eg9PEIg4sQ6sI5leEC9dYhmghtdzkbGFPZgq4srRyUv77H3auT38AatIe7EtDoPkAAAEmelRYdFNNSUxFUzEgcmRraXQgMjAyMi4wOS41AAB4nCVQSYrEMBD7yhwTcIraF0Kfcp9+RK7zhH78VKUhmCBLsqTr2q69v/e1vd77dV033fe9/W79+7c/x33Tz2c7EiRM14HgVKq0ziNALDMXgqZYWUMOoiyxCCzdpZEEbQEPgkj0cNgsbaxMuHh0CsmPOaYVJz2QllG1UCKsGhEIxvJ1EBCyjo6Bs9p1YpmpjbBv0zGH5kEV60RodgQNxKxfyEInRd9JmnZUBkRXbcSzvdYp/UxpjLkIVq5TwZSEm0LkSO1j0BLx4RSiYfsEYDg/mdTE0NeZQFFTkEADh9SFA0lmlihroJdD6jc6BfsXcOkW0jO08cSLRH/aR035Hkazp5oRlLTW/vkHUiJeNX7EqKkAAAH/elRYdHJka2l0UEtMMiByZGtpdCAyMDIyLjA5LjUAAHice79v7T0GIOBlgAAmIJYCYlkgbmBkc9AA0sws6DQ7A5hmZmNIAOlhgtHsDAogcQiXEUMapp0TrAxoegbYFJzWsEGsYeFgACtkZOSACDDBdbI7IDsEaBKazTANMJqbgTGDiZEpgYlZgZmFgYWVgZWNgY2dgY2DgYOTgYkrg4mLm4GLJ4GHN4OJly+Bjz+BX0BBQFBBQEiDiV84g0lYJEFElEFUjEFUnEFcgoFPUoOJlyFBhCFBglGBk5lBhAVoCRsLKxsHJzMbFw8vAyMTGx+/sAgDL5uouAQjg4i4EyPQddCgZpA6LFC6/+WqqftAnPpcVvtfC7n3g9jRqXvtlx6Qtgex7YJsHexebLUDsRtnxTm0zG0Dq+GcO8/hOPNyMHuDx16HXZOlwOZUzHjj8OrROTC7b8kaB5mjC8Dm9KysckjQPghmr1pZav/5N4MDiF3Y/NV+9hUvMHvGFZb9ovqCYPZzib37b67pA6tn0bE9ICO8HswOaq46EM8XDXZP4cQ1B2wU3oPZk033Hlh0/z1YjYTt6QPNl/TBbuO3jjxwYusMMPuP2df93DI7weyyZZv2n59pdgDE7lwldsDGsgHMXtW10vbDGTcw28291X7Ci59g9e4lcQciphqC3SYGAMZrf/FkxfyJAAACdnpUWHRNT0wyIHJka2l0IDIwMjIuMDkuNQAAeJx9VVtuGzEM/PcpdAEvSIrPzyROi6KIDbRp75D/3h8ltbBXQYWuLWJFjyhqOJRPrZ4fl+8ff9rjocvp1Br85xsR7XcHgNNbq5f2/Pr127W9vD893z0vt1/X95+NtFHkmvx8xj69397uHmwv7QxbiJFbvVFQp1yywXiOtZRI2ISQgAooLMwrYE8gbmyhovmzgjP4Asft2ih3dmTJn7tIpfAvTjJez3iODu2MGwiq0wKoCeQMqKpRwA7s0BdAy51lCxSkXkdBgRBeAD0j2tajK44zMzCYLICRQEmgQB4BNxIFXOEQxmECVcITmBtj1xUQB90hoVkN2jJctxWLmdiXDBRJjnGGRg2iZcS+l1rQPfmhjdQ5xbRAciGrhNaJMjgiq6xKjVWbcxUxq1jIrmaGK2QV51wnZ9JihrBnoiukFbLIJBtFYTXgVRnR262QgWSR082NAZcxo5CaGkv1erGgrg4rmgj2RHsw9aE3jBTSSpiEqaNzcS/GOBhjTW2uoLRTmgoxkKLMpWNfQvvOaRdGSR1zIjR8mSsPkYCTOVfSCEqyDCpJQLYOp+J95CzEuGxzLaqq38Tz1LSZsS37/PV6+XSV7JfL8+16OS4XzkHHDcI5+nFPYA4+roOCy9H1mEOP3sYcdnQw5vCjT2saRzdijbnruLbDqbtwGJraiIenT/3CZZCnvuAyKJP+a5rqnnSOw9ikZxzGJ93S8MSkT65VNMuQyxBOasMyRJOoapqKmbSze3iSCJYhmaRAlTPpVPL9XA+H1eY4OYrgWvhwFMVF6yyGufQ1v/8n5fvpL6NzR/2y6cn4AAABSXpUWHRTTUlMRVMyIHJka2l0IDIwMjIuMDkuNQAAeJwdUTluxDAM/EpKLyAJJMVDhJFKQMrdR7jPC/L4DNXY1Hg0B703788jz3yu57l+Xo+8Ze/3tV97y+u5vj947Hph+J389Xd1GdOUvXUdRJ7Z7s5jpgU3fFs2WdtNg5bE0tbnYHLxdvMgZQHCI02Ui2TCQtI6JjXFPUxQkhWFScqUI68RmHgwq9thGa/l2WSILyuptHTBmdjmKrfkRdFg75ApQCPdGw2npQSK4M5CWEIhK8t7grN4VUQydnAUHPcoZJICMOgan8hslIbMgfbTuSAlpbBiYSGUSCzmKAjlZJjzAFr76WUOdyDTI+Ddy9zQRUaEhh4EXAkEFJ4ptYoSFjjAyoMUvbojPsux9+WL/NCSJcp/hRIfrZmKPaAI5yQ7a0WVOD9E1Tna6+8fiddrcuejqEMAAAGQelRYdHJka2l0UEtMMyByZGtpdCAyMDIyLjA5LjUAAHice79v7T0GIOBlgAAmIBYFYjEgbmBkY0gAiTGh0+wMCkCaGZc0m4MGSJqFzSEDRDMzYmOgKeFgAAtgmgW3EqyQCegmiE5UDYzM3AyMDIxMDEzMQDkGFlaQ69jYGdg5Mpg4OBM4uTKYuLgTuHkymLh5FXj5GPj4GfgFGAQEGQSFFISENZiERBhYGRh42BNEQCHAxsDKArKKg5OLm4ddnI0RaAE0gBhEH0R8PJAab7UfxFlb8e4A6wcXexD7Z+fhA7NCd4DZFdWzD/wSkwWzV0XPO1BgkQRWH+d18sCFn8fA7A7JxAOimUvAalr/CBy4X/3KDsR+tUfswF6OVrCac/a9+29degdmc94otnP+OgPM1n6/3O7kyVlg9WU1Ofsn1EwAmzNr21V7EYVKMDvgh5VDur4YWM2drA4HTvdAsHhs5QYHWx/hPSC2YMZth/+5mmBxz92Mju9naOwDsQ28GRwv77oCtmuxkbjjlymMYDViABZlZiO5CYQeAAACCnpUWHRNT0wzIHJka2l0IDIwMjIuMDkuNQAAeJx9VFuOWyEM/c8q2ECQXxj7c5KMRlU1idSm3UP/u3/VJsrAaFC5weJxMNjnOIeS7cfl+5+/5aPR5XAoBf7zc/fymwHg8F5yUE6vb9+u5Xx/OT1Xzrdf1/vPQliI4kx8n7Ev99v7cwXLuRx7bULhuRyhdjJAK1BhtHmWHkhpRIyx39XJ+gbICdSKCM25YBUBRNoApVzLUao1s3xoVWTlHbClR6kupg75SDPWLhukPu4mByYrR6ytiURgX5E9kVwbdrR8JZlI24VjCaRK2gQ59gPlXTdAfwC5tUhh3g3sTLu7ERKKFYEbDqhpsxhtoEkQVGLDcJVnXNzaDkkDydTdMw4GYsIdcBAE1Yl7JDFckgXnO6SUW+yrunJe6Z1RdqFjMkThEQVyP1Cq20cmQRLJZJDkz7CLb+NOflrQIxbOjwkw3yMtZKShIpWW/KgGodu7kyCLpIfaJF2iim7DIYi4rUI60kx6+PS2yxAlPR4Sd9O8vIFi31H+er18qrtHJZ5u18usxPxolltMCs+iwugySwejt1kgGF1nFeRun1LH6DYFLdF9ylai4ypOSYO4aFDSIC1akzTIi6hwrMgiHhymLSrBYXSRAw7TF95xGFv4xWF8IZKGWQnDsYILMZh5+JiPF/PMQhKypj/nzz/RGB/+AZPNCsZcGNvAAAABEnpUWHRTTUlMRVMzIHJka2l0IDIwMjIuMDkuNQAAeJwdkEluhFAQQ6+SZbf0+ap5EMqKffchuEYOHxewQU+2seu6Xr/f9+e6ru/N9/26PnLNI+/7vvnn79XbrCsWbafg7HXWZiqRddDmMLyDiEtjHbwjuH2dscvDHDaAUhDfzlY8NqLqJrV12pZQMsiK0xAuu4WNAdgiAr6J7BhJp/L8jbZKdieQkqjwOhHaopm2eLNUgQii/Ukyz074DkWF5IJGyibpMNSskqnJGipAsZnJGyIz4slOJIgoRBktlQ9yk2dLSmH74xNs0rmBO5ZPeFtFj6pwHZSbVuouNSrShvzEF5M6D6pwXAgDRYulB3Hj/Ov99w/F6VaXrMz32gAAAkR6VFh0cmRraXRQS0w0IHJka2l0IDIwMjIuMDkuNQAAeJx9kVtoE0EUhs9MZjd3u5utuzHVsBWLi0UQFITWklHEoqIoDSgouo+riIqXhxbEEqwgGC8PCj6oCAmFglJbvMTSZAJFigpSkCAUFFR8aEX7oL4Uwd2zSQo+OHD4vzn7nwuzP8oPP4B74uAf6kbajXY3BokMtqskIHPL1QAL+UqDvjbzS+pgnvwXfK8Kpte7WQr1EVAfAeinRDY3eT7CZHONB0zBQiqjsOaKDW3Yg1Df8Z/GS3ccQEjjA0EFEgUChNo0YAeYQ5lkSrJD5aAdDDk0FLbDEYdGosBidixuxpdZNN5iKi2MKCqoCUhooLWCthw0HXQDjKSZXGFRPcVoqs1MrbRojLjlkp1UwHALVjHaytyhEqEBFpPlYCgckaSEaugaSyqqYZwh7kb1fwPp0FXglX2XuHcp3Ozm0fktyK+qeb51HUfWzXu8WHud8fj5ldP8/e1O5O/TZ/nchmzF4x37V/PUyFvkCzc6+J+XvcLjQ70DvG3hHHLuY5HvXLsN+WumwB8fn0L/xOIbnhrrQU7Tdj6drWL/I5fzmc3PLiInfh/ITFZ/lj0+P7R+sv/kIuYjc6XKnl8l5F33JRG5Jno8Lp5QxfbcGPa0Hp0SXxZqyJ1P+0TfXn+3Y9GCGPmkIL9TrovR4QnsP3jrsKi96MKe3fMbxbeChO8wM5wVs5+PIt8dL4sn/V3oLzkzIp27g/7dD2ZFbWgUZ+UHOirjBwvo0f8CUkqUb7+CDk4AAALLelRYdE1PTDQgcmRraXQgMjAyMi4wOS41AAB4nH1VS24bMQzd+xS6gAf8i1x0kdhpWhSxgTbtHQp02fujpAbJKIDQGYuRmacPyffoU6vn+/Xb77/t/aHr6dQa/OcTEe0XA8DppdWkPT49f721y+vD45vncv95e/3Rcsaca/L9iH14vb+8ebBdGm0ArtKbbMji2hukp55jJQ1cMHSTmii62ALH7Z7bCEWANc5/k/ZY4KTdEheCgr3hpkHivsBpnstbVxeo46wDdVjgbOAcAjnaGTYn944LYB+BKBshtjNuRsTLG/oOdAuRduYNCZVWR8c4OhAMtIBOHVUXQMzSNN3QWXlsCcwmq6gRdySTpztvmQsUVvnGLMyfZpuAdhqRdxkcWUB5jwi1q1TOEQRWAaEkEDcENUsCbRHuvtxRs9qZa2GNcbZ0B1llHS3rnQAQypBz8zBhWO5ZBcqIRUkyi2PSY5mkqtA5yevdZXA2BGh5erQfhaROpFa7c4gtY6eqUZamZ76rnEmQHkSr1BPu0NRExE6RZLMuoSWfcxaUjIPHVYw9SbCAVpXOKaEOmcvKGZspLqElojxWxIyKcMkAQV4hdU+VIxJTCd4dY5WqjPQ+giLqwslriZQSrZB9jyk0JFflRdEpObOCem1qm4oAV/Uxgnx50diRbiwl5KxUD/BV9Pn5UqeamACORBHEkqdPt+uHpre3wcf77Xq0wXrp6HbZ5BofTU1qHL2rXj1aFOawoxNJjn70G8nhR1eRHHH0DsmBc4uQMohTK8BhaJK81KE8CRuHkUnBVAZ1kioOj02SxFJb/r18fv6EkwB3v09Cw2FiEhSWoVk3WIZwksfuoUkFu4cnsmMZkonTWIZ04i4NYxNH91V93JwnRmIZ8ol4NDwxEUwqVzTRSCq/77vzuHem672ETPudjoww7xmpH9v5BkW0mVb1/e2XOeenf6uYeU7M2mG0AAABhnpUWHRTTUlMRVM0IHJka2l0IDIwMjIuMDkuNQAAeJwlkb1qY0EMhV8lpQ3jQf8jJSwEbopUSbFsFVy5DUmZJg+/R2NzwZoPjc7RmY/X68fxfGX5e5yOMz6cXq+n4/Tn/fx+fuNdbCZvu77xDV3fXze+oOwfH58Pv6cLzbAw4oFKhSprPF1kUq70QZPKCHQzWSIxLjy1LEB0LvM+xyrRDZRW1UDBbNw9PllCgXA9NLvLpi3KrRfhbLurvEybcQqTg8XMULOttwoXGrkZ6eDJVZJb0SxCYHRJGev2mcyw0zsk192WyLKB5sp9jae5wPv+b4BFTTQ0gCpMeTxBhDwCo6syOxaaaeq9H2GFJEOXTGdfPcmZrM+FDALq5YwEAYjSfdhktUQkWF+qGG6IxLMBnJv0iBKDDnL1xHA8zSJZDZIKQUEX/nPddTWEd/oimptklO3whV36WjEFN0lZDDN4jVTXJqQad6JIAGNczTE4ppGv/RTLqLDtefz8e2RM9Z+XR540Ysbvf+kYhLg1X5eqAAADCnpUWHRyZGtpdFBLTDUgcmRraXQgMjAyMi4wOS41AAB4nI2Se0hTURzHzz27u+rc5l5O56a7e6i35SxdpCK1O9L6owciWGoF0yQWRJQUWH/oSijDF5qRplJiIJKpgdjDx070wgwERXppBCIkRUFSUP3Tvb/5iErowOH7+f3OOd/v4XA+j956i4ShQMGBhekUZoow/RSDvIJSkqBiHII4QSUr9d99UDo0qELfB0ox7CbRiKL/YwdrF4FWIVb0Xo0KHlzWtSJXazCmqNWFoNGyL7/kE1TJWrryBEv7GR58JdRv8EfiP7aseclgTYEiKhxRiMIIS4Q1REuRlGGZEA4zoWxYKI3DZEgWzmGZnFXIaaxQImUEilAhlRqpNRzWaFmtjtVFCqRn9VGsPprDagMyxKAYIzKafNgU642N8+E4s9fMojALslh92Grz2uw+bI9n7QnehEQflnIst47DnIN1rOewA7M6BdIqkdnoTbR4lUk0pZMKF2Wwg5PSEiZCpdZolbROodRKTUZzXCxjtdkTEi1RCcI/opa+FHLmLNAP+NExIhYjC69JdGMAuD7rOZHONABvq/pIUm4cAI6cmyVh6RSw60cvORV4FRBZmnedXG2rHhX5fjMhkWf3ukXOfllMZpMztoi8UJtNHncMQ39H2UTgUO48cP1cU6Agcg8v8vtJU6AkLxn6zpOF7muDFcDUvhB+4LJ7q8iG7S5e9qgRcgNNF/l3TBvwfF0nX9jhhKyCK7X8uK0fzu7emcl3HL4H3G+ddrd3qSBLU9rjLj59DLiioYt/M84BL7Y08JmJ5cCplS/44w47cLN/iielX4dFtpct8NU1vZD7YUDuKZq4Azw1ZPS0H6mCdxhOSvV05e+CfhGd4qn/roF3y5kxeO66koA1hWpP389zwN2ySjJUEg9Z3575yAmfH3hjdxM5+KUTWNv4kGx+0gL8dHqOWHNGgD1pkySbzQeuWbxNjsrVwOWDdeTSogv801rdJKvVDNyzv53M9l0A/rThDBnLuBm823m/OyM9F+6s/wV8wNfYHtFqiwAABAp6VFh0TU9MNSByZGtpdCAyMDIyLjA5LjUAAHicfVbLbhxHDLzrK/oHtsFXs5uHHCzJdoLAEhDL+Yfc8/9IccbqWcFEVlpqdraGrOajqIeWr7+e//zn37Zf8vzw0Br9z29EtL+ViB6+tbxoj5+//vHSnt4+Pb7feXr98fL2vdloFngGPx+xn95ev73f4fbUbqsreTi3m+PKbFqjTsfrelYS6X0Zk0q7jR7Lx6qQ2l4OT0vVo92sj7GYVoG09Dm7Brtau2lH7CFcIMcZPVRjUrtJJw7CCX9FekYf3XyRgSf3ScyjQs70OeCJdK52oy5TfEaBXO01oxMvN8X3S2fQLICRwbUPMxuU3xuOU52HKYNrp+VzeeNuU31VLvkoEXcXWmMBOYPHLJGSNLkjmRyjaRchGlohjxJRd5YRCUCyIqhCZolw4KGqmcOItVYJzApJZ0biE8hrUlRZZ2/fAVxZFT3omnvZHZwFsi4RhmQDKbzCy+ALyIHgzMdxUHmtjxOHSxObMpBLnU4hVbcTMiQ9xG1ylscWaloBszyojg/GpXRxEq1CS1YHERFZGcVBr/Gomk30OIwoXKZH12lWcjR4zOkiQldqj4nslxwHgN4nYvuAx+GDyvSII7R35ASDmA1CSL6XsSeqOFGbgdnN2qirexk8a7PQtcY5uUilOuGZApnTE6CJVhvHPMKjVtOjWR1G6+gI5BXQGUukaiI8f0DJdaQaoULhtqozQdYyvrMLJhFID/JRTZpmiQLDa4Y8QuEoVKSaND0kLgGDRlYTkimzRI5TEVBuXQt1JZZpVYOonz7dUEjNvhekrMqozlM2MReQYPhcBGkqkYfETSBjAQB1Z0+dL5Bx+kQ2xVJlMEOpyYW60ymwA/0EzcjZcCyFCsnniWzEnEfqF/Msm94OkcNkhi476mm4GiVUT68BV3aUSYygIRU0RwnJDwLYk7QOwgKpoKP9jjnGzEEys/UWFL48/+eX5w+79ty+j68vz9f2zR+5Viw+NL32KHSi2bUsUcE2ro3IePu19hjvee02wXtdC4zxMa41xbmBUMkvX3/b8ZjO28x3u0fS8KbIyTHvXE8lTawJ/P3ozX7e34w5KafZpDlZp9m8ofl8mE0d9ZI0vNnzQT+g0XdqzWlkM08tPsyVXPn51GYoyRxGdoqhqHLc2Zzl4AwKm7MkZxjZnCU5w8jmDCWyNLI5Q9ssjd5rmLVDoO6kytLo5qzJGUavntCzRro5Q2EsjW7OUJL8CJ24UwxLo5uzJmcY3Zw1OeedzVmTc5r7ic4us03ZMs0wtilbUs47mzLGUNLY1clHK+vV6ZZZlmyXfcfPil7dg4VkmYsry5aM7T4XFmeHwV/24qaZk3g/d/n5/T9mXD/8B1BOIqhjNnigAAACHXpUWHRTTUlMRVM1IHJka2l0IDIwMjIuMDkuNQAAeJxFUrluW0EM/JWUErBaLG/SDwYCvBSu7MJIZbhSn9aNPz7DVYCokKjZGR5Dfrx8fpw/P4nfz/Nyvt/lDz5yXp/x7/L8dn27vtIOwHr55Nf/8eUR4/l8vZzndf87CV93ut/vF/ze6cf3heZaSuO2ZjJRjIMnkXqNNSljlTWSi8jGjSZenMahk6taRZMpy8dhUBG1ailLLR6HT1+l1qkX6I7XIyC04haKi0OYM5ApGlHx1tUMEfHWsbsK6hEqi1VDUcmcG1reLEZK12ydk3M14rU6d82VqkB0rhLmblxZQwbKB7rrvlncaEAjodpdh2g4AHNrhk4zWDRkVsCZtqPYNZBDNVtC05GCIWEMIA0gBQKZwehpHDDXMJPBnqpMNItJnNhKAHmuQiE44LzSkTiKLDdCLvBNJvNaWMVNMJJHdfEQr42Yqtp23pgWVnizuWhJbgvRQjTPgaUreClR/2iK2treBzbsm1UiFW3iotolY0qhjYFKqmG8WZIi0caaJdGGUlFzIGml7+5zynIcR9MXpIB0FrXNCFhXbwRZaxVlC8VWbpJaRXYPyB1wGFGVpDWkOzj2Tg0NYlGpHDsTdig18EIcD44r1jhwnSyiu02cKbpT3LTpYzzcbTYHU2KA5pgX98ZxJPUwynAtuTfs8PU6vn4/4QC/fj0xLJbBmCe+/wKEE8Gdsyv6zgAAAsp6VFh0cmRraXRQS0w2IHJka2l0IDIwMjIuMDkuNQAAeJx1kltIFFEYx885Mzsz7bq7s7mNe9HdWXfMQSwfshBq3ZMIYoo9FFm9tL0tSYSkPUQXJQij6MGKhDAtIyiwXCptQ93ZIktBKcWICoMuBoWFDxmUQTPfroaUBw7/3/l/53wXON8Gu6eQvqwotYi+VX0X6rsJcyiiK2Z4JOvKLBw5udhQzHKyYrxhUwFCUmfdhxzMogooaijGHE0H6D8BAOa/kH6zmDzVhZBS/LcIKFloatn4cs3xKSB4YZwlY+vTLatLC2BQvXJaLQgjTPQKLGZYxJqQiUMcj3hBJcIKWTDLZkuUWDJkizVitUWJzR6xi1EiOpBjJYsdmYh3ys5VKnFKSMpiseRCLrdKXB6F8XgLCCGubG+2wnpz5Bwf8vmRX0ZyAAVyUW4QeRRZyVOJwiCJRQ4OieZI0I/Y1Szm8lnsNOndcYzicUksZ+J4py6CWXRwPGex2uyi2ST7g7mBrM9YHyL9P5B6UfNqPe/rqXEYiLcmDrZT4JlMtbRq+wHgk7cuJOI0GTY4dnY2dDgaAs6b7A1/DfQDV42toR8L1gF/2lZIG4arEwZ39B2jG2afAm8MHaWxxnLN4KktN6iZrwX/wZFxisUx4JbEcyqZKuDOcN087SjfC/4v9TeN3/ZBfv+PCbrzQwxYFG7SrTMqcPGLJhpk+oBfX62h/c8Kof8h2knrJAX43JeecN34I8g5Mtcdrp7eDLVyyh6G3p4uA//U99aQrVME3912KdF5ZxD8d2cuJ6Z3hMF/XCRrlTUlKd/aoE2ejwNXtDRqzU82wZ3Rki7trrgW/Df5o5rl0F3g+7vmNN9EEPh42JHUqtqBX/KBZNG+kQGDK3udyTG5DWZ5deWnNn9tN3Dknk8Tr1cAu9312ok9Q8Bd+8XS9bV2mLG5NUhjpRnA0h8TSrz4iFD1rwAAA5Z6VFh0TU9MNiByZGtpdCAyMDIyLjA5LjUAAHicfVbLjtw4DLz3V+gH2hAfkshDDvPIZoMg3UAyyT/knv/HFuWM7F4Q8bQJt1xNFV+luZS4vr1++fW7rItfL5dS6l8+7l5+Sq318rXEQ3n++Onzrby8PT2/r7zcf9zevhetRRW/wd8j9unt/vV9hcpLufKmIh3fZBvDG3OpW53X8VMut3KljbSzC4C1eqeaAAUe60ZdSTwcChxmOI2d4bC7mBfaWvVhlgDb7pCGa7yGQxstwXXgaFM2sRoPHf4y3ACOt0FtUMfr7vAnCc4mrjt3pnLFxki9egJ0AGVzvG8jQmrdrVMCRL7ugWzdOpcrkti9W7Y3RV3axl4jOdjcBN5Tnwxk39oYg3vs3it2T30KdgeyaZQauxNKaD1DRm3GZmYUEWH3iC312SbSiXi+74TNsxxRnzQ7i+ORNoQ1LI1nzMiFRE3DY0N5UmDUR7fKndAXUXh4TDnu9WEGsxqVr5U160iO8jQsD68DwNbFetaRTLPVxJiiOqg4u7UsbIzSPZDNq+usOCPnWTi8zw1ghkxGuzW028iQCp9YHjSiOrxx85Emnds+Y0ytjUlUDURTpx1OA4qQh4ZXN+8j9Tp2zWiIBbUMqgSq2ahx1AhRG4nonA1VEEihHgQAla4qk4CCQMYVH2hRQ//Wjh4BARB1zVRLpr71TQnXHA/FeLQUOhVuYOBNAQivmLm0USRqdXWUwNBLM21sNjSD7jKHFwgL03KNEptJlgJpu1tGMqugbcis1axZJKYJXE2YZzmtabWU6p9i6XCbMgyBt5E1tdhegNFDGkOQFZKW+vTybyiyUkWl0H/iSFom8RVANEprRjFQ5CScCc7H2+vDqbSfU8/32+txTsUfH6cRvhQ5zhzCeQIl/OfTBzoOmFhsxzFCuPtxWhDucRwKhNsO7Wfcfig8xX0W8rmw9qLYCoYWQwqKYRZJ6K/OFT3prIahRRIdEl8hlyfh1DC0qFJwDbPYQgppGn/MAPm+zmeJowhuQTjyGOZI7cwtPos4R3phIDwP7ln/rC/6EByeZtHnyHOsLPqQD55m0eegD8Mr3+z7ipxnnsoc6NNoUxhZzCWYw8jRF8EcRlbKJTjDyOIs0RgwsjjL5DwwO6cp4jCyOEtwxsrh2PdkLL9a9+QvJzp7ZJy6RifhfgpBZXap/K+QqrM94fJhOcbmPCTx/f0fQTxf/gPff+08SMAVYAAAAeh6VFh0U01JTEVTNiByZGtpdCAyMDIyLjA5LjUAAHicLVK7jtswEPyVlBLA43F3ua8YAQ5Q48qqUhmu7iPS3MdnuLIMiPRoZvb5vL+ex9eL+MDx9ZLteX/tuN5f22M7dvy2P+f+ifexfZ7743jMA8+88LfmvP4dBNK5f9P3euOh+s7wOX/9bNxVNbhxpySRduPupM5tdMsMB0J9ckg0nJae7TY6kecMcFzA0YImjSnwYUlvtw/qZCkJlY5SLWQaZ5M+RhoB4T5FTIC4p3LZ2CRZHDgvZHE8Y+UDTngAwkdzsmU9L2tUMTi5fYBFmVOLFShIG+LOmfGGxOZs4OdMW17aaQzcoDSHcoW0PomISzkupaMbAdtFE9AAZR/IBhzmiKp49FHuODNCVIrFKx3UHm+jEGZDOaFzRLWFCSOoaJFhFyRhXnlG5bksZyh7lajIwAt0cvUqiDXd17AkmHK5KZcbEM0BBH3nMmMUw3Z1K2GFDkpHI9NKZiUDoobLklnJFKUMzAayQA8UE7Su7tgRyGyUDIhOjBQywpRhjYojMK0lQ4zVFe+J/uraMYIql8ywN9xW+ukVTEhqxUwxdsSaSN9otXJyUWR1HmJs7Bg8l2YMTwKgJhjJ3v79/U19YJukadfGkGgTh8PPfwCgs0n+ZRKRAAABuHpUWHRyZGtpdFBLTDcgcmRraXQgMjAyMi4wOS41AAB4nHu/b+09BiDgZYAAJiAWA2JJIG5gZGNIANKMzOwOGkCamZkNQrNAxJmYUGlmRhgfoT4DTDPCGdhNYmRmY4DwOSA0E1weTqObhI0BUcvNwMjAyJTAxAxkM7CwMrCyMbCxM7BzJHBwZjBxciVwcWcwcfMwsPIy8PJpMPHyK/ALJAgIZjAJCiUICWcwCYskiIhmMIkyJvAzARWyJ4gKJIiwAE1mZWTiFxBlY2Zh5eVnYuVg5+biZBMUEhYRFRAXYgR6AhqEDGJfzC0cUpYEOIA4H64rOSyXemYPYvcpTLX/s2oWmF0xw2PfrLTXYHa3+Lb9n85VgtnZL5bs71rGsh/ELvmmcCDt0gYw20mg4sBEXQcwO/3r0gNuE/eC2b+VTx6Yc/H1PhBb+OuWA7l1aWBzdH1bDzyZbgFmv/b2PODA9hLM1t48xfYR32Sw3jmXgu0uqGgeALHX+y+zZ7OfBDbnxT4Dh4nz5cBq1GviHR6yfAez1+6Z78Dy+ieYvTxmh4O0hRaYzfFvgYOYkSrY/Dv/Eh2i/2mB2WIAznZx9q+GrwkAAAIoelRYdE1PTDcgcmRraXQgMjAyMi4wOS41AAB4nH1UUY4bMQj9zyl8gbUAA4bPTbKqVtUmUpv2Dv3f+6vgKLFXsnYmoBnnGQPvMYeS16/zz3+f5XnR+XAoBb75uXv52wDg8FHyoRzffrxfyun2enysnK5/LrffhaiQxJ64v2Jfb9ePxwqWU6Fq3RiltEoK0LhAhXHNnVQugRNmzk21e1ezDa5FPKyoAqLxQGCN2wbHgXuBii7mHEBrDuoboCQQKxOJZ2LexXCXod6BZOPEiC1oqLpB9kRGMSjAlHtaRCTcIC2qfmnRHnGnjNklspQN0jOmVDQl0JGwBVW70xESqpGoKI+grCC2Kwkxz5eqwo49iw92tO+QlEE5G689K+mEoDuCMBmKmpAlOpqdJxDYUYTJUSz3EEXPkpDNog0bpJRrLEflJpatjcKsb5E69EHuLWPC6ELbVtSHMrtGSaNLiq60jWmBbDVa5NIyTye3tm19ssTVo5k2iHchth2dlCRJnt6CrzxdM/4OiQMJgYP8X6OvW4UQjTSlIRokULvzjvW3y/nLiN6H9ni9nOfQ5k1zNjmszRHEMJ6ThmEy5wnDdE4NhvU5GhhmU/8c5lPkHIarlDkd4qJYToe0KBOHa4sC80zkRWiUDmURFI4VXYSTryGLRSCcDm0RAqdDXwjndLQSy+kIFwI5HdHCFI+v53Oh3Q9/lkCcCzQbFR/asWWmlyyunOX74yMdz4f/eMMcUlhwkdkAAAEYelRYdFNNSUxFUzcgcmRraXQgMjAyMi4wOS41AAB4nCWQy43DQAxDW9ljAowFUb+REOTkArYI31NBil/Ja/j0hiIpnRc+1/XBefZ/yfU48f59Xrjmw0fOn+/jUIK5xAKlsK/XYYTw2ItpCziykVO4lTQqZu231xEk6WHrYLJgT7tlyBCsA2SJBkq5vWpE2zlq7IUczjYiTZg0Qnul3l6ORMTNTMRrIre3rhETyrNsqmpxt8BU5ekuPAYNpEoxTlNPW8PEW4L3nQjLrGHSi3mubhMm2TKhHW02k4EK6V5KVp04cyU1GxpVYedNXKxP4zP2Hxgx8kGsYHTz6MPOzkquQA6JXWaT5mamXXzXjhqQO/sYSt2VdT2/f0UnW7hc+4HcAAACHnpUWHRyZGtpdFBLTDggcmRraXQgMjAyMi4wOS41AAB4nHu/b+09BiDgZYAAJiCWBWJ5IG5gZGNIANKMzBwMGkCamYnNAUyzsDlkgGhmRiQGThkFE5C5jCwCDAogBj4zcJnKDrGfGeIeJiYYzQ42khnmTAQN0QZ3NswJcAGoAnT/cTMwMjAyKTAxZzAxsySwsGYwsbIlsLFnMHGwsjBycDJwcjFwcWcwcfMk8PBmMPHyJfDxZzDxCygICDIICjEICTMIizAIizIIiCmIiWswiUkwSEiyMEpKKUhJM0jJaDCxMyVIcDDwcyWIMAOtY2NiZ2NlYWbn5JAQE+DnYuPm4eXj5xJPYwS6CBobDLLKJf8OOBw6bQfiLOt6ciA8JnY/iM08Y8uB1yXeYPbdvnkHfqzntAexSy1iD6RMlwazq1M1DwgvUwerOV4eeqA69R+Y3bZu1oGZa5gPgNhZDJP3r9gnChZPfHRvn+PJz2D2c4dWe6t7XGA1xzassm9jywSzvewNHOI+NYPZjnkVDstmeYDZgdtSHTY/uQLWm3Wey8FDYzqYPSGUzUGgcxHY/W2nohzEXjWD3XbSdZqDvHYVWNyl4YBDjlQpRDzhpYO8iz5Y3PLWQYe7NrIOIPZntyT7X2YzwWrWik22t5HQBotbb+Hf3zXPGyzulXdsv7HuNzD73saO/Q1/Q8FqWBczH7AR6wezn1WdsyvYmgFmiwEAaS2KNRTxuAQAAAKuelRYdE1PTDggcmRraXQgMjAyMi4wOS41AAB4nH1V204cMQx936/IDxD5Fl8e+gAsRVXFIhXaf+h7/1+1s4UJKOoMY02yZ+zYPsecWl0/zt9//2nvF51Pp9bgP38R0X4xAJyeWr20u4fHb5d2/3p797Zz//zz8vrSKBpjfpP3R+zt6/PT2w62+3ZjPQaqWYPOYaGaLzCv41NqzwVEwaDRbqC7igZskFwuR1fhMbSQFmKDN0gppGRwCSlPg80FN8BRQO4ydFj9rmBmsQFqASljq2NUbB3i5hukXV0yD+E8JfZwE6MN0q+ndGYHKe8wTGAXPQqJWSOXARV9+L/MPiMR2ksBskZMOMODjG1KWC3CDoIgXOFRw1F2SJpIzpwIKjnNb2hXeKweUc+uuHIlh5Rf7dqO1SPu7mjJp/SJLMLbc46JHJ784MpIlYm2SJ3RUT2yDlUwh0DbIa1dEgnhMVvDaDJ2PUKfwQVds15ZLYbhOyZh9Ui6hgLW2SizgbHjO2Ro7YDFufw9sum8qzpVf6xTMGg5QkMcO8ZRtUeLPe6RWSWbfUsOqu6kwJw9RiaDobFVGkmKsvgWWKuuVnTeAaeAko9a7WslyWz99pBaOsc+BpBUJYOY9j7tynZQC/IsPieZY9dF8qsqIRPOk0gXQ9Gtz8joqQpgyu4lgTmVvgM+XM4fxth1sN09X87HYKubjvGVi8bHjJJ6jkFU9zjGTS6aHkNF8rFjckg+fowHTOEnpb8+fsFjEtQmrnrHaXCRtZRBWuQrZZAXmUoZlEWOUgbHIrtapqgWeeE0tsgIp/FFLzhNLMLAMrQqAMsQLlS/7tDC6emZeCEvTSMLS3HujIWOWIY+VY3q5GnIFpJhGfKFTDR3YiGNZBeO3sLV+zuAZ6l1KX7RZyVLrd/+g+b76S+C02j5Cbhx6AAAAXZ6VFh0U01JTEVTOCByZGtpdCAyMDIyLjA5LjUAAHicLVG7ihxBEPsVh7vQ19T74cVwsIkjb2AcGUfzEU7u40/V9gwDPeqSVKV6vi6+ruv2+/n+/v2P/Lz0mkd/3J5PfHe8t2+v+//r1xMQfq+Lv3zc3nK3c9SirZ0dsR6A2LhlvdGusGhAvsPUY6BsS1dgBqa1gemaZQxIt3l4AgrKzGEKmFFHLNwqCxjDoMwH8xqJB07QV+GFyyZzlPEmY7IFCY4uHkRVHVoKUSZZD9nopdCXbRZVKOmu4tSpYTU7iFeLj3KEig4LE/fx4qI+OtTV07hyGizAMq7ghS6Uph3b0QFP2mIGaD1iEzsSIwSRNua5pZUG4WQeFmo8q5dMMoUSZFpa7RDmju6Ziq1ZURKJ8U4YHtP8mrQx37/M3EkMtBYVPwhFti7dahonaoKHLtuWbDFeRipIDnkpNnI2BAsoT8yVlmePpVrr0BNrvK+/v77G9iWCUT8+AaYxfRYZ172CAAABPHpUWHRyZGtpdFBLTDkgcmRraXQgMjAyMi4wOS41AAB4nHu/b+09BiDgZYAAJiDmh+IGRnaGDCDNzMjExqABYrDABdghAswwCQ4IzcTmAFXoAJWH8gUZFIA0I1wabg6aOrgENwOjAiOTAiOzBhMziwILqwYTC5sCG3sGEztHAgcnAwdXBhMXtwIXTwIPbwYTL58CL1uCCCNQKxsbLw8XB7v4PpB1UE8x8DesmXigWeKrPYjjsib7gHKsIZjtcaLzwO6X2vtBbCtpngPyF0LB4r/vrNjfxn4MZAjD1KU/9geqPgCrOaRhZCftXAUWT5X2seeJ7gerfzxdyKFrykIw26DGyuGvtIYDiD3fxctBLFjVFsS++mqKwzYFazsQOyhByeF6xUqwmRPntdqHbtoNZt8Jv273SMv0AIgtBgB4eEaWbjpnTgAAAZt6VFh0TU9MOSByZGtpdCAyMDIyLjA5LjUAAHicfVPbbhwhDH2fr/APLPIV8GN2N4qqKrNSu+0/VMpj/1+1iTZMFFTACMwZG87xbJDtx/X7n7/w0fi6bQD4n+Hu8FsQcXuFXMD5+eXbDpf70/nhudx+7fefQJYDs3/GPt1vrw8PwQ4nLWYs2ICKk3YiwIKjzU8ZLnCSUjtL9zivzp3bAijvEQWtxlVPgWxkYgukJpILdafKcd7FGFchLXNTEXJWzZDSa2t1gaxwS6Qrm0mumhGJL5AtYmKhJt5HyIgsvkre45ZYmjd2CYKI3OsqtUdALuwYjwgcVxZd4SgEegukk/TktVSuDfsKSRFSClVUGeeKMoj6AuS4o5ZqUsfVKJTRJTDF4WLSiH1QyjoAX5EauSlSiiMnUmuVvkTaIEgZzTn1jFetsz/v10+1916N59t+ndWYnWfNxQZkVhZH11k+FGazSDiszkqg2LYpt4b1KaqG+dSO0o4aaTroIAWNiQ+c6/DIgVzNifRAIo3JDmRpetqRkyMDuX/8y7He/gHWscYFY+gkzwAAAN56VFh0U01JTEVTOSByZGtpdCAyMDIyLjA5LjUAAHicHY87jsRACESvsqEtYdQUv0bWRM69h3C6mhPM4ZeeDJ4equK+tnt/3df2+t0feT/b9bc/jd6P3D+f7TB2hwoJl9gUOg/lmNCiwVGYyEbGOjzpaJTi6o3AMkuiramOsSxhlYItTWdkxpeVwZ16SBcxOgdLas2vBjOtXCwrUdotRGoRMGo4GiCwAtH9dCqBA12CTmWJYdYFhg2Nzj2NwzWykXRvw7pyTdEVr8uQlvu1Xi1C50o2DC9QPzR1pNH++Qf2Fz79XR0UcgAAAXh6VFh0cmRraXRQS0wxMCByZGtpdCAyMDIyLjA5LjUAAHice79v7T0GIOBlgAAmIBYEYiEgbmBkY0gA0ozMbA4aQJqZhc0hA0QzM7JDBJjZFExAChhZICqZmCACTIwsnAwKIBkMBRwQIxk5wPJMMJM5GMA0E7uDBYhGWAmT4GZgZGBkymBiYk5gYWZhZGFlYGVjYGNnYWLjYODgZGHk5GLg4GZg5kng4dVg4uFL4ONP4BfQYOJnTOBmYRABeYuNkZ+Ph5mJlZWFm4NN/BrIFVBPMwh+j25x+DSb/QCIk1zh7eC/r2w/iO2y/KZ9X8dsMDs6wM7e7FfpXhB7lZPN/gcp8/eB2L/jNu9f/PgyWE3nKosD939vB7PdTlQf2LlQAWymzX6PA6lbNG1BbMuk/gOTxUztwTbnTzrwR5jXAcR8nvF8f+sRG7D4zE8L7QOD1oDZ3Ofm2rWJKoDV8M3Td9hefQai5m6Ow+vuR3Ygtu7BpQ6HZhiCxcUAbupVAayaxiUAAAHPelRYdE1PTDEwIHJka2l0IDIwMjIuMDkuNQAAeJx9VEtuGzEM3c8peAEL/OqzyCK2k6AoMgYSp3fovvdHSQWOZECJZiRoqEeKfHyYDWK8nX///Qdfg8/bBoA/vK01+COIuL1CbOD49PJrh9P18XiznC4f+/UdqABV9/HnHvt4vbzeLAQn0ESSmTMcOBHV2gQwYR/DlR0oiUpjFjhgalmq0gIoDqRUENUTOFBiMkJbABV2txYVJY2ImBFtdbV5RD8vYtI4dkIklBfIHEhKiiSSY5fNPM0FsgSSU62m2LqPFCkrZIVnOEhq4sAWPoatllXlLWJKkJkLx7kXJrwAEgZSk1YsikEC+uWrgojgEkgrGc2bkBidrxWbxIGk5CG9gxHzu4Los0OcjZ1ESqKZ8zJN9ZDONlZ2nyjcaV9GNG8leysVmT2itWK8TDJ3FRUk7OeqrOsci19tIbcqQXVuUc0C+LSf7/T8qfDjZT8PhcfDQ8fqU4ZaNebQJLncFE7PLw809BfGPERGPstQEvms3UWGaMLYhjIoJt7HpZ5cNHlqdwfy1FWNpGRqHsdCOnVJu8WmdmgslCfeORYqE8HazV+GSNmvs5nZmcf4vv1lfL/9BwVw4m58u3NdAAABDHpUWHRTTUlMRVMxMCByZGtpdCAyMDIyLjA5LjUAAHicJZC7agNBDEV/JeUujIXemrExBDYEd1ulMq62d+vGH29pwhQSZyTdK20HHc/lvn3fHrzNsPyuGSvZ9nXn9Viu+3p/3h4HXfev96JA4iztxEDU+2gXAYrB3E4Iw6UrtQtBIGoiAiZLgBAqSlpF6IgmCTMPMRmzVYiEPCGBIolWr5tJT8TQu+Xc+pOQSCQwpAiD4ej/JI15tBRIIaFqVNCOockCs88nsnC0xsCYlqZg1uQi5Safln12y40IRJ297At2JmklR+WdcyHFKrERJnWFQELJKaqsNcXqLr2Ij+l6ba+/s4K0Dv31c3bw9wcxIFBjCKvRjgAAAGh6VFh0cmRraXRQS0wxMSByZGtpdCAyMDIyLjA5LjUAAHice79v7T0GIOBlgAAmIGaG0g2MbAwJIDaTIIMCkGaEUtwMjCAFIiD14nogEahmBubVq7SWAun9IM5Dt2X2QEPsoOz9MLYYAL8bDhRlzIocAAAAqnpUWHRNT0wxMSByZGtpdCAyMDIyLjA5LjUAAHicjVBBCsMgELz7ivlAwmYlUI9RQyklCq3tHwo99v/UbdAkh4TOepgdZ2BYBcHNX18fVLBXCqCDZ4zBUxORmiAEdjxfAlwabFFcfIR0hwbnRJ6tc0hxKkoHh4Za+kFYP7Mq1SzDvdG1bAzpU/7nfseoxdj84xyD35SZ69kY/FJPhpcOsup1fu2WvZwhc/UF5eREK0ovXaMAAABDelRYdFNNSUxFUzExIHJka2l0IDIwMjIuMDkuNQAAeJxzznF2zlGo0TDUM7K0NDDRMdAzMtWxNtDRNdAD0roowpo1APX+Cf6bEsCsAAADMnpUWHRyZGtpdFBLTDEyIHJka2l0IDIwMjIuMDkuNQAAeJydkmtIFFEUx8/e3ZlxXTd1dXd1V91x1XW19QUV2GP3qmhRfbCUCMKc+jQ9IEuKpAeVYU/Kgh7Qw/oQaGiZEFHkzi160ONDkUFEDyg36kNlYRho2cwZyx4G0YXL+Z3/PfM/517mfbjjGajLCvoi6i5S90R1bzLwIGkaEUBUo1FPjT/ksfO/Ra3Or0WTALIWiSpovib93GD8PUbp9WP4/NaX6r48RV/14B/gpyFGvh5x/fNgxF7Qo3G03X+0/QF/Xu6XxzGQ7wWjEV/FYAEDGAgQo1oMJg44HngBhCiIMgOJhmiLaImBGCvEjIOYWIiO8xNDPMTbwJYACYmQaAe7QyYOp+RMkklSspTskkmCG9wpYkoqpKZBmkf0iKKYLpN0r+TNkElGppSZJZMsn+TLVjO/5M+RiSfXT1LHw/gABPLEQL6fpBT4ia0QzAAuu5QjSmYTZHulRE4dmQezSXtOjheizCbe4UxKdtn5dG+GP0fkM7N82d4M5zz1xzOM/INQVFzVQdOKjWEt2XVzE/U9KlA0XjpYT7nhaKbxbqWF7iivQC6edZfaGr3IcdaP9OCtGuTa2bElHmEy8sxztpLyofPoEz4xTPsvf0H/OPsDGuhvQn1cr4tuuJKP9VfY8dCHT69QP7PCHa6b5kT9dmSiUn14LeqvFtwL3qmuQ7396HXl9bDea1GllU6NNCEvsUyi7cLqoMaOljL6tutJSOP7k/pCgy05FPWzHF1XvRW5pUMOdQ+cRM7duDc0Zf195ALfyu4NnvfIry9cVEqDT5HLnvco1y52IB+pHQhvcTQjLxE/BxufcsiNX4sUIbMEeeggx5oXpSK35SawysUNOA9Xupz1dvbgnF0PG5gS2Y533LamjZ1Zeg+5hnayquB0vFfTxp1sWelm5JoZ+9ibG53Ilp5ultV6FfnFgZfspemUrt99wm7DMuRzkSms9upCZNPcfHZz1TD6Vzj2scJDy3Ge0645LLF1Ps5pTD7AjkYmID9+fImlB+qQ9885xroL+7C+/3mFktdbj3rxgj30ndumv+03gsHzPA1PVfIAAARDelRYdE1PTDEyIHJka2l0IDIwMjIuMDkuNQAAeJx9V1tuJDcM/PcpdAEL4ksiP3fXiyAI1gYSJ3fI/94fKapt9SxAZOwmZtpsqVhFlsZPLV9/vvzx7892Xvzy9NTa+J/fiGj/yBjj6UfLN+3r999+f23f3r98/bzz7e3v1/e/mkYzwTP4+TX3y/vbj8871L4160pTR7Tn0Ymd1NvoY7/uR7m9Nu2DVcwzcfr04CJRsKJ0J2Ye7Zk7LXKyIlGRqD2CSbg9Sx+xIrRINCTOLq7kkiuaBNsoEicSV7esxXJFnaYcReJCovewSWq5Yow5vcLoSIxO09m1PVNXpjWpSIy9dbjL4qRHw8wremjsaiymMOWSw1R4VZmpDWPLQTMS5ZJhs6qbUhzqrINt5Zo+VLyCSalOymy0YpMpU4ir0kmv1EXDZEseeLsqgSgVQs1jhlESvwzrl4umRACIml11U8/ks9KIVntD+Tx8CBbVzmSKBigyfROFBVUn/s7oDy8Zjd2bYNGgNvXF0LMilFMk0LjmXIKlpw3xCiRfGg13h1zaSUyowsi8KQpkYoCtD7ReOT4se2sCMLCORtGp5fjwhz7D3KHK6rrYyvlhu0hXGxgcrBkkXg4Qf8gzp4wpaQyMIZ9V5rp2hyLoJVRug5dWpLOjOTNRJ0gAVwGzKQuKa0k0EcdInWg5VwWlx2XvDF+iI2fEQGxVEDrnNTMZzrJSwFhgsypIUiC07gyy7RnIUyoNTq7MGALX2COcfV+Nm2hub9je4IKbWXau998iGXhcnkMsnUhoVU0nWyXtsI1I/4ItS6QtF6nrSjUdI80T66PnS2sQvwAEfAm4nyfolVGKL1upBYQ8MHF4CJx6qb5uqWZH10OiTfCi4GpElC5VsxT0cfq355hUqXylLpYFNsFrwMyj6gAV2EgyIBLbZ4JxjlS6ql668sQgMfoPQ4KJqjLtYnVayEh/cJ5WA51XAzgsCVOczsgzyurXhRPTwWNd5qOli+F4ftvGvHBm2T5r0fxlRYFM7ao+0V6YAkcjVqP3/fXll28F1/eEr2+vL/f3hPzh+9sAPjS5z3zCpffJDkdodp/fhGvepzThWvdZTLj8PnEJV9znKuX1eHzmVkQPpyTtcLBRgstw4FHiy3AQkn7cOSDJPu4cnDireK98oNLaZdMBS4k2w8FLCRiBH88SysAHMm8q8XvTyeAr3fFAxoRoBj6Q4YSagQ9keHl+hGs/+Ldm4AOZ18fuBzMnZgQ+mDkxI8ijwVLb9vlgpJRBDmZJmhHk7oLEjCAHsyRmBDmYJTEjyMEsiRlBDmaYlmaQgxnepBnkYIYF6Q6PTrPX0YNZswszHMzwDU7MejCrXJXq3by7e/HgwazZGgh6MGu2Rt45mDG+nBzqwax+dYIezLp7A9SewUjIUOhuBNuQH0k1vh66pylZ1vHAaU7v46zm58//B/D+6T/QgUqGptx1agAAAiZ6VFh0U01JTEVTMTIgcmRraXQgMjAyMi4wOS41AAB4nDVTS64bMQy7SpcJ4Bj6fzDoavbpIbLvCd7hSznoIAtHQ4uUyLnvx/3E730/fv953nzfcs8j9xvnB0qP+8Ofefg/6IEX7ydO3/8f/vuRz2Mg8gTs18/jRTuZXGvh1DimrQtHds7W9ZKtoSzrom0U7bxeutOdCzDeblo2qBauXBdvMZJYeFWEd+uSbUKcg0klj6kIFaG3bWE3YHQXi8hgOLnAZrvRUYeMOrvXFRtMYAXGtcXXldvDqAdjASHrqt0e7EcPRaBzb46SGj0mnDG3ukpzxrV2H7LY3qEyIEIfNPJtHMYDYikejbZJTGNKUVEtM0iZmS/aAkUzPtR6eC3eKeCbW2YVtjBzSfssqDIiUQgn7WlCVcXLNqsrz6IbFYzsm4Kt5w4Lky3otDA5/pBXJWbObSnexwxzgqzYzVp+KhFKgUYmBTPnnpXCWrA5SfqxtSywe+hoDj8g+Cy9MAxnfekyo9zXGEXj/KhOnbnM+1R0S0AJICBHAi7YGw5WbEkClNfLd2FPsiZAEn0g4MSezlZmVDSWbux7wmg8cUHnaHZFCQWbLOKeq3YOSuwEBqgmxWLHxJPT4cPK8/gaWH+cklNWTGaY9YTYtkq2TRxhiH6VuxGmGjh8rHOx9QQyMLnSLDPRQsgHBaFn47FhXJ9vJJInIxNF9fqmtGDoKaVono+kEdhez59/DcDJB2jWU30AAAG0elRYdHJka2l0UEtMMTMgcmRraXQgMjAyMi4wOS41AAB4nHu/b+09BiDgZYAAJiAWB2IJIG5gZGNIANKMzBCaiYmNQQNIM7NwQGggXwFIsyCkQTQzXBs7WJoZ1RQg7QAxhc0hA0QD1RPFIEMTNwMjAyMTAxMzBxMTCwMLKwMrGwMbOwMbBwMHJwMHFwMLNwM3TwYTD28CL18GEx9/Ar9ABhOLIIOgUAaTkHCCsEgGk4hogqhYBpMAd4KYYIIIKHjYeHj5+AW42YSERUTFBMXlGIF+goYegzhXnth+0Z3VDiDOnIT1ttPfq4LZ24Rt99uXrLYHsYM6v+93iTwOZh8607p3+qvSXSD2yfeb98+YrrMfxI7R1TpwdIGkHVivuv6B3vR1YPW3vtUfePuRFaxGU2zFgV3Ss8BqCo82HfgaxHgAxDY0W2y/WEYHrL7/gqLDrB7pfSA236xyh+9lrGBxUb1aBwsTRrDb5v3QcdD6Ygpm28ets198lwvMbl0gbb9r42qwXbP3sTmcvLkNzFa+auiQbGYItitR65f9260NYPbmry/tLl+vBrMFa2P3hfCpgdliAIP1cEoEK3ukAAACK3pUWHRNT0wxMyByZGtpdCAyMDIyLjA5LjUAAHicfVRbbhsxDPz3KXQBL/gUxc/YDoqiyBpo3d6h/7k/SmrrSkGEri1Ckmf5mqFPJZ/vt2+/38u/h26nUynwn6+7l18MAKe3kptyef3ydS/Xx8vleXO9/9wfPwpxIYl34vMR+/K4vz1vsFzLGTZtVtEKb86MRgU26M94lQIYt00rh99NnUzaAseHQ+OmjQpuzC5NF0Ap93LGDNisBVDVBFeR9fAIVZmp7wCcV7FrInETUFNNZA2XbYW0RNJW1QHzd1QAsgWwHUDjatH4KKeS8qocL3s5R//cRXqWSkxBwWckQvrUjZQM0lWw6b5EdnYkul4rUOYBBHVZECY/uJEpOJasnHjZTUyCgj9qfPQIFR1khZRA8tZqM8uQSsiy6hFqB7pq0hJJRs/XsWuPbUBBTGyaMNCyGuvVRLNJMYBY/cjhE7B1WVYwj21wz4JccYX0HhtBuUlXCbWoaKV0OLK0Vlk6+bUFqSsk9jRdRTJ6EEVEsMqTjvERra7cdcIKy/mhvwNEWMktw6tLiG4Bfd1vH2b5mO7Lfb+N6c4PjRmOQ+ExqnEoMgYS46hj7DBWHbOFsWwMEMZqY0zy6GMYMNcs+X6Bk7LTO9KkX0mDPAlV0qBMgpQ0qJPy8hjCmiQmadAmLfVQbdKMpEGftCFpaNaApCGcuJY0RBOnkoZ44k56vIHJlON6RE/SZory/Pzzjv3pD77EIK/36JN9AAABJHpUWHRTTUlMRVMxMyByZGtpdCAyMDIyLjA5LjUAAHicNVFJasQwEPxKjjZoRO8LJiffk0fMN/L4VDvEICSK2rp93/fx+X3eB+77/MK5z+PN7/n4/H98/Bwv2l4ZnEt3q+K+aFN5qPqS7S3p6wIrtbxk8VZta0A8/Cog7mn8kChcVda8iFqLOh6mkWcMHGBCc71khzfJos1OJPlAqTF+GuIGAI26zUbnoiIKzLc42LQVAT2IoW7AXDYJBZrxRmfqNWmiLOvCHFKY5zVp3ARz3RWVtcaa1XKQdm/D0ISKPKokiQRQpqRjjGYya+FoaLGpoGyuhRHVWGNETK4PYlL+hGdW6BTMKATAp90Ma0J1EeExMo92kOYvOP2tXDikc4ToFbLOn1/BwGAb1VEc2gAAAiR6VFh0cmRraXRQS0wxNCByZGtpdCAyMDIyLjA5LjUAAHice79v7T0GIOBlgAAmIJYDYgUgbmBkY0gA0ozMEJqJid1BA0gzM+OiYerg6sHmYAizgYVZMIUhNAdYmglmOTsDzHAwzcIBodG0AR0JcQQLm0MGWD0jcQxUQ7kZGBkYmRiYmBOYWTKYWFgTWNkY2NgZ2DkYODgZOLkYuLgZuHkYeHgZuPkY+PgZ+AUYuAUZBIUUhIQ1mIREGEREGQTFFMTEM5jEJRIkJDOYJKUSpKQzmFhlEmRkNZhkmBJ4ORikxRJEmIG2sTIxs7DKsHFycfPwcrCJS0hKSYuJFzEC/QKNDAY5jrsCB6cFrrYHcQyvcB2UMX2xF8Telvz8wHxb5v0g9vH2awdck7+C2YJTlh2YdvYNmG14duaBztfn9oHYGjsiD8z1/W0LYi+YzH8grCUErGba0bD9uz1ng9WIzFxsV3JyAVh816o79vmbrcBsBbU/9sJSDmA3yO/yt+djuQVmnz4nvj9oyjQwu8xR12HWQmYHEFvy0Q/7SO8wMLt4vraD+ecpYHbirAiH4wsb7EDs4CMTHH4yzQXrPfu93YHnoQ5YzW/2fQ6HbazA4nL1jxxe/LgJZucYZzmsnTYH7B51V0WHWTt4DoDYxveMHDQlssHsQ5vaHKxbW8HsJ5qrHYzm+oDZ8bGLHFyr74D1pt4+eCDI5QbYDRcYjhx4e/8r2HwxABcGkWyOPLIEAAACtXpUWHRNT0wxNCByZGtpdCAyMDIyLjA5LjUAAHicfVVbbhsxDPz3KXQBC3xK5GcSB0VRxAbatHfof+6PknKTVVCiuxah1c5SImdIn1pe3y/ffr+1j4sup1Nr8J+fu7dfDACnl5aT9vj85eu1Pb0+PL6vPN1+Xl9/tJgxxTdxf8Y+vN5e3lewPbWzd1D2wQ07swnNBh3WdXxKCbQ+5jDQdoaOGFgukNyu7Tw7MThRIhVpqBdISeToEwSmtDN2xxkfFUhNpHYC1TvSFICkQI5ESjcY5Ja7CwgKFsiZEXG8Rxsa75FoQhW6JZA6SQS8QjcGlGpzz83zvbmu0BmYvPKJQVMsMwZwZkCkA8UqZFKEfVIwBOlzknMC/kXSQvpwxyRmKrCXLnltbojCkr7jlFIRhJKhB4NOqTvsOEfkq0JqICk8TSSMCeiYXO492i0PKSKxzJ3FuN57Lo/DcAQr0ofKsBJokfVwZCKU2qHQG1fsoIdH6ZqZ1DgD0RhaKZggzihBuGXUGVV4HBUwudHusffMHSdN8YoaSmpmh2kQcWXGyaEKhpIajmDDpy9dEHOpC5KVH0U3GanPmMxRlu5fblwsJBKSD2pYy2OOlSEC5wgtyghnZLNM0VyRx9FsSPpEj9Ktsk62kBByyIJMJSdDFTL5iX4AasApsuAzqKpaTBIUSCSFpUsnsBL5fL186nf3Dvh4u16ODpg3HX0uHhofzUxyHB0rbz3aUjy0cfQejDGPBoMx7GgjGMOPXoE59o6Ay+BW+bgMbRWOy/BWyriMbDV7x+hWm7jM2IoQl5lbtd2/sq2scBnf6oeW2QsF1wpuFYFpiDbpLz/Em8YlDcmmZUlDumk2H0ORmzYlDc1Ng5KGbNOaBAPkm6QoDe/SkbXysbCyLAcx8acp6ek4cIpol0w+v//hxvz0B9uCcPbDc+OsAAABZXpUWHRTTUlMRVMxNCByZGtpdCAyMDIyLjA5LjUAAHicJVI5jsQwDPvKlgngGLpsSQi2cj/ziOnzgnn8Ut40BmiKIumstY7f9/k6Pvypj8/Fx3qvc63XsdYjz/PgPD8C1lr88z28kwdJ4+4kye0ePTXMG3UXt2y39SGaDobInKMAAS4YYLF2awffBAMyWHQjc6Rmu2pEFSPSB2eMdknH6V6IpwW3C2TfHMhSqrTLOjukyopaxCwOp1MWQv4v7LIp3HMmbMPtIM3YwuQs8Edjum2KmTUtsX8vM3hyM7i0mUVwBMSaipzaburKOcR3gDEZQ7gLDYDFUlJBITfSiGn5qVtibLnh1Yij+mMRWAFkPWhqsYyMDbavgbBj7A0xCP3f14Rxow0l77SXd1HKvRPVolRggb5mFMSsGrB7JaJWAO4ATLcWjSCFCZOdrSCuxiAuWxuSKZkJhH1apQ5mw/vVr6Ay2vn9A300eKBtf/3yAAACZ3pUWHRyZGtpdFBLTDE1IHJka2l0IDIwMjIuMDkuNQAAeJydkUloE1EYx9+8SSaTTLON2ffNEOtJz415BXNU3NJA9TDHwaUW6y6ClWoKHjz0oK2RSKOHplRQFCtq5lXBpaCiB/UgBaVQRIoVIsYl4Mw3LYjbwQcf3+/7f8t7fO9DfWIGqceK9INVS6i2XLVjDIck1TOsCWVUz7JLMafHBl73mEMx1Rv0NMZL3gQy+6u8WM3rw5jf0kQfzhEZLmV+Aj3jhAHM3wv+lPkH/EeTgBjEYHUVMdaQwawRGTnEmZCJR7wZmS3IIiChDQlWZLUhwY7sDhk7nJJTlLG4DIkuyeWWsdGDPF4Ze32Szy9jf0AKBFUxhEJhGYcjUiQq42hMisVlbOOR2y4FPVI8JLkM6gs4s0Ww2njO4RRdbjvn9fkDQQ8XjkRj8ZB3lFGXs/ifKPE1XqMft8wpWiAVD9IjRTvVeLp8iG4u7Ab2DaWoMkuhpi9zUQmfcoJ+eV2Spmzvbmk8Xjmp7Gu+vq3x80K1vud7Deo70mdy+dKE3rvQyL0vtUOvuL+bFB6vBJYfnCDz5atQk07WyPFvXtCvjW0jT/JX7mh8o/glN3R2EHhTo0ZeVWbrGo+8eElc2w9D7wDbIpOGBXhDev0n0py6mdN4MGvtPHDOTzSe2fGQtD1tgd5YUyXu7gHge5f66f23GzpgKatH6OetVZhpWzVNk88uAJerb+j5+a6sxlnvI7ri+jj0bvQN0672MeC1fIJWRQW4WSoru3pscG+qNazkd/YA9x6N0v67p4EnO/voXKUXOFHaS+2jDmDPD/FDsM1UZx5VAAADCXpUWHRNT0wxNSByZGtpdCAyMDIyLjA5LjUAAHicfVZbjtswDPzPKXSBGOJLoj73haIoNgu0296hQD97f3QoZ2UvQNSJCcsZicPXIJcS1/fnb7//lnXx8+VSSv3Pd4xRfkmt9fJa4qE8vnz5eitP7w+PH2+e3n7e3n8U0SIde/D5jH14f3v9eEPlqVxtE2pNvVxp89rZsWWr8zr2crmVq2zuVUTKlTeW0UkTpMSZso1aaVg8dRnmkiA1kLwZzunTu9U2nBKklbf4nZ3VdXrvStQSZLufadTw+zUAnYgTZA8kbdWoR+wAcBs9i8gDWZGlUREx9oiY80iQA1mijby67UCzNrKACHUCchBO8iCMAphmAVHUSDYlUWsT6aq1Z0gGUsO7wWd4H6ZpiUiQz1n2PmqcKV07p951944C2Z4kb2ZZ6GR7RNqHj4lsDfnMkFEjeFcW1kCqNpOsRBQ1altXHTqLObpT2iAUNepouoaQ9mIOHinPMZGtWcROmxpx6pxRoj/FN+duzIU3RUen6WSaNLlFQiMHzp6yZJ6RE9pIDEDM0khJ8hwijeZUtwAQOj5F6o5EXhoYx5D0xprSjApdG8ru6nPe2Jp4Gvscox7+mSfAWHs2w9z3Q9m1egQvaLmWtRL7zrS7MsoFJFOrKdFxH2KhbpEnHahBdmbI3QyE2ZFI6AKbjky/hO7IKlUcLd3ZMHsZknfvcFqxS+NBRxa73KXOa3VvcaaN3lLvekdyDbEBT8OUZC3ycnv+pNC7Zj++3Z4PzY4PH8KMRZFDfWOph8RiUezQUQRU2iGWhLsfiki4/ZA9wj0ObaO4zxJG09BJqmiaRY6CXZjFj+T+ZlHESNE0iyXZHbOIQjI0DC2ukAYNQ4suekrD0GJMQRmGzzOt883izJEQGD4SyjMrvChjGDUML8oYOg3DizJmK5YYnNMIaRhelDkow/CizL67WozR+RpGzh2uZfbvqZM1jCzGEjWGkaMLgjKMLMoys2xHOWUyPidZJmM/RS7BWPREMNrz3Iyx/vjzgefLP7t+oiJsT98BAAABi3pUWHRTTUlMRVMxNSByZGtpdCAyMDIyLjA5LjUAAHicNZI7juQwDESvsqEN2IL4J9GYSPnMIZzuEebwW5SxHXQLr6vKZMnr+1jnOr5+8LXWN621jp/zePh5nmP9PZ+Hz7UIhJ7+0Pn/8Of3uG0Iudt108gZnNfnlpE5Ra6bB0sFbVRzUl04hJS1iocFabbRplcjGpzcCMZQ4ldl5Hzdc8wZRMyvcBqFbcpeiAScmKQmaSeKWMr1oUE5cw8nZl5NisSqH+GuZtdHhpKob5KqmFbb1Rq4yprsJWO7JDRkE2XZc6m64fTxEaq1h6pISvgCa7vnO2dx1WaoC1k01IgRlSM5jC8eio6og9iFAopKzuyHEfYSgCm6J9ZI36npZvnupVG1mXtXgka0a0KfYIRCSzfDaF0oyg7nRo7tUve+bC5dcLSTuZ3GGhxbxqmzBxcljZ0VqVCBMPl7W9L3gt0K6e+VMhd2YzatF0yZeuFFYJPXBPGUS/t3a/ACzYmtoLHaMSA8EYwcK/xz/v4DPmeNsUundSwAAAGqelRYdHJka2l0UEtMMTYgcmRraXQgMjAyMi4wOS41AAB4nHu/b+09BiDgZYAAJiAWBWJxIG5gZGNIANKMzOwMCkCaGcJlhgozMaHS6OIIPgeDBogPFAfTLHC+gglInpEFoRBsHyObA0Qhm0MGiAaaRASDm4GRgZGJgYkZqJGBhZWBlY2BjZ2BnYOBnZOBk0uBi1uDiYuHgYeXhYmXj4GHn4FfIINJQDBBUCiDSUg4QVgkg4mVkYGDiUGEP0GEGWgkKyMTMwsrGxs7BxMjK5uAoJCwCL84GyPQfdCwYhBVszFwqJJi2g/itKhEOFw8b7sHxJ5zZ6oD+z17sPhk650OaQXtdiB2ve9Sh59tF+xB7F6rbAed9bvA7NWR/A6Wh2rBbCYTNoe2Ogaw3pPJIQ7By9eD2R5V1vaTvveD2Us7f+3jtGvaB2LHxGzcd3fCPLBeT9+3+xf3J4DVzJnxf7/EFvEDIPY+xfADDhPswezsay4Hzh28vxvEPrTB+sBch31gvS4fWg6EXxFzALH/zNpwIO7DXbD4Rd2tB77Vl4Hd/06074CSgSLYfDEAJA5mY+SgaKsAAAIbelRYdE1PTDE2IHJka2l0IDIwMjIuMDkuNQAAeJx9VEtuGzEM3fsUuoAH4lfkoovYToKiiA20bu7Qfe+Pkhq4UhAhGpOY0bwhRb5HH0qun5cff/6W/wsvh0Mp9Yufu5d3qrUe3krelNPz6/drOd+fTo+d8+339f6rIBSk+Cauj9in++3tsQPlXHBrQtqgHOsm1RC01K32NT7Fci20UWuInsAKICYLIEVE3tQIrCawsbPhAsgBlK2ZCeZrVJYI/RknHQcqDeK8m6IDrHAaONq0CbMHjsU4avqMa71kJDe2eO0OyKtCrOOqqyPvrQGnVUDviaNe8agYoknRI14A4/y32G6ERJLIyNyYVsjkJXKyOVEnBoUpGrqAYgQNALFytSgcyZqvKISkJrKakGMPaq2Br7gB3qHuatGcI0ZRNTSygkrmj/oVmDihHm1qK4YgKQpobSLWuoqq2pJ0SJYyFqEqJZ2mxMv8ydORN4gGRag4qWgqZYFMoo6yCZhDSqQRmdtK7HVHqoJ1fpBrwxVRCHt25gqtlxT6VF7J5Pl6+TB6+zCebtfLGMa8cIxcPBQagwVhPMYHwmRMCYTpGAYIa0PzEGZD2hDmQ8D5CLNOoTuY9IjpACfZQd+hSV7QXWjn5fUbTVqC7mSSzI7USRmcDtokAE4HNhHN6cAnQjkdzsRxOoSJoOzEaGqe20dXg1XuIJ15mlnJ58ffa9wf/gGXnw/Fg4AbzAAAASd6VFh0U01JTEVTMTYgcmRraXQgMjAyMi4wOS41AAB4nCWQO27EMAxEr5LSBmRB/IpcI0AApUiVPUCQag+RZg+foVeV8EbizHB90+K1Fq213df2ft9/1sfX77bu+4MedWhf/PbcuE8Tn+0Y3UYweTuly5wshQaRhXE7tXsIRbGpqQFkfUZpo7OrcRYht0mNunMS1ySfpgagFjrbyZ0lw/An8QAKyEhPfvlTCrUTFsIi1g7qeDS1nVA1UqDixqYSFxN1HYHxLFGEepi8hsWchFuxTA9tB6PWEIQ4UNBJpVBmtSo0pllenYcHX6VLF3av/OEIdB7aCe7SMMwcVc/DulHAiZBa8gLuBEME1VF7rF+q47U9bMaVriVTlCEhFmN7e/v7vFE1fv4DIORbJgu19vQAAAJOelRYdHJka2l0UEtMMTcgcmRraXQgMjAyMi4wOS41AAB4nHu/b+09BiDgZYAAJiBWBGJlIG5gZGNIANKMzBwMGkCamYnNAUyzsDlkgGhmRiQGREaQQQGkA0OcDWICC8wkdgawAiaoFUxMcJqgFZgyAgogS9lgZmOxA6/lzJiOwEFzMzAyMDIpMDFnMDGzJLCwZjCxsjGwsiewc2QwcXAqcHJpMHFyK3DzMPDwMvDyMfDxZzDxCyQICGYwCQolCAkDKREGEVEOJhExIBZnEJdQkJDUYJKQUpCSZpCWYZCRZZCVY5CTZ5BXYOBgShDmS1CQZhBhBvmNiYOdlYWZjV9AUEiYj01GVk5eQVp8GiMwqKERx6D4+9OnA38mmR0AcSb+vHngmd7J/SD27j8fDqzZ37QPxF5eI3BQziERzLb5J33we1iPPYjd3sh/kFVdwgHElmGWPtiUlgNmV7G9PyD4WBTMDmC+cUDDvRmsfg/bigNNdbVgdhBv/wGtaEGwmsnMEw88+7cMbP5fXqcDzXI7wexV7CIHZh+7BnYPp1XA/ia/22D2XdaDe/c9cwS7+dPDzfabtFzA7HOPuR0C456A1Xzdtds+qvY92JzY12x798beBbO/3cl2sHj2AqyGaWamg0tOCFjvS4U8h4XnF4PV8L9e6iCf9xaspvLJPgeJd0JgdsDD5Q53+O3A7ud9+M7h+V9psLjNW2ZH+w/aYPG219KOhQ+UwGzrDA1Hn/SvYPayZzKOyp/9wP6NecHiKG4eCGb7Xf/gIFX+D6xGDADgIKS7Jq7vHAAAAwt6VFh0TU9MMTcgcmRraXQgMjAyMi4wOS41AAB4nH1Wy47cOAy891foB0YQSZESDznMIwiC3fQAm0n+IUCO+//YKveM3AGEtduEJZTJElkk+lJ4/fPy169/y7r05XIppf3PLzPLT2utXb4VvpSnz1++Xsvz2+PTx87z64/r2/diVszxDe4/sY9vr98+dqQ8l4dRPVVCyoPW6TpUSqvtuM5vtbyWh6hTZIiXB6k+ZPS+Qdq7T2vT4bNVdbfIDbITmbVZ62BLpGSOXXS/IUdPhyepLaO3XfAgcNaMFLWi1cawqRvgKM+/6TLmVM9iNdKGjw1y3s7TI70LXXbJuYudBEYd3sgNJNWj7c4tjUhHYtpUkstsKjuWIkx7r300G4HgOkTm1qeWK5FuEjOYTNOQsB30qJAh7yogSmiIxy7vcpQIZxbNmCx7jJEWO+hRowaFmJGA1IE32xKIG7Rl154HFc3R5g6KOiGVvTldERkubRufddIq08HwCD+76NZn3nxGRD9k13Eo3xHV9k7UNC0PqKn5Ljya5jtVNKF1Yfgp6XqPLD8f//4UC8+GAr4npMyDmaRsUwAdEzm0DT84AJl9S7dDA44U9ERnkoP31C2SxXK0iVs2+vRh2bfnCkSHVHuoU/QDJcP2BjgQnG3ScyhdQvu2p8lKTbhEP/HAMaBT3wFZKHa9t0Z1hoXarkU59dBV1cGxD9Q2BVNs59LkcDlbGHrLqpp57o5jepC0FgN8AYyZcxub3YRxp6EYNAg9Z5Odx8/Xlz9m720aP71eX85pzFvPkYtFsXOudj7n8OTt54TEoix5Bb6NMs5p17Gc50jrePIcXMLnfj4pjcjdHJJjZ5ETsqNZ/DBW5DCLIqaHHGaxFNKEkUUUs6DTyOIqJAsji66QL4wsxmjhTqP3rSrE6OKszB7NmVB931mclZy5szgrOcPo4oxe0cOcvcvscmdxhviFRhdniEZodHFWphnG7mUr5RDlnTyFxhZnY55h7NQBhZB3uqAOePzFGM0khJ1sqL17pXH98Z8B75f/AP4QlXkuGDPTAAABgnpUWHRTTUlMRVMxNyByZGtpdCAyMDIyLjA5LjUAAHicLZI7bsMwEESvktIGKIL734WRSn1c5Ahqc4QcPrNUXBj2085wdqjzfdF1XY/z53lddD4+38+v87zZd/+7yf3NZ3+4Jz9+H0dMKyYfB880Dh6vw2cSBY2DpgWFAmFKVto41mQz8QKruWSpbEZVEDQLLYtBc5W3MGd5EQ+eEiG5RzyTfcj0kvBtrl6mPaNUuROELW0XNm9fw7EreaxZtZg6pU6NBUeeHES1iQkhGgIJO7mACUIybeR0e+EY4opezyOqUy5sLJLeLPBLNluljG1Gm/Dej6Yuw9MmbgTCk9IitzCVIMReiYaaJJXdRKu8VULVKpnBC7t3LFSHEl8GI0WYlpkWNyk32etYSKk3YnU21BCIBlVXp73Lmr5KGiVmTLsqD3Rg49WX0hoXZwlsAUO2rrcoUA4GcrkQroRFrNpDloc08Kzqc4ydsyWZ627CHTeMgxUt2n9jwiW1XwkVFvPx/P0DVn+IsD5suqUAAAFPelRYdHJka2l0UEtMMTggcmRraXQgMjAyMi4wOS41AAB4nHu/b+09BiDgZYAAJiAWAGJBIG5gZGfIANLMjExsDhogBgs7hGaG0TBxuDxMA6YCsAQzIzYGRIkggwKQRudyMzAqMDJlMDExJzCzZDCxsCawsimwsgNZHAocnBlMnFwJXNwZTNw8CTy8DDx8GUx8/AzsjAl8HAkiIL+wMbKzsjAzsXFycfPwcYifAhkJ9SqDwIutix223NXcD+K0Ls9wWMh2cx+IfeOPtoMs/2mwuEzhLPvXiWvA7GPVOvZV4sm2ILbd5PP2Bs9m24PYrAnd9tkb1B1A7Je9bg5/C6vA4klT/fZvF59uB2K/ql29f4rDTbC4fbPJgWNvv4PZb3QLDyxxcAOzA0T8D6zcogC2q/5+64GT6k/BbJ4FD/bz8seB2Zdz5uwXdxQ8AGKLAQAbO1KVSvI1xQAAAbV6VFh0TU9MMTggcmRraXQgMjAyMi4wOS41AAB4nH2UXYobMQzH3+cUukCMvizZj5tkWUrZCbRp71DYx96fShOy9oKpPRZj+zeyLP2ZDbL9uH7/8xc+G1+3DQD/8/Te4bcg4vYO+QLn17dvO1zuL+fnyuX2a7//BDIgj2+if2Vf7rf35wrBDrUQ1V4rnLCYSZUOWPBo41OGC0iJXeYDVJbmK1DCIxdrLuhwolKbSV+BGiAVRqt+gKLm0hZgjaMjMhc3ze1aVXnBWXBUjMkapWfybivOj4OxtWYtQ2UklQXXgpNCyEoU292b4Mpfj3MjIw2tWyS8cK+EK4eEScZNJXxhxtqd25KkJLk0xkp5mS7WVVdkFuYkxa0pZ/bcIztLUh4kSzV6FJvdq69QhcsHnLRQCzlwxuwdg16x9XEpr9qaHokwV1qidriN0jCjU16Qrde+Kvrrfv0i1Id0z7f9OqSbnYdANYYMGWqOIbbsdUgqJmBDORTDh0A0pm3ogALuo9wag+aqahqiqXqahniqkqYhmapBh9Ep6Xqs1Cm1dBibMqgRz/CbodIUXKZtTlLOn/+GeN/+AVwV1PoDjGNoAAAA5XpUWHRTTUlMRVMxOCByZGtpdCAyMDIyLjA5LjUAAHicJZA7jsQgEESvMqEtYdRdTX+Qw83nEk5XPsEcfgoPAUIPqnjwvvS+r+24cHFsf//7hTVt7/3W12fzruoz2iE9wtxmO61zASw0YJVE6FFp2g7tXjHaqR0SXgvYiCRhPi25J13cB5PtZENJzEhCTFdZjAmbWU17zESRoBfElWRaTHYd1jNqGGOZrPohmIc+osj0JBtdi87LIqc8XVz5qFrHil6aDwMg2XgRaLPsAxpLAZo/IFWVje+E6Fh/oIKhFKCqCdr++QIJIESPe1Q/vQAAAKF6VFh0cmRraXRQS0wxOSByZGtpdCAyMDIyLjA5LjUAAHice79v7T0GIOBlgAAmIGYDYlYgbmBkY0gA0ozMEJqJCZVmRpNnZOZmYGRgZGJgYmZgZmFgZmUQARkpHgSSg5rPwCbwx/zAv48J+0AcmcN799+OXmsHYt+QmL3vZJvYfhD7fF63fVH35z0g9i1TQQehiyVg8ffLltmnOO6yB7HFAHs5IUenktLtAAAA83pUWHRNT0wxOSByZGtpdCAyMDIyLjA5LjUAAHicfZFRbsMwCED/fQouUAuwsc1nk1RTVTWRumx32P/ur0GnzK0WFdsS4AcGHMDlNl2+vuFPeAoBAF9sVYXPhIjhCq7AcHo7zzCux2HzjMvHvL5DAbEIW8/kcV2um4dghAPHVnMtCAeMTFpqAox4lx7LTlLMjYWq3afURGkHTA7aPbJydk1aVc07ZDaSIjZNpA5aRDX3f1AM5MilKbGDKiWR7IDlnjGhNaGmZBHivRpP8/Q0ht/BDMs89cH44t69GZB6j2Qn90bIjvRy3SyPjz2mdnv7LdPDDx0bYn5kTaRRAAAAe3pUWHRTTUlMRVMxOSByZGtpdCAyMDIyLjA5LjUAAHicFYwxDgQxCAO/cuWuRFAwIYBS8q19/JHOGo9dVfXUW7/vGeDw5ZvGZEhuVzpDeAUMNFk1LKVRx4nEup6FZy46wjNScVF3jtx0wNjRi2ZpW8WuplPSqV/NBPR+f5mrGgDG8Z4PAAAA23pUWHRyZGtpdFBLTDIwIHJka2l0IDIwMjIuMDkuNQAAeJx7v2/tPQYg4GWAACYg5oLiBkY2hgQgzcjMpmACkmNkYYcIMEEkmJjYHDSANDMLm0MGiGZmJIbBzcjAwsTIBDQXqJOBhTWDiZUtgY09g4mdI4GDM4OJkyVBhBGolI2Fk4OdjVW8CWQl1H0MXCHSxQeEk3/vA3EMUyUOwCQOO7Ad8OvaYw9if1s2f79wcvV+ELtRS88Opn6NxQsguxqsprDqvT1M/Ts/BwegGjuoegeY3j0vloHUgNliAN7BMEOF1xxAAAABKnpUWHRNT0wyMCByZGtpdCAyMDIyLjA5LjUAAHicfVLBbsMwCL3nK/iBWmBwsA87NElXTVMTaev6D7vv/zXIlDnVOhOIbPJs4L104PY2vX5+wa/FqesAsOGlFLgxInYX8AUMp/PLDOP1OGyZcfmYr+9A6L4+99jjdblsGYIRDhy05CQMBwxSrIQdCbhaPRsdGQNnIu133/8AGWYHYlFFBgqisSg9AIrfSCEaIK+1SybzB8hkSAykiFmaTfYrUBKnpNC4UA1HISuWKK0Ws+HYspIpQ6NuMVwMGolFmpOYIl6ZkY0en/7f0qd5ulPqR7thmaeqHZkqpuDz+YmrTJ7kKoZvpVJOFqnyahvoK3tioZUksciVC7EodWSxoP1k4q+0H2Dfru+339TW3TcZ4ZBTrYGbLwAAAJ96VFh0U01JTEVTMjAgcmRraXQgMjAyMi4wOS41AAB4nE2NMQ7CQAwEv0KZSI61tu9kmzRIR0HFBxBVHkGTx3NBIonlYmTtjtur3R7v4Tm2RZZt5LIOk7Fn1EITuCQyaZ6ULUSC8GOkOwkX1/R+ENaOseUzpC/NYHEgzo4O1Wp1OlLC4Ug9VMZACaW9pOwqVs5qYYNl//ZvjfS5X4WxfgEEyCtfK//1AgAAAbR6VFh0cmRraXRQS0wyMSByZGtpdCAyMDIyLjA5LjUAAHice79v7T0GIOBlgAAmIBYDYnEgbmBkY0gA0ozMbAwKQJoFwYXQ7GCaCaqMiQlCMzNyQOTh4hwMGiBxJjYHMM3C5pABopkZsTGgSmBGKpiAjWKBm4khAFMJ1cnNwMjAyAR0HQMjCwMLKwMrGwMbOwMbBwMHJwMnlwIXdwYTN08CD28GEy9fAh8/A78Ag4AgC6OAEIOQMAujkAiDiCiDKFeCKF8GkwgoNNi4RPl4ebjZ+AWERET5xIUYgZZCA4tBLFP88QGme6f2gzhLnlw4UDbHcx+IfX/jvgNPymbYg9iO/n8P8MftswOx2auWHHD66wxWb8lSeyD0mDRY/L+eygF5z6tgvbM9xQ8cm/IZrCa4bsN+Dy8GsDnaAmI2z+O69oLYZ7hn2v9aFAkW52yqs//XKeoAYkdM4HbY4hoAZk9KTXHQeqANZn/1KnS4XjsTrF5cYKlDR6oimH2yabVDiXw02K60t9cdzkRtA7PvdbU6qLE/BrMn/O12uLQk4ACI3exg5CBsMwssLh+t6rBacgLY/WIAcYFmYLUb4akAAAIielRYdE1PTDIxIHJka2l0IDIwMjIuMDkuNQAAeJx9VNuOGyEMfc9X8ANB+I4f+rBJtquq2onUpv2Hvvf/VZtsOqRCZQZrMAcDPsdzKNm+Xb7++l3+NrwcDqW0/7zuXn5Sa+3wXvKjnF7fvmzlfHs5PTzn64/t9r0gFqRYE88z9uV2fX94oJzL0Wpz1WblCFU6e4sltY22r8VEahU0h1aOrYJr77pAUiKlujgCFQggAPYFkO+bOwSSY54MOsACKGXLiEDeXXNvU5FOC6RmSIq9icY8CMKI/S/QEohVVEh7hmRQsVXIXq6JJKWeSKje0G11H8+YENfoXSTmpQHQKmQk8DrcefXcvKmJro4JSVCmUHQcrkdMXoZMflp1Z7AgvhKpsK2ASQ9W6E27FKooHO8KmPRQZKhraA5rwEWWEWUAzRqGOw8b11qeMdkJGqUj5I5KjWWlILABJHGL4Me8tjj7CpnsaDU2Q8/kM7LyMmaywxWMsGEizSJFKyQmOxw0sjVKNaG2psuagJFL6wJ9SAMbu6ykgTiQIVrtmUPswMtjvm6XpwK9l+zpul32ks0H97qMQaG9+HLIe4nlUPZCgui6VwtEt70mIHrfhZ9D39UN2WcRwzAwiZXTAE6q5DRAk/w4DfCkM04DMgkKhtFJOTCMTRKBYXo5f377BJMg7n6fiIc0QesTEtuHHyY6IQ3iRBun2e+I9OGRmbGZnxw/fsfxffgDHtQZH2DOirQAAAEuelRYdFNNSUxFUzIxIHJka2l0IDIwMjIuMDkuNQAAeJw1kD1qRDEMhK+Schf8hH4syco2ATepslWqkGoPkWYPn9GDNQbjjxnPyHtf9hX7a+/L/brvD3lg6UP2z/74/AV7nVvfnpcjiStCxiHka9a4HUGuWSBMUrFWgDmVl8oQIBEDSSoBGkyWskROkVhV+zLcV6sMPrMFlbiKTiAlD7ds2ZTwtJNZ2MouUay1gATvdjaTMxKhYmLuTMTDy5EOz7h1JY+EcEE5T2HVlNSBZw1Nxk1JFkcNI/WpAIYSyFOK5R59z2Q9x0NEG9AfBiZdMmc0yeVSXVF5FsgkSdMGmRYnsJwYAinBDOBkXuhxdDev/t0gSDAzXFNneIvEF76WKYwnylzH3/e7JCoPKYQ9/wHRSmAuHjQGkgAAAft6VFh0cmRraXRQS0wyMiByZGtpdCAyMDIyLjA5LjUAAHice79v7T0GIOBlgAAmIJYGYlkgbmBkY0gA0ozMEJqJiY1BA0gzs3BAaCZ2CM3M5gARZ3PIAPMZiWIwKAAZLAizITQ7WJgZXRhmhQCEZsJrMJpWKM0BNpkJ5iluBkYGRiYGJmYNJiYWBRZWBVa2DCY29gR2jgwmDs4ETq4MJhZuBm4eBh5eBl4+Bj5+Bn4BBgFBBkGhBCHhBGGRDCYR0QQ+MQYxcQZuCQYJSQZJKQYu1gRxbgZRQaAcM9ASNjZ2Dk4uVjYeXj4xcW5WIUFREWFxP0ag7dDgZpBOFI5zsDnbcwDEUeyId/CeawlmNyvyOjyL5gCzp0ik2q8VNweznafxOTyvUtwPYi8sTHJYsvC0LYgtnzPLIWmiNlj8XOQRh0m3S8HieiJHHUxXHrcHse8/mO3AICbqAGInPEt2KN5yBiw+aV+B/X4tPjsQ+/Kz83YqixaCzSme3rlfReoAmN2SyHhg8ao1+0BsCa2EA0GuwmDxj/F9B5bOFAObY31k7wHP4M1gc66UXj6w6GENWE1JIePB4rWOELYD68F7JZZg9f9P3D/A5LkFzC6O3bf/sk0HmH3c68zuy1uWgdkcjN/s874tArM7RLbbv9fVAbtfJVrKoepYCZgtBgBKVn7kdTI2VwAAAoF6VFh0TU9MMjIgcmRraXQgMjAyMi4wOS41AAB4nH1VW24bMQz89yl0gRX4FMnPJg6KoogNNGnv0P/eHyVlpKsAQtcWsSvPUiRnSF9aXT+u33//af8uul4urcF/vhHRfjEAXF5b3bSnl6/fbu35/cvTx87z/eft/a2RNYp8Jz+fsV/e768fO9ieG3cZEcztkC7pWblBh3mdr9IDGDRc2kE9AIjGBsgJpE6gaFBAZBgQG6C0e+56SMAooA9wgg1Q2608kgVhO6APBnPaAMeMUdnRtX6OENqdbImT7qSZ9nRogG4boCdwZAYaY9ZkZNKywcUDp27IDbtquOIGh/A42ZBymzpTyPAd8MGLZuV4lMcI0l2EWLxADwGBcoTszroD8gRK5qDeDuw0yMY2SElkAsAkWOpOASy2YRY1SR0QqlmVktmIdzXHIufIlKDKXlA1zQh20OKntJhqw+JZ3WlLOBZBh/ZgIChiON3LNv1ob+0YPTWGpfQsmVvqZKf0IunwlA9gZp1Q06H7psAHlDO8WXUjkW36VDzl+dlnlOLEJMLFtsfzo/zilpJPJAxh3dWJJlG1PyiJwp5V4NjGqYnEnuUMKJdkjNsyZUffKziGBKRARwDDTvFks80FMeuZSnWSgTvgy+36aeA8RtDT/XY9R1B96Bw0+dD4HCf50OQcGpiPeo4GzDXOASC57OxzyeVnN0uuOJtWcuHanFIGcenCco+0dBtOw0tb4TSytA9Oo0uX4DRjaQacxhbN4zS+aFvKYCwaljK0SlXKEC6KlDJEi/Lm6cSLwrAMyaKkmRfpohgsQ2ORBpYhWzQgVaMT4gWRpWBUIVcEvuphZb+eP/688v7yF8tuT5OiwA23AAABS3pUWHRTTUlMRVMyMiByZGtpdCAyMDIyLjA5LjUAAHicLZA7bu0wEEO38kpfQBbm/4GRSn2yiLuEtFl8KOW5kgkO5wzXWtfH1+vzevN7f/xafK2v9Vrr81rrLdC+BX/87+fSadGt47ZpROTjgdISNW6ZTSQ6HplCzrkVVgoeD81qa4otVVDJMUm2jJtmKOWWdLoW96BJ3SZt47FZ4nlMSVw5nkCmd2xT7HV9JK/kwdO9y89UsgyZipA8wUGIg6HBunnayKiQwlqlmOHZwr1DJJWPYErKSImmc5UxFw8Fkv0dZUBwXI6ZkEQuXpS268EqQv6Dg0l4m2iq5uG9wUP/z/L0v0n0iR4ZRF4lu47bZysJFIXdgHTHRPfSgAS87fjCjeCBKcXspBfqo1NserjrmUPprFvryuI6qFbgQRaF6UZApRSi2MRTT7Wvn1+qfW40qQGLoAAAAcF6VFh0cmRraXRQS0wyMyByZGtpdCAyMDIyLjA5LjUAAHice79v7T0GIOBlgAAmIBYHYkkgbmBkY0gA0ozM7AwaQJqZGcZng/BZOCA0E0SciYnNASLO7gBV75ABphlhEnADEBJoKhBaoTrgNC4duM3kZmBkYGQCSikws2gwMbMysLIxsLEnsHMkcHBmMHFyMXByJ3DzZDDx8Cbw8mUw8fEn8AsoCAhmMAkKJQgJZzAJizAIiyaIimUw8bNlMPGyJ4gJJIgwA81mZWPn5eNn4+Dk5uFlZxMUEhYVExCXYwS6AhqMDOLcCRIOB/5OPQDiLJ8zzd5uXxGYzX/KZx9bfg+YrbB+jb1uojCY3VKk57C36dZ+ELsjVsTuivsWMHtVxSK7GyrLbUHsWU/O2zelBNqD2DXvnBzenVtrB2KfrGh12J69Ciz+8Nsmh+SoKDC7+ke5g0ygsQOI7ftHxiH+QyCYnf1ppX1iiRCYvcNWbd+8Wlkwuzrbc/+rjB6wXvkygQOlb33AbNlP/gde1nwDs9ezTT+wq+sCmB0QtuzAw0khYDd8SL56wPDv1r0gduCMtgNLnmeB3Z8kqn/AjVkezBYDAChVc+ovrxxxAAACPXpUWHRNT0wyMyByZGtpdCAyMDIyLjA5LjUAAHicfVRbjtswDPzPKXQBC3yJIj83yaIoinWAdts79L/3R0llE2tRoXJEWPKIIjnDnEqO79dvv/+U56Dr6VQK/Ofn7uUXA8DpreRLOb9++bqXy/vL+bFzuf3c338U4kItzsTzGfvyfnt77GC5FKpsYEplk6rWKU9VGOM4SmUvWLGrNi0b1+5kigsgh8cNKkagDumSzVrjBVICiZXFwaVsEQWQgS6ArdwiyE6tS3jE2qEjroLU8BhXi5hZAgVMhBbAPoCMnannZ0PFVYg2slYSVInPht0jhH9xHv64grR7Aswu6gscBjtFoozBY8vkGQVXAWIS02pzUk6P1siXmcTpvNq6NMGokgEarYqIPKiWRhYS4hq1Jl8CP3ihHlWOE2TGS/6Cgn1QrcTS0rdCyGKF1LsoummPO7GCq7clMpkJLQTXhFlpAxC3FdISGXmIY7jC6tRCvStkshNC7OhNdfDpEfFK5EnP1kK8BqPsBL0tM6LkZ9OqatIgc4PQnC6hdL+eQME5oY7hdRUp8T37zpHK8KqEIecF9HW/fmrke2ufb/v1aO186GjgWBQ+2jSXcvRiLEo7Og5jqUdfYcx+dI/EtKNJJKYfvSAxcdY8DoOTuGXs0KRiSYM8yVXSoEy6lDTYJgHmMuQ1CQ2H6ZOgJA3aJBxJgz4JRNLQLARMQzgRLmOHJl4lDfFEn+Ttz8vpI+Tn3ZQRB+yIL3mcWcv148883k9/AdZaI8iMf2IXAAABLHpUWHRTTUlMRVMyMyByZGtpdCAyMDIyLjA5LjUAAHicJVC5bcRADGzFoQSsFvwfHBwpt4tQfhW4eA9tJSsMyfnuh5/nOa5HnuO+j8/v8+u4z/t8K9D7xEzfgoc/fo4rdkSZr4s2VVVwrdflm7vIFm2h9BZAtpPbc/EOaVEgusWaHUiLRwORLZ7COCsi62GinRXZgS3qaF8v2sqpkmsEOVhlMDaD+rp4G5XZevFWa+oFUiUpXi/ZCXqbnaRknh3OiFiwki0Vs6NF+IHdqPyzCe7GN5BWuc9ZiHGMTc6Glm4yr/Gt2jZRDMyEI7hQNkj5Rg0xjZRLm8xRpbktQVguHW3DaKGWIv0LIJmMuVSp/zsJUXSNzaD8byzVo6b9EOYJDp9CMclpN6P9XOfPL14YYBHiX3VJAAAByXpUWHRyZGtpdFBLTDI0IHJka2l0IDIwMjIuMDkuNQAAeJx7v2/tPQYg4GWAACYgFgdiKSBuYGRjSADSjMzsDApAmhnCZWKC0ewMGiBhDHE2iDgLmwOMzgCrY8TLgKiFm4lHL0RGEOwobCaABZgYuRkYGRiZGJiYgYIMLKwMrGwMLOwK7BwaTBycCZxcGUxc3AncPBlMPLwJvHwaTHz8CvwCGUwCggmCQhlMQsIMQiIJIqIZTKJiCmyMDGLsCrwcCaL8CSIsQNPZGNlYWZiZ2Di5uHl4Odj5gFhMlJ9NQFBIRJRfXI4R6C5ogDKIX5U64MC/Vf4AiOMoMcWB+9in/SC20b8oB88SI7A4908mBwclHjA70+eD/enfRmA1bRGuDnyqrnYg9rV1fQ6H/57fB2KbtTDYm8w9uxfEnrTtsV0E02Z7EJvn5gt7+7f/wey3hv/sHeLiHUDs83bu9mYaPWD2/+kS+3/eKgSzD3k6748sFgKz2Tp4Dzzn/wzWK3DL+IAxNxuYfeZJ54G1kiJgtmXa4gMnjQ3BbnvyvufAe2VGsJsDC5cd8CkPArMdPlge6F3OAmanvGU7sD/AF6yeOVJpf6hJF5gtBgBPE23kFl5itwAAAj96VFh0TU9MMjQgcmRraXQgMjAyMi4wOS41AAB4nH1U0Y4bIQx8z1fwA1l5jAH78ZKcqqq6jdSm/YdK99j/V21WOTgVFYK1yw429oxzSjG+3779/pM+Bt9Op5ToPz8zS78yEZ3eUjyky+uXr3u6Pl4uz53r/ef++JE4J65+xudn7Mvj/vbcQbqmuhFlbiWdeRMrEqd8K8Y4ymlPslVuVpHO2NRqrbYAZveYN2G02j021Sy6AIoDeSOpUiiAUCtGC2Dx0B6wtZw5nWmrZihlAaw9NGkuHAFhXFgWuOY42aSoSncoVDnnBVAdSFshJrQAwgtlbQG0DhSRVtjvmk0LrYoDZydygcFvhs3ZFF4VB+hA96NOuNfTCGsg99CtaSb2rHIzW4cOYjyHYpVquPQjtqw35EC2yiriHLEqr5FBjVPHgHCLxEyNV5VEcONIBUGDk8K50jKhYOfsiZChRSKlacGq6Ah6zsVZqcx2KINhK/XCDqdCXu4cF3FGFav47BS9h1snPbsqzjnyLxkrLI6sjFxx1t029rmC8gEFKed+WQ1ZrWrlBdx7NlnQerNRs+YO/oW+7rdP7Xw0+OW+30aDx+TRxv6S8mhW+JLRkvBVRuPBVx3tBV9tdFF81dEr7MtGR4gvzMqXMMAkcQkDnrQsYZAn0UoYyCRODoMyiRDd1ElsEgZtEpWEgU7ikTCwSSMIw7MUpO9gIlzCME+8xquTNtEHL85ARFV98yM0l3Aro1Yc9w1HdeZ1ZjHen3/x/nz6C950J+w4YVqIAAABJHpUWHRTTUlMRVMyNCByZGtpdCAyMDIyLjA5LjUAAHicLVE5jsQwDPvKlhnAMXQfCKZyn09Mu0+Yx6/kbCqFoUiKWTeudR+L3h/+9MPve0/H+n3V202vtfDne9gEYIpx0pRU4XHJNPK0ceKMNPNx8RRCt+Z4BOu4aIKYaCMYqTmuIrszjxOmZaIWCaYCAXpjWC7pjYmIKw2cnKG4FzGxgcxs/xqiFMs0AblX3IOBhkz2kh5X6WkaWJPqW+aG3ChEBk2KoIZqQizFviOSNhIIGKP2iQ2ioBKFfCCvPBXx1Epr9H8KYVXRNAF5aqqLgjatjuuLuR2Vt36ClneznPyBEIKkxaLb4J3VWNCxKwZPp64YqliuGJikxa/fIBqxF6Xj8Hh9/wDGs2CKPuTZWAAAAWV6VFh0cmRraXRQS0wyNSByZGtpdCAyMDIyLjA5LjUAAHice79v7T0GIOBlgAAmIBYEYiEgbmDkZFAA0oxsYIoFyoMJOmgAKWYWGC0IEWaHcJlhwuwMUD5DAsh4JhjNDqEZ0cXZHDLA6hnhDG4GRgZGJgZGZgZGFgYW1gwmVjYGVvYEdo4MJg5OBU4uBi5uBm4eBh5eBl4+Bg7+BH6BDCYBlgQ+TgYRkG/YWAT4OdhZ2bi4eXj5OMWvgRwJ9SyDIL/nsgMFGzbtA3FmLM450LJ7Kpht5lRwQCdvlj2I/Zsl88A776f7QWyhrTwH9HoLwWr6D+zfP3VqN1gNyy+hA6f4xR1A7M63yVYXLk0Ci7+Z72P/rej3XhC7SUzYwXl+O5htZ+Dm8IV5NdjMJP7JDjuOLQazj1eudHARcLAFsV++6Xdo6loBNsfntb2Dm+9CMFsq7ZRtVt1OsPrVZpv3L919AMwWAwCQZ1Rm9Jc9WgAAAcZ6VFh0TU9MMjUgcmRraXQgMjAyMi4wOS41AAB4nH1UW24bMQz831PwAhZIiqLEz9hOgqDIGkjc3qFAP3t/lNTCkQII3bUIUR7xNYPdIJ6P64/ff+Hr4eu2AeB/fmYGvzIibu8QGzg/v77tcLk/nR8nl9vP/f4JVIGa3/H3O/bpfnt/nBC8wKkkMhUHnzBlMUQGTNifcZfhAqec1Kq0Ekg2FtEFMkfMnGoRFAJKjCqtLoByAFXQ2OBEqRrlhgtkieTsZbZSuCfPpdkKqYGkJNY8qydHw7Lsp8LlT8Rk00LeXsqKOdsC2WA/TpuaRySpWNoCZ54avQfL1AdEzLWugJ5uh8jcWCyQqMq8KpLIY2ZvQtUk+spe5TI5BT+SihXlFkiutm6csmcv0Td5nf6/aDNaAaWHFKta3UuZtPKKRwp6OJm1mjUIV6S6jKh9RGitHUWKGNUVjS7eg0dEQo1dwVJ5Jbfn/fpN0ofIz7f9OkQeLw8luwN5yDVcGaIMtwzliS8d8iJfdYhI3G1DKeLLhiAo1sw7dUMTv9QNTzxSN3nii7qRiRjqpkwMSKTSadIShuo0UQkz7rSIUqb6YpLz3MJ/fFh8v/0DbTrfrKL3LeQAAADvelRYdFNNSUxFUzI1IHJka2l0IDIwMjIuMDkuNQAAeJwdjzuOwzAMRK+S0gZkgf8PXApImUu4XewJcviQAlQIw5nH4Xsd77Peg8+x/s7/5/jQWp+16HwefH2PSyemCY0LJksC0LgvnpYu2RolidjWXAVk4CSwmm2XQPK4cHoiR0lUsFDdQdZoF07JAKscJOj2UJrioMkGLOOGCQBhKd4uFC93iZ7JuFFI5F74TgZtCcyI0MfNhTXLLsHFq6RMTbVdizxro/ZCpFEpsdglpEq5ea1jNOdGZ4bv6wyaW+aMoKrUF0i21j8AxJYUtHLn9wfk4EgMzcHTEgAAAqB6VFh0cmRraXRQS0wyNiByZGtpdCAyMDIyLjA5LjUAAHicjZFdSFRBFMdnZu/eXV13797au1r74ayrdkmFIhO11h0jkEohsYSC8EJBa9rXg0RBZEIfZopgoOJr+RL24IMopTtChIJSWWklbT1UoAbRh0ER1b3nlhEhOHD4/87HnHOGeT/Sl0D6cSLzEN2ydVN1a8R2xIyYiDRdsMVUQmyQtiz5/8dBBbupejwGikWabzTCwgoqaKYBghtRcwVDhH830fVP+XKj//owAOOlBDMTIoOEBa8Ilu1u+hgUYQcmiFj0BBKsyCoi0UZtdpXYkmhykkCSHciRohKHk7qcAnZJSHIjt4zkVUhejWQP8ihI8VJvqko8aQJJW0PT1qok2Yd8/hjxB7RAMEaC6Vo6jRExREMZKgmFaThTJWEL9bqQIiHq06QsgXgEfRfREg6JVsHqlhSPLHhdkiL6A8F06kudwvqmv78d/hzlFN0w/hu1J+TSk+2FwJHBRTY8WwWc/3qK7ZyQgSUlwdbfq4waLJbeZi2JfSMGh7e2ssj0/hKof7CHRS5Xxg2e31jH7t+RucHPrn6IegfGoL7+dHm0vnwAavr7wvHeunPA37NfxA/MY6i/kn823v9jAXrOV/t4S+5BmKsNHufVmzZA/NRcF99VewTujhff5Ye/NkP/gu2P+eeGGYjXvP3Ij+X1RgxWPg3z7Nke6LOOt/Hq8RHgmeAO3p3rhDe2PMrjWkEt8PPRV5za3cCtzU94Rc1R4IZDtlHSOQd3M1BH9EtjIez85mdDpLb9DHDf5MOSa4s3gb9dfBct7hkCblvYws53dAE/bc5i2yaqgMscTazMPQ09x1JUdqJKhFm7X15nnal55txb3Syn6ALwpYrNfHJvE7zR+wt3/rEA3fc/5gAAA3t6VFh0TU9MMjYgcmRraXQgMjAyMi4wOS41AAB4nH1Wy3IcNwy871fwB3YKL5LAIQdr5Sgpl3erYtn/kHv+v9zgWJxRifFImhpye8EGGujRpeT1z/OXf/8r85Lny6UU+s1vRJQfSkSXryUfytPnl7/v5fb66elt5/b4fn/9VtSLURk/77GfXh9f33a4PAptNK5SN24qEsfO/KaUW4mNubn2Ipu7OrcFToHrW+vecbZuyiTeFzgr99K2GqQ140l3ClvgKuK1LYyoMz52DsPuR1wDrm5eQdDLlTZh6U0XwI6DbTPWGhlQWDv5AucICP5ShUZAZzevC2CggoqMLYTLNVPpbKsSMuFoRuk6M2dIDSFeJY2Pb9ju4V1wOG8mJrQqI6cuCNU0tEU+RfSuK2VYQRSxOghWSaYkEUuxOdXJWB7kWURrFLKqEqc+CGXS2VMXZKexRKZCV9261TZCcZdd0w/IXr6Vq229u8WeE9fWlkRTpWvbWIV7G7q3MF9GjR3aVFVaFgKtvO5NoYT27M4mI5Yz2yqopFDXugW6SRTiJg1ZdYlIltRGJWsD0oIqLydN90KxSaUxG1TdljwtFZWtcyNMJZrQNGzVUFL3jEi0YSoQs5LFqktQmscoU1dCytCLPExWyJ5IR0ZCiI/GljECC2SqxEjIzUbjuaPwS2SMxqdGyDmLAOWprTJKm8vGJLS7pATatS9bVHmcjhJ6TghMgohjVXnNYRKICQlldGADdulyOpDVW9XBUyl0WSU1IA0ZqfcOGq0LeK6AFeWUDUfDCvFA4W4rA9Pd6riKtAR2wkStWk5TIEO6Uq3h4X+9HSn8NWTBPMCNMRrEEHN1+Of787vXx/5CeXrcn48XCuNlocd7A01U7Hg9MKy/Hm8BhsO3w+wZRt4PT2fYtR/OLXDlOAya8+/kw5zGCZe9/fnyxyTA9GtfTu4qaZx8YJJl3iZPTqIwNzhhRuOTM+77k3Mu0tx40s5FmhhP5rlIr+JJPhd5k7M/7TvzLEnmGCiZzGUUV2ARJ1vJJazgZB/7t+r7Okgyx6ZM5rkYt8lc2l4rmcwx5JbzK5M5FpZzquehtTIG7TSclnOnk7mm7JgvnXxUhrp6tIZm3wA1u0OTcu5MypqUMQA6KWtSxu0Ik7XOIhxhfK/aoZkOxnrK02hXEdh3Vct+P3d3rt/+1cLz5SfyuM9fZJIX3wAAAdl6VFh0U01JTEVTMjYgcmRraXQgMjAyMi4wOS41AAB4nEVSu24cMQz8lZR7gI7gSyTlQ4AAm8LVXRGkMlz5I9z44z3UIcjuYiGNyNHMSA96e31/O3+9i/45j/OCD7PX9+M8fj4uj8td9mBjev8/Pp5jLJ/34zwve3YKfh/y0Y/8+Dp4TJIwtXG7KpVpxbgKsZQ6IKP0GTaYJJVTADll1hxXpiUzYgEKElOpxjSWl2wsDE+TBWi7LGkuDgUZl4hL7zlp2Vw6hFQybFexWsRQ0skTQJGHsqEEmlC6udPYB9RxLd+iPHgFanzx1K1cXKc0Dc+a215K7K5w211KrgndTFVpqwDBVS2udtyM+sTClsFpr65MC4BCqZnIQaF3LShnylWJDqy5uiIFaWKRbrSlLNjUyHTqhkrKWxkEZRsDFSgFCOwIYoEIFYPHcZtUU54SVHQnFbScOVu9LN8A8rWdXBYj8QRxZTs24T6CRSJRjooqK21amardkoyD7p2Ldc7h/26FE4dVIdlItRw3pdCZhRZeBS6YFC/3ll+llZ0EB+/UcQy4JRyNOSM7uJxkiXen49DXSDFrUyNmRRfuWBRLI7NievMYL/NxGZ9/XwTq5ufvF0gY8DikSNbXN6+kplMgk/5SAAABPXpUWHRyZGtpdFBLTDI3IHJka2l0IDIwMjIuMDkuNQAAeJx7v2/tPQYg4GWAACYgFoDiBkY2hgQgzcgMoZmYUGlmJHkFIM2CKg0S1gApY+GA0EzsDBlgmpFoCW4GRgZGJgYmZqAYAzMrAysbAxs7AysHAwenBhMHlwIXtwI3jwYTN68CL58CH78GEx8rgwgjUCsbKx8vNxeH+CmQQ6B+YxDInTL3QOpxi30gTkhg+oELN3jsQexVz0QOHHJLAIu7yzXt//mDCSwu01m3v3M3gwOIbXiny47/cTNYTede0/06Jpv2g9j/t3MfCOLvA7OPSfvZh5VMAuvN9hfc926NMFivq5+Qw8vfG8Diuq/8HCQ3J9iB2AduTHO4Vf4KzD60T8dhe9h0sDl33s2297q3FczmNtC337TU5ACILQYA+G1LcgwiKqsAAAGoelRYdE1PTDI3IHJka2l0IDIwMjIuMDkuNQAAeJx9VFtOxDAM/O8pcgEij+28PtmHEEJ0JVi4A//cX9hZLQlSRFpHjTOx4xmrW/Dxdnr5+g6/g0/bFgL987bWwqcQ0fYa/CMczk/PezheHw93z/HysV/fA7K/5M9f7OP18nr3IBzDg8bGKrmFB4qopFoDRepjnGVHSsxQkWb7KRGqLIDiQI7COZUektGIaYFURyISctIeEsjgBTA5kGJrytVuYiegmhfAbEBLWMBAT51KaquI5RaxGJ8sfglpzCgLZL2VY7WCkiNBreqq8NaTV7IyEAynipIWOFC4dKrViElWjlBRWRFkcXbb55qJi4WUyrmuxIGrI5FFqF/NKDeZVkCx3BoLpCWnXE2jJZPQnjq3ZoL3sqtF1xXS1YGlrGyXNKQy1XXMbMkpZqPPkRztRMbqmuf99KdNb417uOyn0bj+8OhOWwQZPQgzHY0GszTayZd5NA3MymgNmNWhv++2ITKbYRYT7sCkGfrEkzjsE2RSAd2jE93oU5poZZ+QJ/rgnjyzNHPi6/uPwL63HyAM0HykSWPTAAAA4XpUWHRTTUlMRVMyNyByZGtpdCAyMDIyLjA5LjUAAHicLZA7bsQwDESvktIGZIIzpCQSxlbqsxfaw4fypmExevOB1lrrWOfCseoer/f5+3/xev98jssl6TbbpYJQ92j3ZTLg5k2ld0VYSRTj6LExIpUlQRSj900BA1tSyXRGYz3Be7uLniDw+Prs+aWmZtJaRViSfPKrZ3MQaIZva2gFo5XijniM8CrvlW86vXZRGEOtGAuObLcJzXRPr5luhbhMWI5SvM/0sU0jE/50BTeDouM7yKnxDB/hxvoXSpAD7fz8AcxpQo3+iFS2AAACCHpUWHRyZGtpdFBLTDI4IHJka2l0IDIwMjIuMDkuNQAAeJx7v2/tPQYg4GWAACYglgJiWSBuYGRjSADSjMxsCiYgmpEFIsDExMGgAaSZmdgcwDQLjGaHiDPD1MFodgYFkDjcPDRpmHZOsDJGNocMsCmM6MZjWgtVyO4AtRcmwQDTAFbAyAjTyc3IwMLIyMTAxAyUVWBhTWBlU2BjZ2DnYODgZODkYuDkZuDmYWDlzWDi5WPg5U/gF8hgEhBMEBTSYBIUThAWyWASEU0QFUsQFlcQl1AQl9RgEmVkEGPJYOJhYxATSBBhAdrCxigqxgJ0JDsHJzcPGxsvv4AYCyuboLCIqJiAuBMj0IPQwGaQ6lwl5mBj2XAAxClftsn+/EwzMHtx18q9H8+4gdlu7q37J774uR/Ebshl3f97ITeYHZ26d//SA9L2ILZdkO0B2xdb7UDsnpVVBxK0D4LF+5asOSBzdAGYvcFj74Gdk6X2gdgVM94cePnoHJjNOXfegePMy8FmNs6KO9Aytw3MXr2ydP/n3wwOIHZh89f9s694gdnTr7DYi+oLgtnPJfba31zTBzafRcfWQUZ4PZjtXhLnEDHVEKwmqLnKIYEvGuw2futIh+NbZ4DN/2v21Z5bZieYfVig1P7Vqqlg9xROXONgq/AerF7C9rRD0yV9sJrJpnsdFt9/DzZfDAB5OoBLTZtpvAAAAoN6VFh0TU9MMjggcmRraXQgMjAyMi4wOS41AAB4nH1Vy24bMQy8+yv0A16IT4mHHhI7CYoia6BN+w+99//RoYxkFVToxiK09IgWh0PmVPL5fv32+0/5ePh6OpVS//OJiPJLaq2n15Kb8vj08nUvl7eHx3fP5fZzf/tR2AsHzuDvM/bh7fb67qFyKbyJKVmUs261enQvFZt8jqMMIG0S1qqVM2/dhKQvgALgGe7OrWs5y0bVGcH/RWq5lTNtVYkRCbswVqoLpN1jGhNXHjs11RXSE0mbtnDLNLx2ratrtrJnGmGd1PC9mHFvC2DPiLIFuUUHBVaDZMVQJNCSoopAtLF5JVsAkeKeyCBD5pkOIajpCpr1OTcEFaeRuVatbRk1K4QKhrl7JAlStVdZQeWek7ZOvY4aGHnnFVTv1IeFM1SwISVpK0KR6vMoIkI2Lai7B/OKKMoioYbUOy7KG3vXWAmE2hCdtibM2BCp26rq1IeMw1DNBIq31mgFDGguE7euDSda07bUEXK9lKy6sifbTIJsVkAaQAllGVRSgPeVkHB8L8mPNaUhUnWwvkLKIAi9lpIE+xwsvLxmlic1x23oR71VXZWcDYk7VI4O6hnSu/e6bHQHMsXJLUDY1kEQrTJ/2q+fRsl9uDze9usxXAhzAwQ9v3yhY5CkU45xQVh6zATCsqPx8VL86G7CakcPE1Y/OpWw4uhHyjW3HQ1DU3fdPTw1EQ0jU69o/q5OHUHD2KR8HR6fFJ6vEPAkZU1DfdIsp6GYxKnDPatQ0zBNctM0zJOsNA3LJB8ap3SSCaVhm/TAw+NT3WnE+XDklRHrOJMEg4+PpDjuiCPN1MSsgHx//9eE/ekv/pVJnaAzPyUAAAFYelRYdFNNSUxFUzI4IHJka2l0IDIwMjIuMDkuNQAAeJwdkb2KHDEQhF/F4SxoRXerf70YDILjorvIkXE0uVMn9/CuVjISpVL1V5r9e/98/8P785Z73dd9X2+PWz5k749rP/aWx339+MRn94LN38Xfvi6Zy5R9PHUSedV48VxlweMpM22xjteTJqVE6niuyeTi0HiSskDiWSbKx2bCQjJ6p6a4SjgMyWhJSpZ0vkZgw5NZ3dpjnOk1ZIqnnaCycoFAbCvPtOKkGJjviDmKRrkPmk6p1CbBtQQwoZP10Bd4i2HiaVSninU7KihiDtRWio0PNOPE2hVwLefWlJSioRTp7tGFF2mecI3kbIWMHVITAAHpyyMA0BZDJ5kRGtoCOCTAKLxKANBEggkY5UG6WimWaMYMJbysoxDLwfH0JO+cVYqHwGyuRdbvih5xfoiqc4zH+PfrO9C+/gMJXG5z2PemyAAAAeR6VFh0cmRraXRQS0wyOSByZGtpdCAyMDIyLjA5LjUAAHice79v7T0GIOBlgAAmIJYCYhkgbmBkc8gA0szMWBkaIAYLGwOEZmcASzAxsjEkgMxhQqc5IAqZ4BoxTYIoZGdQAPFxmYNB43Yjwkp0GW4GxgwmRqYEJuYMJmYWBRZWBVY2BjZ2BnYOBg5OBk4uBS7uDCZungQeXgZePgY+fgZ+AQYBQQZBIQYhYQYekQwmEdEEUbEMJhZxDSZmiQQJyQwmSYYEMa4EYT4GEWagHWwMkhKgwODmEREV42LjFxAUEuYTd2JkYGCEhjSDFNtaoYNnt33ZD+LsWCJykKXw6j4Qe95LhoOvTt23A7GX5l47sP5YAFi88Pu6A945avYg9s2JzQe6vERtQGwvc4sDip9jwOLGNw7tZyxIBuud+Hfyvt97OsHif6Z12K85eg8s/sxc2CGNYSlYXIw5y2HNS1Uwe3/5HIeLzgfA7PC7xx2aCiBm7j5z2mGqixLYnR1hSxzcCveB2W9cVzi8fGp3AMRuWX3ZYePrdDB7h+JvB2MXQzA7xOi7w23dxWD1UR0zHPTP2zuA1btGOXy/kgFmy0ZyO1TqGoHZV59tOhDpwQlmO9RdOpBUfBOst+TLzwP6icpgM8UA/kqD11jPReoAAAJwelRYdE1PTDI5IHJka2l0IDIwMjIuMDkuNQAAeJx9VVuO2zAM/M8pdIEIJMXn5+5mURTFJkCb9g797/1RUkFqLSDUjpjYHlMUZ0Y5tTq+X779/tP+HXQ5nVqD/3wiov0aAHD6aPWjvb5/+Xptb/eX1+edt9vP6/1HI23k+U6en7Ev99vH8w62t3aOjmrE1M7YA9EpGnSYx/EuPZAUQCjtDJ1R3XyDHIX0DmIwNJ/zMAjZALmA2g3AnSslwXAfG6QUUjqrGVQmFYCADVDbtZ25I6IIz+e5INoArTJSzxUMq4yuA3xXpBcQu1AeVVp+IdgGGAXM5x7A3LCDKfiuRoR2q+dqCD77Iwi7GrHYoZ5sk1u+UaltVyMWOSO7ojwqo7JD7GrE4oa7eyhWRgEC29ZY3GgnFtOY7UGIbY2SHdc+UgsloJx7DJedgFAzpXQcIjqqpVzN3+a0iSRxGVIshZNtdYE+y1TknL+dswU0su07ZNFj3dlctXLmusx38iWYyDSEx6yTjFMkOyTObpqqsiRREZb93AEf/DACZ8qscljEdu4xGUezkQxkkc5AO8aJU0PpCImUkdcrLMC4Q8rDZWIWOC2ukSbjHbQYOmeTEMtd2SQRctAN9P16+bSPPHaW19v1cuwsaYJGx/aR62nj2CO4xrETFFwOu2MOPUyNOeywLubww6CYIw4bYo3VbTgDLrbiCkiLf7gCjsUoOAMvjsAZZJE+zqCLxHEGW6SMM/giWZwhFmliBVolyDU74SI1rkC0aIor0FjEQ9k24kUkdZIsWqjLJHqhnCscE1ndGEu7qAomWBZe5K9U1/XzDyh/n/4CAbFE586UKI0AAAE9elRYdFNNSUxFUzI5IHJka2l0IDIwMjIuMDkuNQAAeJwlkEuOw0AIRK8yy0RqI6D5ypqV98khfI0cfopML6zu54IqeP9ej9d1Xe9b7vtxvfSao8/7vuU5bC4/n8fh5M1RS0nM2dYJYpEpiymcuUGMRMQdBG8RZQFUqqydgBWby4GEXHGA8BVOIFyr2WwJcQbXOnGJlGlv24V1nUqbWRuS0aJqwzlQgwRW3CBGVR0KibOOJEjN899duHXIjkpbsIy9yxHcSbZ7LASzCTtEvRwipS7NmrIQi14HTHVnrDOpLCtHk9HZQ1KtevpoWtnkyYgwbK07Z4ZNJmy90GXXjCSZW/A/yxjGR1AyV0085V0T5ihiT7bvKpJ7VtikzSojM8E89WUSCDD22P63EhkFY09Gdy35GmAfLaOKnv7Pzx/0b2oBnTte8wAAAbl6VFh0cmRraXRQS0wzMCByZGtpdCAyMDIyLjA5LjUAAHice79v7T0GIOBlgAAmIBYDYgkgbmBkY0gA0ozMbAwKQJoFwYXQHAwaQJqZiQ1Cs8D5DhA+nAarZ2Jih8gzE1LP7gBV55ABphkxBOAMAQeYEyBO4mZgZGBkAjIYGFkYWFgVWNk0mFjZFdg5Mpg4OBk4uRi4uBW4eTSYuHkVePkymPj4FfgFEgQEgSyhBCHhDCZhkQQuUQZB9gR+jgQR3gQRZqCprOwc/AKC7Jwc/Hy83FysQny8IsLiQoxA66CBxiCmfW+Xw+77y/aDON+/LnJ4IeCyG8Q+zNvtsEp6mT2InTL1jENfrR2YLbq2yGEDqwNYvcZSeYdzRRbWILbIHXkHqZgDYDVzz8yw1+m0A6spzjTe99GJbR+ILXv56r66jWvAaj58uLP/jQerA4jdmuh+4Ib6IbC4glf7AYdKRbA4Y1PSgXnr59uC2NNytA9scpkMNvOa+fT9V3Xng9kyMff2Hb6qdADEnuXbYn9HlB/M3q6beqAgUAzMzv01/8AEnXdg9arq8w8Ent8Bds9Z9ov7p0umgu0SAwDBd2v1IX26OgAAAid6VFh0TU9MMzAgcmRraXQgMjAyMi4wOS41AAB4nH1USW5bMQzd+xS6gAWOoriM7aAoithA4/YO3ef+KKkf+yuoUH2L0PBIcXj0oeT4efnx56M8B10Oh1LgPz93L78ZAA5vJRfl9Prt+7Wc7y+nx8n59ut6fy9EhSR04vuKfbnf3h4nWM5Fa2dvBOWIlYENuECFMXZVGkBwUtJyzHtypwWQAyiVRSXNV3Iz9AVOAtcqOxO3uDYRXD6s5Va4mmNHyYdNAbotgC0MUhUXUR3XlBr/4iwMJs469HBQE4cLXA97WNE5XBsPiwRyAfQAxj2aEthYMSLqAomwQQWtUQvrLI5tFUx4dM16GLVMC1XopNZWyKzMkWu8yGQZELYuKz+RI/KjVCIz72FTiYGWfspmUznSPgChYatqR5iBpNqsa/gZHqOC8irv2LaQopAczIkVCWtfxmSfeWIhb2lfI/m+TFQPq1iBucUykMRqsCIc+mdQHTzcDihLN1plikadpEazcaiFq72B8SpVof8+oHFNPZ3mBq4rV2lUCmtjBsUgtZq3JZVfr5cvXbr17el2vex9mx/t3RmbwnsP5lb2Vsut7h2FMdveNxTT9vbA2Pa9CySm71zHnDOjcQicmItD0MRQSoE8MRHHiUyMkxSoE7NwiDYRSFKgTTyRFNgnOsjQ8qnskoLm6koKwqmIw2eiqVaSxp6GibfHn3YpPU5Fmas21yj3j//lWB/+AhNQGdOzzrhwAAABIHpUWHRTTUlMRVMzMCByZGtpdCAyMDIyLjA5LjUAAHicLZA9jsNACIWvsqUtTRD/DLJSTb8+hPs02+bwC06kKdA3PHi89Uvr4mtb2/Pcz7Wtvd7aX9eLH83/rov3Rc/z5709CFwEbQhYpOc4igQ7DQacbLMAglI4+yAQTYobURhjjK6EiGwcBJQS2ihUedI4GDRVfSAgFujyZlGfBIZ3k0AkVdE6Q5w13wCTTRqVMGunNJySzqMMCkp1adkxlZrEGcHjcJAU1nEbIJT2hCKtYWCxoM81opzezLTkfXHtl+zJrGIdAoPHtCZkaN1UAUn57FsiMu4YFDLk41Mc074sy0VLp2N8pbMO6o2is50WqsykvRv51FvHHLNiN67zxv7+B5cJXKf5EBeJAAAB1XpUWHRyZGtpdFBLTDMxIHJka2l0IDIwMjIuMDkuNQAAeJx7v2/tPQYg4GWAACYglgRiaSBuYGRjSADSjMwQmomJjUEDSDOzcEBoJnYIDZVnZkSog9DsDAogcXRhDNoBYiybQwbYOEbiGGRo4mZgZGBkYmBi1mBiYlFgYWVgZWNgY2dg52Dg4GTg5GLg4Gbg5mHg4WXg5ctg4uNP4BfIYBIQTBAUymBiEVYQFslgEhFNEBXLYBITTxCXyGDiYmUQ4k2QEE4QYQZawMbGzsHJxcrGxy8gKMTLJiIqJi4hLG7GCAxCaPAySDZHrj6QujPrAIjD/GP2AdeT/GB21NnIA/6vfu4HsVfnSh3QEnQFi0dzWR+QFeEAi0ef37l/Ol/xPhD7m/2bfddnrgOLx5o22s/+2AFRs3uf/eRdm+1A7K/v/9utVNtrD2LvnlSxP7duOpgd3WDrcFBXFczmfFDj0N/yDWxmdONaB/vj9mC2seFZhzcGK8Bmdjr9cdjQ0QRms1xidbSPOws23/DLa4cp/YfB5tx+tMch4vlcMJsrq+rA62gJMJt7efQBaXZGB7A7m3sPyCp7gtmbp+w58N/PDMw2/nb6wL692yBuc1tz4LnYLLD5YgDItn6f7DunvQAAAlx6VFh0TU9MMzEgcmRraXQgMjAyMi4wOS41AAB4nH1VW24bMQz89yl0AQskxYf4GdtBURSxgTbtHfqf+6Pk2s4qANFdi7DkEUVyhvKh5fPz8uPvR/t86HI4tAb/+bh7+zMA4PDW8ks7vX77fm3n95fTc+V8+319/9VIGlnsifcr9uX99vZcwXZuR+lDWM3acXRVE9UGHbZn30uJ5D6NITwfqROrKhTIkcjRGQaKtyN2l8COAsntlp4YyZlzD5ijUYGUdk2kEwlEnNAlnIsVSM3TsbOgMiSSho0yTkskdFbkzAj7iB1WIWcgMVYjSkwgqE+rEvIIM872gObPQxBGhcNgKZbZw8/MHWbGVd6I9yDdwKcHEmdyVSGToKiQgkfVoSsLkVfA5GcEKYjGWwEm8qzSRg6kdCaCzBvicKPJFVICqUkkiW6lxOFeZp78WJ9zBHarJbp5mVDyM4OUEbXJYgEilmHOzWXQLJIlErKJZea+5eNA6hRAGkOpCpLgLmFHMkpaJKolJRIfYh+U0qFIR0Gqw+nRQFFNmhIEhOpMZ4Uc96acHhqn8Dl5StkVlAQdNVOfwKmjcKlSIeXR6CGfmeHFFeJSlf31evlyQ9zvjNPtetnvjHxpvxhi0sbe/TFpvLc4xlT2PsYYujcrxrC9IzHG3NsOY/jeXJhjbSLcDC7dskFoaQrczFjUj5vhReWcBmVRc05Dq4tqOQ3aok5Og3ORIadBX/SW2dKqK05DuOiH0xAtOuE0NBY9cBrihXdOQ7Lwi5n+Z8S0RexLnpQR0xpOUr0Sm/PnH0l8P/wDx106P9zFYJEAAAExelRYdFNNSUxFUzMxIHJka2l0IDIwMjIuMDkuNQAAeJwlkDmOQzEMQ68yZQL4C9oXfEzlPnOIXCOHH8lx+UxRpPbej9+/5+vxpvc8em7a+/XY+80H8HNv+vk8LgMx9VyXgHtYrPtSyFCUdTGwunsjgQbk6yIoa9iIQYlLZxCjKA4qZqN1IZiQHTOBIg5ejcrI5GsmjLEYkBz9bFRmriVAyjFjBllt0ZrUPEYOEpKLWhr+lUiKVTsLYtn49KeR6wTgVg9CUG9Tm+ji2mtvgtarDkGvPESr2VgZoXTIruJY3sTVJtrdRYy65jgmaa7bJjWebZTBqev2OQqfOwlJ9VhAphCfZVQ9lR1DumPbIBGNoqN2fALjSB7fQvZqwCLeoKXVOU/5iNBTqwIrR0R9BVvPzz9hOmYoZouDAAAAAWx6VFh0cmRraXRQS0wzMiByZGtpdCAyMDIyLjA5LjUAAHice79v7T0GIOBlgAAmIBYCYmEgbmBkY0gA0ozMEJqJiYNBA0gzM7FBaBY43wHCZ3PIANHMjOwQAWZMAbBJzAiT0XUSw+BmYGRgZGJgYlZgZtFgYmZVYGXLYGJjT2DnyGDi4Ezg5GLg4mbg4mHg4c1g4uVL4OPPYOIXSBAQzGDiZE0Q5EkQAfmSlZWNnYOTjZePX0CQR/wRyDXQMGAQstY7eyD2YpE9iCPxeO6BDVazwOx7LnUH6l5F2oLY09fJHwhrnWcHYtsb/92/+d5tsJqeqCP7+aaE7wexZwV83t//S+gAiO3UpbhfXtgNzC7zYbU/P5EDzFZQlNybc8MWrF7vgpN9mx072JzHjeW2Rqlvwez5iwQcjCd/BNu1uMLWwfVQFFj97M19DobmmWD2Y/sVDo37t4PVPLwy0eHC1utgvfq7nR3cPtwDs8UAxW9auwvgV3QAAAHbelRYdE1PTDMyIHJka2l0IDIwMjIuMDkuNQAAeJx9VFuOGyEQ/J9TcAGP+gndn2t7tYqiHUuJkzvkf++vdGM5sFoUZkDAFAXdVcxWsvy4fv/zUf4Vum5bKfCf193LbwaA7b1kp5xf374d5XJ/OT9nLrdfx/1nQSvosSaez9iX++39OYPlUk51F0RzKbC7mEKLDvQyllICZXdmb1hwJxDHugByuZUT797IlfO7MgEtgJKMtIsrMMZ3Bq+IC6AmIwajIdXYumFrLAtgTUbclQWQywl2E0LgBbI9kA5g3vIU5FVlhbRyJFNlhAg3AgOPwFcZ8uCEXQmqW1Iis4VYX4EID07gxqbZa4Jqq4gQO2mr4Oad3SjYF0DqQKgg1CJHplJ1lcxIzKVEvOpOKZ80NFrpiNKBHoxmPZkqSqvAUQMpu6gL9XAcw6bLU6ZCGpu31jPDamarrGPrlKqNOCWvptlZAC2AIYpa3In0hmCD1davx/WT8R9X4Xw7ruMq5EPD8DEoPGyNUWWYl6LqsCjGsA4jxqC04TaJasNSEtWHbyQqzvbA3uDkAuwNTXI/ZnjSVbJBmQSUbFAnoXIYMkyCSDbYpsxLNmhTiiXPMxblifPvwnNy51Tm+PlHiv72FxYR6i0IjkNTAAAA9XpUWHRTTUlMRVMzMiByZGtpdCAyMDIyLjA5LjUAAHicJY/JjcQwDART2acHkAVezQPGvhzABOH/RDDBL6X1R0ah2Gze9/s+ft+vh5/P8+H7uNfv+vjne5w+jTlr0CxLUIzrtFmqFYOnkJU00VkhhZYIKiTcTKYVSJsplfNC3Fqy9mBwhG4CNeJx0kwTpn9WRDU6QMphTWi6MrGPXkS1V9KEkFcujbvNtkhDEzstjJG2vHCq3R+S0gONyMnEvXskzDGuXoWq1dWCU3yRaql2MRik77ZpKJOFiqlWFHoucp2IzNTlACHWyZ7o9+rCyH2xcfB4ff8AyoBLjHLyZOUAAAHielRYdHJka2l0UEtMMzMgcmRraXQgMjAyMi4wOS41AAB4nHu/b+09BiDgZYAAJiCWBGIZIG5gZGNIANKMzOwMCkCaGcJlYoLROIQR0hogaWY2BzDNwuaQAeYz4mVA1AqAjWbCpxUiIwhWiCmO7hhuBkYGRiYGJmagHAMLKwMrGwMbOwM7BwMHpwInVwYTF3cCN08GEw9vAi9fBhMfPwO/AIOAYAaToFCCkHAGk7AIg7BogqhYBhOLOIO4BIMEI4MYhwIfZ4KYQIIIC9AGNkYJcRZmJjYubh5ePk42fgExDk4+NkEhYVExAXEzRqAToSHMICm9+/OBfbqJdiDO5xvHDpxZNH8fiH1+9cIDAWLK9iC2/+TMA9dOX7cFsT00ow50sG7YD2L/TGE48Fn4C5h9WCtiv4FDKZhd9YzPvnndPjD7nPode/9SLjDb7Ia7g5BnJ5ht6xTusCZV+QCI7dY8w+FhjiuYnbVhr8OXTRxgdvrvrQ4ux9XB6u0lOx3Kgv/uBbFtUhod+NauBbtNg0XToXL3RzBbcZakw/154Q5gd4bX24suqwSzU9w19qm/sQGzuyee2B/zOQ7MFt00x5YzbA9Y74HgvfY2/QVg9gnHSQc27REBu+GD8v4DP7Oegt0gBgBdznqoshp/CwAAAmR6VFh0TU9MMzMgcmRraXQgMjAyMi4wOS41AAB4nH1VW24bMQz89yl0AQt8SuJnEgdFUcQGmrR3KJDP3h8dKohXAYTuWsSuNEtSnKF8Knn9vPz487fcL7mcTqXQf34RUX4rEZ1eSj6Ux+dv36/l6e3h8XPm6fbr+vZaxIsMfIP7K/bh7fbyOcPlqZx7bdw8AKzCEcR4oHkdn0q5lnPDusbQcqaqzH3EBqnp0iu5iCjWm3byHdASqLVZIDzWmVzbDugZW6vR6J3Kmat25y2ypUvBNDxqIoPa2AbviaQ6zIwkn8IH8W7nA0iq7kPI0qWN6NsSBdLk2lHB5unRkbDrBsjgqGhlEe+cLqmLm+yQPJHa1HjkztyVxi44C5BWe2sE4lEtGtb7FpkEeQ3pfXj6ZPWQbXSbyDZaaOSOGsIP2yF9RpdhqrOaLKByi2zlFUgytdFQLvUGDnbAZEigDrAeAI6BYm6BYwINk4idxQrUcweMyWREN2kABlFvO6DQhzi4YTvoImiDg3exBfy8J4PesN2MbkMbbaEyoyOkgyvIqLP2tgMmP7kejK0hXw0wsAPOBrLq6C+8gkkVI9RtA/WPpoyuiJoJ9xCVHfT5evlyQnycGY+36+U4M/KW42TAS9Gj/RnDjiZnDD9amTHa0a+M0Y+mZIxxdB5jxNFfnGNtI0vDvLSLpWFZ2sLSsC7ytzRsi8wtDfsiZ56mLbLlafqiT0vDYxGipeFYFGdpZJUWpxFeJGRzRhalWBrRRRJZNrGFek4jvjDM88i/T2TG+PCejMyEfSmgZMLpu6/kr1Tn++dfC55P/wAFBj3IjQLKfgAAATd6VFh0U01JTEVTMzMgcmRraXQgMjAyMi4wOS41AAB4nCWRO27DQAxEr5LSBlYL/j9Qqd5NjuA2R/DhM5RVCLtP5JAzul58Xa/HhZe89T2P/t6Hx/X3xEWe18U/n8eROzi8F23hbuJ1HoGjdq2DtjJnNZhvchFBWWiSD9Id1jGIyTW+yKgy18Fb0zmBZBNhwqCmqACiXWZGMgPaixhDabuXkE2dVaOTd2KhmCKHqus6dbOI3/KU4jZEQw1Kgn6lWqftjBht3VSGXU7fLZk9NazeMgSLtI10oK1s2qRMdRCLzkcgMrVe8OIxNQLDVAVQde8jsEuka7ZoynHRnSYB0kT5NcsBYV8Cr9yTL2+PmYC0SmO6UOrMDmVL1hrzls2TbWt/U7PtCF7HhsqkNz+lU/nOLFuw/fPzDzvUZ5BL2+i9AAABenpUWHRyZGtpdFBLTDM0IHJka2l0IDIwMjIuMDkuNQAAeJx7v2/tPQYg4GWAACYgFgJiESBuYDRlUADSjGwOGkCKmQVGszNYgGgmZjaHDBCDmRGJgaYUQjMjxHHp4IAYysiEISMAoRES3AyMDIxMGUxMzApMLAksrBlMrGwJbOwK7BwZTBycCZxcGUxc3AncPBlMPLwKPHwJfPwZTPwCCWyCGUyCjAkC7An8nAkizECz2BgF2VhZmFg52AX4Odm4uHn4+DnFH4G8DA0OBqEtEjMPVM1kPQDiOOZXHRA9H7sfxL4gO/HAS7f/diC2yNMDB7TrVexB7IrKrAMqsnfA7I+vuA54rD8JZqvYHtsvsyEcrP4SU8repqYOWxCbdaaJveKrOWAzix9wOVw4kgZma7BFOux49gjMTjWc4fDTdzKYfefMHIcgm/Vgc3SrTzgsO18GNp+5JNshJXg2mJ0oLuLgUyoOZofYFNi7BswAs3c9kDqQFtoINkcMABOPWcBp22RuAAAB3XpUWHRNT0wzNCByZGtpdCAyMDIyLjA5LjUAAHicfVRdbtswDH73KXgBC6RIUeJjkxRDUdQB1mx32Pvuj5HKUimAUNkkLOozfz97g1g/L+9//sLXypdtA8BvbjOD34yI2wfEA5xef7wdcL69nB6W8/XXcfsEapAR+vWMfbldPx4WgjfYJdUmWRX2nLBVsQyYsK/xboYz7JyMGAVhx9RURWiB5EBKKiytmZ+LtdLaAihwwK4JczVlP1fJRcsCWO6xVdljAqVK/oItgBrAnKhiMS8ulVpUV9XUAPq5eLlRQyZU5gWwBdDNxR3VOFfVssrRvBhMHlgUw3XOpdkKSD4h8BzVTCx8G9K6kUSO5MRGiBQ+a/Up6QoZ0/ExFkXu0algo7pCckdaWOOcxRNdAgWuoClrQY6QpuI9WgFLz1Krl6ve80w++FXPSXvhTGw5IhYjZVkBK3xGRHZWknukZlZwBWz3eQuZBX0pIaFvFtDX4/JE/PuncLoel/EpxJUH38WFB6nJRQZ1xbdlEFRcdNBQXOogG7m0QSlxsUEccaGZHxKKaOKBhKI8zVtCEU9zpa5kGqB0S5kmJaFIp5FIKKpT7yUSblOPpf9LvgyRME31ZPzv5KnZc2tj//hD+fP2D6mO7O/72a8lAAAA93pUWHRTTUlMRVMzNCByZGtpdCAyMDIyLjA5LjUAAHicHZA7cgMxDEOvknI9o+XwL3J8AjfJIdSnSevDB3Szkp4gANzvI+d6Pc657qO/xw52Pzjan+IrX+/rTmLdnYspXSNjPW+nMK8G8q6oAjJqMfZ1M1Wmu3xku1z3upW4tjeQkks3kBALuwIJheMWZiqcZkBMHJGZBchYIyBk2hye81Q1YKYk2R0T2SyfSCNrGcXemns90SCSbYgElw5pZhYYm8MGmiTN4MnvdDQYl9yFiREkmHOSTKwNkmhJ8ynThtkEGqkpMaMJCjZIIDQ//yTTcny2wHs93v9vZEvyYEPqFQAAAfl6VFh0cmRraXRQS0wzNSByZGtpdCAyMDIyLjA5LjUAAHice79v7T0GIOBlgAAmIJYEYhkgbmBkY0gA0ozM7AwKQJqZTUEFxGWBCDMxYdBgeSY0eWZGGJ+dIQPEZwIKaIAYLBwQmonNAcJnh9DMMBpmP0yezQFsANBEfAyIWkaw2QyMMJqbgZGBkYmBiRkox8DCysDKxsDGzsDOwcDBycDBxcDFrcDNo8HEzavAy5fBxMefwC/AwC+YICiUwSQknCAsksEkIpogKpbBxMbIwMnEIMabICaYwCTOwsgmwcIowgK0gZWPV0yQn42RjZUF6CNGNnYOTiY2IWERUTFBcTNGoAugQcwgefS54oGLe//uA3H+mPseKHKcsRfEfmjRdUDTvms/iO33bPuBPbVyYPaNbwcP/PsRYQ9if42cd2Ci+Vswmz8y8YCb+SYw2/Qf64GvuXlgtvOux/uPcnCC9b4UszxQYn8UzLYW2rIvmrMezP5318nexEjaBsRO2vzE7uDHPWC9UUI8DrPVn4Pd9vuZpsMWjw9g9ZWfWxzuv38PZivZLHQw7nA9AGJ3b57ssPrFE7B6lZb9Dn/KNO1A7PqiIw6XtK6AzXSaMNfhbpySA4gdUp/ssD7kG1h87qJIh69Jd8HqIzQaDjj/VQKb6SEvdUCnUhKsXgwAmaV+B6w5b1oAAAJrelRYdE1PTDM1IHJka2l0IDIwMjIuMDkuNQAAeJx9VUtuGzEM3fsUuoAF/iUuuojtNCmK2EDr9A7d9/4oqakzCiBUYxEjzhMlke/Jh5Ltx+X77z/lo9HlcCgF/vNz9/KLAeDwVvKlnJ5fvl3L+f50enjOt/fr/WchLdRjTjyfsU/329vDg+VcjlSVvDUsR6jiqt0LVBhtn0vlWo5cCUyFEglNWGSB5IwpldFFuByxQgdQWiAlkVqbWDfJmIaOYAukJtIqGHLPSF2aymqbti3u0qVjwdqVSfsC2BLIcfJYMIHsxLjaZN9SBM4mGN+dkU0XQE8g1tYcaWRIOfIKCyTCFrM7AY0UqYzKLqCYeYfKig1GVHcjXuUodn8OdzMk2FZ1aasTIZdbuEXMRo4kp6xyhFkgqti7EQx2KEpb1Rw1tkk1uNG2A/XWCJcHskBKxUTihhSF5epZIq3AXSOLUSsIlvASmTWSYI+atbFPadCXSB8xPdjRM0cYO3Ze0T1LZDXoFsqIHJk21bYC4lg72NMtRlH0BrIqOmV5gnAqJhYRnUR0qTQeQAnRaAYSJvZVwUnKa5IdQDzUnjoWa8tcxufXBAh0jEUp6N6BcIF8vl4+3RDbnXG6XS/7nZEP7RdDDArv6sfosksco+uuY4xuu1oxets1idH7rjyM7ru+MPusouHASSs4DE2SoDTIE/dxeGQiuaRBncicw6DqRFocpk3klOHpEwklDfpENklDM6skDeFEH0lDNPFE0hBPhMi80FR3zNPzVF0ZqI9Dkf3zfGyP2ihMzD1/ffmyr9+32PrZnSyYa57jx39MvB/+ApCIP7/nbljiAAABVnpUWHRTTUlMRVMzNSByZGtpdCAyMDIyLjA5LjUAAHicRVG7jhwxDPuVlDOAV9D7kUWAAG6uulSpFlttf22a+/iT5oq4MmiKFOnH2/Oxfz+J995zOR5vz/PY+3jfx68/50s+Po59vvQ1R/TcdL7z/vF53BQQtXjdGEw9aN0bEirVdSPARLSGDEI9fd0QnIrQG3NAJ8mFkBqmdU2WpuYiSBMekoDx0AmkWEadQTHJFzeSyBeCJa4tVELi40cQUcTjZ2I82ghiFHhhVc7S8gjhzcLOUBqsPJCqe1I7aj/KujNQpl9zaqShA7k1fxJmBPeYAv1HmrbuBihptToCpncdzXEyj0tIAzOHVJ13OqBWrHZz6E5qKnAL85nq4Dl5TQJbpivppq0Zxb3rANotW4uosJRflWQxXuuY0tUjYzuMN4aKyjerq4nvhcosa53r39+f/W3LwD6/AAVjbhj6Km2UAAABm3pUWHRyZGtpdFBLTDM2IHJka2l0IDIwMjIuMDkuNQAAeJx7v2/tPQYg4GWAACYgFoXiBkY2hgQgzcgsoKAApNk4GDSAFDMTjGZzANMsbA4ZIJqZEYmBU0bBBGQkIwsHxGyEAMQyJiaYBDsDWAsT0BUQw+DWghUwMwoygFwFo7gZGBkYmTiYGJmBmIWBhTWDiZUtgY09g4mdI4GDE0hxMXBxszBy8TDw8LIw8vIx8PAz8AsoCAhqMAkIMQgJMwiJMHCyJIgwgrzKwsnBzsYqzgbkMEKDBhgmUrsOvLtzcT+Ic7plwgHzV8lg9lrRwgM/VHgOgNgH6lYceFJ30Q7E1rnve8A9S2AfiG1+0ffA1k9r7UHsWb5f97u8ZXMAseM15fbHHIKIGyXK7ed5KwhWn9f6df8LrxSw+V4NevYSVyHqZXfo2YtfTQOzBSr/2rNMguj99CzQ4fUeiJotjZMcVidCxNVi/9pfyhcGm8l5OtDBmycVbObOqkkO0z+JgMVF9gY6CDlLgt1/NGeSg7q/J5gdrPrX/rcZhC0GADYZYhfpj4lrAAACCnpUWHRNT0wzNiByZGtpdCAyMDIyLjA5LjUAAHicfVRLjtswDN3nFLxABJHiR1rMIp/poGgnATrp3KFAl70/SspxrWmVSpZiyy/8PD56BzG+nb/8+AV/Bp13O4D8n6u1Bu8l57x7hbiB4/PL5wucbofjenK6fr/c3oAwrhzzI/Zwu76uJwgn2EuqKGoMe0xamohATrmP7b8Eb7DnJKiEGfY51ZaplQEJ74evT7riC1xhX5KpNq6wp4S1mejEMgdSEqmwkb/n3NBwApQItiRCj1UjBGTMfv4vUlek1CaAqfivtgnQAoipoXJxvhLmSoUmwBrAnBStYusWjRtPgG0FVvUkepAkeZa303h3XrHwQima1hk06uRGq8cpPUydc4nkZAaQuBmUpA+BxS2675pJrOejGWcMITvQqbRmtDAkVGfVQXHXLhCrpZRukYXLDKhwCdfWOMvCUGlzk3b3XbPfdoLY5lHWu3Pjemfd3dsM2e42DVVCl+WRTfL6/OxG3ayFnrrRGZvOjEMjJ7NMC/RBTs+X84cOXHryeL2ct56MSVvjxSxbX8Ujb83jUJCtRdiXbn3AvmxTO/uqm6bZV9uUy75w1Cf6e8RBhdg3gtOnlyccRLecl0Fd2Df+CxnhxiaDahakDvLAvtkgA4oN61Bu7CdtKCvGRmP5lhMcqsSRlYy1GJmP5/VL6ve73zLSDYnOYTQHAAABHnpUWHRTTUlMRVMzNiByZGtpdCAyMDIyLjA5LjUAAHicLY+9asUwDIVfpWMCirBk68cNhQteOjVD6VQ6ee3e5T58ZTsQE3P8nSOd9rm9Xfs4nXrv23d7PN5/tmu/L+3aP9p4blv73ePrnV6e2yHoJGpwEGquInAeBYWUCY6EXhPXHFpGU60CByN5NQ1JkFWKQcKSKhlNiklNhpMKpXxL4hUIc/wsFMJKWjJEUnIeTEIlc1qQlQpnKB6QTEjHuKFwiYCMupTI8cQ6TZoYzhhl1Xh6hB3OKGKe8ySKlGmxWmjtl6vTMkXMKlsslpg2K76oMNqijGzUz0HxgiIdouCA1j5mtoTIvnu52j2PJeld3ymvgWTqsMPf16ujAwWWnv9hlV7qZNfL1gAAAT56VFh0cmRraXRQS0wzNyByZGtpdCAyMDIyLjA5LjUAAHice79v7T0GIOBlgAAmIOYHYgEgbmBkc8gA0szMWBkaIAYLETICEAEmmAQ7hGZmZ4DQbAxQcQawBkYmOIObgTGDiZEpgYk5g4mZJYGFFUixKbCxZzCxcyRwcCZwcmUwcXIrcPNoMPHwKvDwKbAyJHCxJYiAfMHGwMrCzMTIys7Gxckhvg8owgj1IwM/87xJByrSWvaDOFe29RxYN/GFHYg9ncXxwPdvLfYg9qnLL/Z//sIJFnexYDjg5rMWrD50YcSBi3I/wOwlbA/2hShZgNX/3Hxyb30PtwOIXb1ukz3reWEwm63xr/3l6blgNa9eRdivUUnYC2LnusQ4MJwWA4vnW1c4bOmNAJu55v4qB+e108Hs9nVmDqd7IHaJAQCiJ1C/pe80twAAAaB6VFh0TU9MMzcgcmRraXQgMjAyMi4wOS41AAB4nH2TUY7cIAyG33MKX2ARxnawH3dmVlVVbUZqp71D3/f+6u9Es2QlVBIjMB8O/HYWyvbz9uPvB322dlsWovqfNyLoj9Ral3fKAV3evn3f6Pp4vTw91/vv7fGL2IhX7MHzlX193N+fHqYrvWgx5+5BL1yqqPROtdS9jb3tICW6sGNdTZusE1ASlFLZouIIiOjdZxE1QS7OHqtgnUV7kwloCTa4cTbNLWLiUSfkenxbXF17koGhzsieJG4h3Yyx3jla1wnoB1gDMZ1aYa9qs4hB0Bz6WGC5FalhzBOOkSGA4dXSXaI5gs9Apg1u3ETy2gAMArUZ2UBKUeW1Z0oM6ojNwEyOFCRkbZ4hXS14GlIR0ooIzrlrzq7RpzENZCtuELrtmiv3mCX8bbt9Kb6jHC/37TbKUWFt1JzCZFSWpo36ycdGlWBC6yiFDNZHvjEhH1lVWIzcKYzPOdLsmE/J4N3TTqK37FhO6vLe6UnFw2MntTTP9jlf80s8DpoinSXJ+fPvxnj5Bx46yRWtJMbHAAAA13pUWHRTTUlMRVMzNyByZGtpdCAyMDIyLjA5LjUAAHicHY+xbsUwCEV/pWMiOQi4EIOiTt3zE967dH0fX7AndDjgy/tzvOf3u+R3HdfS1U/P9Sdfn8MJyBiXkIRV8YBixo1xMYV5io5HKdysnTTZipncMZg8kuHjqU6wF0gN7i09PAHrNew2Vcuq2jDdpcQpqdOKCYVE3oUE5aEQiKV+HkKMmFnECDmhJZmb4t7IQ6p5tWWIPYew8B20qt6uxN1tBEfkDlEJrY4cWjez7fhITy8Azop3fv4Bk2I/nUGq1+wAAAEYelRYdHJka2l0UEtMMzggcmRraXQgMjAyMi4wOS41AAB4nHu/b+09BiDgZYAAJigbhBsY2RgSgDQjM4RmZmSH8JkgfCYmDgYNkDgTmwOYZoHTMH0OGSA+MyM2BqpSbgZGoMFABlCMgYVVgZUtg4mNnYGNI4GDM4OJkyuBizuDiZuHgZs1QYQRqIONlZuLk4NNfBlIN9TxDLwuHT0Hmk6X24M53MEHzibm7QWx3V9kHPBNP7QfxF4X8G5/68IDdiB2YbfL/rsJamDxtP9a9t+Wx+wDsTWtGu0d4ueDzTnOs3YvR4ygA4h9ql7GYcOva2Bx19Ykh4PO6mA21wofh71L/MDmrOh6aH/u7Tww2/jCVnv2jzoHQGwxANFaQcNDEz04AAABdnpUWHRNT0wzOCByZGtpdCAyMDIyLjA5LjUAAHicfZNdasMwDIDfcwpdoMb6sWU9tk0ZYzSBrdsd9t77MymjcwpmTmRk+auqv0wQ631++77D36J5mgDyP6+ZwRfnnKcrhAKny8vrAufb8fSwnNfP5fYByPHmeJ7Z4229PiwIZzhIYsPKAjlZVRNzJW+r/5QC5ESmxe8PDpSGNiIZliCr+1SFA6aCTbUNSAmfmFrFxur3rJWYBmCBNf5Sq2rh0KqYYRmQ1V36tWdRc4CERZoMQHUQ3WqlqSskJduIaxGjm5uIKVAiRZJRjOYgJZHizXGHHkGhUYToDQJOhY23wGphHlYHcQPRPOkaMbSslHFE0paMVy+LREVJvJ2jIH0gghQH0X1S0kyEI5+XZX4alN/ROa3L3EcnHuoD4gfgPgVxlN5qdCm9oehSe9fERXtv0KX1FogfrRdaXHBfUIkNcVc5iQ1pVyHcNt5VQsJS9wnv04vz46tyffoBSn+wErCSqREAAADDelRYdFNNSUxFUzM4IHJka2l0IDIwMjIuMDkuNQAAeJwdjrsNwzAMRFdJaQMKwT9FuHSfDKE1MnxObiji6eF495J1fO/7uM/PuTDXWvL6HW8mnu5dQ0lL1MclxNzRQ0g9uMfFlFmdA65K+ISDtbIqbMP0bglAoZmCbyarVFMgI+2K2BrHlJ4F6GQtafAawd6Pl2BzICNk1tw1kMG+ifq2QRxAx1upWFXGZSRd9TSbXMoPCmubyM4w20FK7igqhFt4z98fdCE22ZsDkxYAAAHXelRYdHJka2l0UEtMMzkgcmRraXQgMjAyMi4wOS41AAB4nHu/b+09BiDgZYAAJiCWBGIpIG5gZGNIANKMzBCaiYmNQQNIM7NwQGgmGM2moAJSxwJX5wBRx+aQAaKZGYliKJiANMNMQdjKzqAAUoEqDKTJsYSbgZGBkYmBiVmDiYlFgYWVgZWNhZGNnYGdI4OJgzOBkyuDiYs7gZsng4mVl4GXj4WRl5+BX4BBQJBBQIiBVZhBWCSDSUQ0QVQsg0lMPEFcIoOJhz1BQjhBBBRwbBycXNw87GwiomLiEsLiZoxAZ0LDlUFyQ+RFe/abExxAnH1Xvtnf63IGs1f88bGvt2EBsy9HT9snxKwGZif+7La3D5WwB7GFFnLvrT5xch+InVNfYt954tB+EJvLXdqh2ncumJ01Ncrh80WxAyC2T9wchxwRFjB7y6nVDgfWqYDVtCr3OKj/+W4HYt+St3J4JO8CZh//2bR/2glrsF3iK9z2x2t8A7OFl8gf+LbkIVhN0ae4Ayv2nwCLX+yZd2CWy2Iwe5Gkw4EJHvZgNxdvnrL/Lt9GsF2lTqoHqnelgdmrcnMP/Pn5EcxW3hB1QFclHOy2833/9//9UwpmnyqI2z9vnRmYLQYAXEl+9SD+QE4AAAJeelRYdE1PTDM5IHJka2l0IDIwMjIuMDkuNQAAeJx9VUtu3DAM3c8pdIEx+Be56CLJpEFRZAZo096h+94fJeUk1gBC7REha54p8j1SPrW6fly+//nbPi+6nE6twX9+EdF+MwCcXltN2uPzy7dre3p7ePxYebr9ur79bKSNLN/J+x778HZ7/VjB9tRwM1ZVaLIpmQQ32GBcx5s0cEHO1htvoMqKCxwnDjYH6PXSBmYYtMBJu7UzbBRsFgnU4OC+AGoCcYNgFc+/NRSWG1tunA6BBTxqxiEIvkD2EWJkwrnzGTNn7KILoCeQNiEjxAISedAqxkggb4LK5ZE2VlOTBRBTnGTZ3bRcFj/cxVbIEkY3NpeQSseEackk0vDJPZjLk7jw2iWPfAIco4LDQKUVQSjFZZJOTIP0zqwUK6TurPduADQKhBFWFOHQJ9kMYS9XItBxmU9v13ZOOn1InvqYsyx3L4HOklKKpc8UqGdZrooDS6H0CYApTZHg7rBSiGDPHQ17dk/O2JlsxSfhnpI6oWPREIDZICso7ft3CM+o06sHiKxCJd6hgj2jrRkb6trru04RlgwUNKXXdazvQnkSBaNGXVOBlfrP18vdCbGfGY+36+U4M+qm42jIh8bHCZAPTY5Gx3zUo50xhx1dizmyI7++fMGjQTGHH20oOeJoNsmBc09JGcSpd6QM0tQjUgZ5aobaGWUqehxG74NBfV+3qZRxmD6VLA7jU2nuKzGVYG1Ic6VJGcKpoKQM0VQ3UoZ4Kg8pQzJVgZQhncSWSvAzmixkGZ+DO5FnSev54xOS89M/2Qc54ZJBK3gAAAFPelRYdFNNSUxFUzM5IHJka2l0IDIwMjIuMDkuNQAAeJw9UbtqBDEQ+5WUd+Ad5u2ZLIHANqlyVaqQ6j4izX185D3IFouRNZJGPo7j8na73r6P95/LcZf7+uR6+T/h4gM31+Nz/V4eF6G0iBhOoek9dqHWsjmMOMJi7EzFPG0ocaaAsTFpW2YDirb2NcQNmcEAgkNOEptztQ4cQRKupdURjMlN4CcTo0quqbIQ1Wobu5FLIMGmZJGRY3eqSqhuK4NNhAqyLMSFdropXECy2ebI4OXmuaSbC4mZpCUU/jCRFCyDg5XpBIQlSqWWVLNgd2BGk7t00arZ/YRckMlgLPGU6k7sDAh+Mc+dK8HvFbTCXU4aq+mqZpqFPvubM5l1rK5N5Azh7baiuvMUfRrW6hRNZa2H2BztOcpDUxNvc3KYBQ1h06oa1/H79RqEmSaVxx+xbWxsuFeSDQAAAZV6VFh0cmRraXRQS0w0MCByZGtpdCAyMDIyLjA5LjUAAHice79v7T0GIOBlgAAmIBYBYjEgbmAUZFAA0oxsDhpAipmFzSEDRDMzIjFgMmgqBMA6mdDl2RnANDMbQwJImgmdZofQjBA+IzM2G9EZ3AyMDIxMGUxMzAnMLBlMLKwJrGxAip2BnYOBgzODiZNLgYubgZuHgYeXgZePgY+fgVMgQUAwg0lQKEFIOIOJjTGBi1VBmCNBhBloIBsjGysLMxMbOwcnFysLm4CgkDAHp/gvkGugQcQgcvB+xIHbtk4OIM4x2+/7HQu1wWyr/yn7y84WgNn2LAL2dxiiwOy07mp7iQ2/7UHsy3zxeyPfJ4LZxlUH9z+aMA/M3qEs4/BY7ByY3chq7iChpWcHYt/0eWkf8CxzP4hdpLPb7tlmPjBb6pn2/jihS2B2qhXHAc3KJWB25UyvA6dmiB8AsXXeTj5gcIYBzN4ms/VAqoYbmG3Wwe+QskgMzBY5mePwL08XzBadMt1hkuoFsDkGyl0O/fPt9oHYYgD1IGASEFs4hwAAAgt6VFh0TU9MNDAgcmRraXQgMjAyMi4wOS41AAB4nH1UQW4bMQy8+xX6QASSIinqGNtBURSxgdbtHwrk2P+jI7mOFEToyqJ3tSOKHA73kPr1/fzt95/0fsn5cEiJ/vNrraVfhYgOr6nfpOPLl6+XdLo9Hx8rp+vPy+1HEkoi2IPxEft8u74+Vjid3tJTySXCraaSqRiJJco0rrlX0ik9cW6FrZYk2WtgbIClAylHU+MGj9XFlDZABZCy4bUbcEpeSDY4G7gWYs0TInAvzBuc3w8mU7UeWGCHxQZY76kYs6nAo5SocP0ZGAk0Zi3NA1RlZyLk/hnX4FByWKsjMK5EscuEURz4CRFHYIi1cfG6ywV+Llgubp1tIPGvZXc2yz1t+FFEibxcmWOXDo/SSGYJc+1QCW26o4h7caALdnOufVPxqLQrIxtCfdLsIhX1A5RY1LexjhJZdjBl1v1Tc+Gd3LgOTkXFo43zrbhvqQogS/bWaqdKcqUW6JINstdJc0Uq4oMpcdadhoUGsrDXZp1dEMq24/Tlcv7QUPcWO14v59lifcjsI8Uss1u0z9kTfdiUPh6ST4UrZp06ZryNqVbGbFOUismr+HgYXkTGw8giJh6mLJrhYXSRBg9jiwJ4GF8KreOsutRTu+FY6qbdcFvqo93IWgdFmpO8fxG/HySDTppZ93qs7Pfnx8cR94e/BaMDuiBbrKsAAAEJelRYdFNNSUxFUzQwIHJka2l0IDIwMjIuMDkuNQAAeJwdkDuSxDAIRK+yoV2FKfEVlEPnk+wRnO4R5vDbkhNZD9Td8Hye5/nIq+/x4tPzF7/vezx/J27y8z2u4IyeQZfx6FSl+3LGOelSHqKeIMaSkbqQZU0QZdGKpEtYyzuABucUr4XSRZruge6IaYQaTjejW7hUMxdqMbygW7kQQWiwzDEKEZxNslaPVApsQCacbYsrEN3G2T13zDm6l4y6Zu+QYbAAcWvo4I2MMVegLo1OkM40WQRzRQYZ+0jbY1R7IL7xRMmB0G0SkxQT1uy9EKuCBZZmMWz3hAi6sQ+Uts4I98BqoQjXKDq//+nFUrpclty2AAAB43pUWHRyZGtpdFBLTDQxIHJka2l0IDIwMjIuMDkuNQAAeJx7v2/tPQYg4GWAACYglgBiKSBuYGRjSADSjMzsDApAmhnGhdBMTGwOGiBhFjaHDBDNzIjEgMngVoGmlJ0BLMAEtRQowQCVUNAC28rCAWb8Z2bkgMgwsTHAzIAx2CEyzHDTOSCmM3EzMDIwMgFNARrIwMKawcTKlsDGnsHEzqHAwZnBxMmVwMWdwcTNk8DDq8DLx8DHz8AvoCAgqCAgpMHEL6zBJCyiICKqwcQjBtQiniDOkiDGkSDKxyDCDDSdlYWVjV2cjZOLm0eMg5WfT1REWFyLEehkaJgySCwMPHPgx60kBxDnj/eaAybh0mB22OKqA/w8+mD2CofdB7RtG+xBbGbr2QdOLH2zF8Q2CVt6YGLNqf0gtvqq8gNTykUPgNjJagYHptxYBRafOGvJ/gjXy2B2a3vwfjMWV7Cax3eU7WdYRYLZ109esi/gFwKzOT5Pt5++PQqs3jydx0H0VbMdiB3okOXwwD0PbC/XoxkOqz0Kwe5p+zfZIf4SxM1qz3c5aHKFgNlHUgIcjks5g9nayYccPvY6gs355b7DoaxhMdj8B+0dDh1828HsDX/69vHf4wSzL38NO7CgTMIWxBYDABktdodKOM9EAAACZHpUWHRNT0w0MSByZGtpdCAyMDIyLjA5LjUAAHicfVVLbhsxDN37FLyABf4lLbJw7CAt2thA6+QO3ff+KCkjHrkVOmPRkvxI8fMo7yCfH6dvv37D/eHTbgeA//n03uFDEHH3BjmB55fXr2c4Xg/PnzvHy/v5+hNYgT104n3EHq6Xt88dgiPsvUjT7gZSTNXJAAuOZ1NlOMPeEsjVgUt8UW8LoKRFKZ2cqQewihHRAqgJtNKMXAUofqfmdQG0BGoAsZvCHguRma1M+s0kudcqsKdijXom4R9kvXnZvFdH2HMRMWVZIFsiIwxj0WFTRKvoAtkTSYWb9YgjZm5otkISJhRLY+dW0xGsTRqvoFkhLK6IrSdSujKugicOZByqXpuly9yiAkubMpDUKuFIaDMVXzqqUXYu1KXldmGrrit6UBZJijtS0CNMYqS+Lk1mkbTUWq1nviMcWzKOapytxVkbYzIu8v4AhOOX1yeCj8P3J70rNbhAkEqxxkGRLRJi/Ftpf9Oiu1YPLYnogvvB4IKaZFt1QRbOo1rqmLSi1oO1K2CWzYI1rTYfrAhG2hLJI0x2tzZYo4Lh9AopN9Zw7Vw5ZyZRuWW3agSUZAmbNwZK5SW9X86nhwvhdkU8X86n7YrIl7eLIBYgW7vnUremphi2tW4swLf+1Bh1a0KN0bZOoxh9ayeNQXPTaAqiqTc0BfHUA5qCZOI6DaETp2kIm8hLQ/hEUhqiTmykIdpENR47faIRpxbPfKEUTBMxeAieCKDpIctUaI1MsE7l1BR3jzkTG7D70ZwOh6UtqCzsXMZcf/5LxHz3B8vaNUdDJW4bAAABPnpUWHRTTUlMRVM0MSByZGtpdCAyMDIyLjA5LjUAAHicJVC5jcMwEGzlQglHEdx/CcGRcrkAw5EKuAZc/M3KkYTh7HzHuRzrcdF1Xct28VXf85DzcRyPQ17n73t5PNfXc3uvF69/9PNZNu+SOr1JN1Wntm9WCGfjrhwMQPokZwYQYvSlpJFroz4GZQBRIGNa20YnMrMvi9wj2kbdkqbcUukzvG3cRUxLHarGosUS0SgWdU6b96HbMAM0erIzrCAxIiXbPrrrGDkLkllaoKtHljon0ywE8ahSpakg8c4dSbKNzhaukJbujhLFGYgZ4Ghnd5vlrzIIkQwhM26EI8Tb7ohRe6FvzrrHVUTganSEMbJCnDVrOEUzKi82xws6aNZGGFIHRkYDEuK7KMes3fFngtR2zyawN0gPCWa2tn7+AdssZWiRGVTLAAACW3pUWHRyZGtpdFBLTDQyIHJka2l0IDIwMjIuMDkuNQAAeJx7v2/tPQYg4GWAACYgVgBiZSBuYGRjSADSjMzsDhpAmhknzQahWQTAepkg2piANEQYRrMzQJUrqIDkMZQrmIBoRqC6DJA6JkaYRg4IjVDBAXEYI8xiNgewDmZGohjopsL5YAWMjDAJRjDNwMjNwMjAyJTAxJzBxMySwMKawcTKxsDGzsDOwcDBqcHEyaXAxc3AzcPAw8vAzcfAx8/CxC+gICCowSQgxCAkzMIkJMIgIprBJCqWICaewSQukSAhmcHEJ8UgJQ3ULKMgI6sgI6fBxMqYwMvBIMWlICmSwC3PwijCArSblRFoJSsbJxc3Dy8Hm6iYuISkCIsUFzefeBcj0GXQWGNQWMP1/8DbEEMHEOfUUoaDvA8W2YPYpVtEDn7d/9QOxPaM4zt4rL5+P4gtd+rNgcbDHWB2wZXbB/ZkrAarKe9Ye0BB3Bqs90xG94ENH5buA7FXWFod8A+ebAtiL/ryej//0mqwXg7h0/t8ncTA7DOPW/a8048F67Wd1LV/8/yvYDb/Q8UDQe8Ogdl9S7fbC83+DrZr4WY9B5Yz88DirTyNDi+O/wOLn/VrdPD3bQCb+almlYPl9AVgNausVjk4ehuA/bhM/4pD/C8msPi7wisOxiy1YPWLVf45KM+5C2Z3nBJ2PJFbCWanrBR2PDWBDaxeeMFfh/wkSPhEf2mz37SkHKxm9s3n9mynBA6A2K+C+A5cOioNZqurT9m/0TMezL79KutAs5wpmP2Vx8o+dSMX2D1iAEiAncymEIQEAAAC+XpUWHRNT0w0MiByZGtpdCAyMDIyLjA5LjUAAHicfVZLbhsxDN37FLqABf5EUYsumqQ/FHWAJu0duu/90Uc50Tio2hmLmOE8UY9f+FTy+v7w9dfvsi55OJ1Kof/8xhjlpxLR6VvJh3L34dOXS7l/fn/3qrl//HF5fioqRRv24H6Lff/8+O1Vw+W+nHsdnahpkdo7BUWhSvM6tkq5lHNUMrLuhat0MZcNUBM4qgyj1vHdLDrUfwPtajFGEI9ypjrwZLpBtkT2qmN413LmSh7mvkF6uuM1fHgkOVXrsTPZy1M5t2oigwa+g2LIzp1Ii1a1eQM3sFQxph1yJFIq7HVPk9R56I4kUyK5hqnRtDlCRvQdlNN1HDrc8YqnBt9s7KCSVqFnl+lJuBHvfIfyaUYxpEUgl4PjH0zt6lMTfGcgmwjytUM2ILnCo26ZbAt1ajugwyPUmYwO66gjIyfeATssWiWV3vNEQ1h563iUxwQaITTTLxJtW2SmqNW02CTPbua8IykEkwAyws7Jtlkbu1BK9o9X5CY489eYXbdAeQHGQHvNlIfa9mwFEh1pPLqkO10ZjHfIzA46TVERPm12U93FUtoVKREtz2zS3LYm/Xq4tD4oI+Thsgul9JlvQlNgzuTZaM22NZnpQbEzvIgsJnH5B8uXDhJRoPMJxvfFrpkgxIZbN0TxrCi4wJzZQTmhWr1TC0uraLZ9t8GTzzkLxLuDTmXs6Tvgh8vDmyl6nat3j5eHY67mLcf0NCw9ZqTlOiZh3u0Yd3gpfsw0xurH5GKsOOYTY41jCAkW384anoJvRgpPschhcvAUix8mBE+xKGavTsxiicbhKVAyHz+9O/Ym3xSLMTpDUvAizck6NYs3WpNToPPeWBN60S/+aDlLIUdwZ3QFnXPTQ5ZCFn/JCEPI4i8ZZghZgRa/eiSLuSTzFIu5xDWesphLMofQ2+KUqVmcNTn7UQ46I25H2jQDjoOONOkk7DeOa7umAJszREufxXhbevn++ncAz6c/tKiPM9mlrnAAAAGbelRYdFNNSUxFUzQyIHJka2l0IDIwMjIuMDkuNQAAeJxFUrtu5EAM+5WUa8A3GL2lGAECOEWqbBFcFWy1fdpt8vGh5opzJdMSRVL+er99na834s/zvJyfd/nGI+f2grfLy3W7bh+0CnS93/jjf325bne690NPP5c5gj1850EeM/fjzxyTnJlqnyNdJwlAGjPZaqdRlKVAeBiXOBBjrgXUrAhMzSB8YWA6xNx0B6mw0mzMhmKA0BcC0oYci8oTkIhG9sIYUuWx92ZPDUA5shIUICsU2m01uHQ6JlUzZHVNnZrQxcHqi6piToPFgENablJlqarkyljqmQUfUahIGSAZSMSyIXRVrUGyUEzK0Mw1CM3lLk1mcKFog2QDyeL3EIuGkqgh7HFGAQQSQlt5ikPeAX1cQa28LR06pnB0KlrhuEcjOvNfKJMR/mHINcJ6xtRpAQQ9bdYUBzt8eMcMFiPy3txI4gDLfopiNSJSqkUc0joPBCuOGLopYIYWxJmdtbF5nwRjbNF/BXsig21//H2GtsfbM08Q7Ky4ws8vGCeN97WVGHwAAAD9elRYdHJka2l0UEtMNDMgcmRraXQgMjAyMi4wOS41AAB4nHu/b+09BiDgZYAAJiDmhuIGRnYHDSDNzMzmkAGmGbExwEpYEAIMCSBzmGA0O4MCSALCZYTT3AyMGUyMTAlMzBlMDCwJLKwZTCxsDGzsDOwcDBycDBxcDKzMCSKMQLVsDCyszEyM4n0gfVBnMnDHNc/cf3zVxP0gzn0prQNm1fvAbF39nANKF8/sA7G9XgUcEHncYg9iG3523R+6aaYdiG2i9Hx/8+aNYPH+Qn17jio1MDv54W37peoPwHofeXo7LJ++eS+ILbG+zSGjYRrY/CN9aQ6P7q4BqxcDAPF1OlOJ/6auAAABUXpUWHRNT0w0MyByZGtpdCAyMDIyLjA5LjUAAHicfZLRTsMwDEXf+xX+gUV27MTOI2snhNA6CQb/wDv/L+xOI52ISGPJTU6j3Hs7QYy35fXrG35HXqYJAP+ZrTX4ZESczhANHE/PLyvM16fjfWW+fKzXdyCKifE8sk/Xy/m+QrDCgRK1xpm2jg2zACbcRv82wwyHnGpRaxikmBGXAclBcqoNWRscMIlvMw9IuZG5iisCSshGhgOwBIhJlbNk33ecrA3AGiAlw6Ls+hOb5UYDUB3EVK1w1mgKxhX+cuYcJSU1qpsWVjdoADZ3khNpZZMA0bS2EUieEEjKaKayWa5F28hyj2/2M6sHUiXEFCx5JOa0Lg+p3nI+Xtal5+wHQO5hihf3xCSqxxJw6eaLV+0W+x5oN5K8rPtFXq27QlF78dsC7TSKHyl7KfuLx/v95/Z++gHCiJm2DLen2gAAAK16VFh0U01JTEVTNDMgcmRraXQgMjAyMi4wOS41AAB4nCWOSw7DMAhEr9JlKjnW8DGMlWX2vUT2PUEOX5yyQg94zPnZzvd5XnJVfeV1b94VZLZduuTI2Q6rJoxtRwczpsRiAfVo0m1gaDukpyR1LbklUQg9OEyzVTNg7ahZpqlrEQOEJa83xEhbJlIXsa7hC8AofEBM/AM4AFsqLWeWoO6dFH9MMqfpk9xWgvf9A53cLcT/TJpEAAAB4npUWHRyZGtpdFBLTDQ0IHJka2l0IDIwMjIuMDkuNQAAeJx7v2/tPQYg4GWAACYglgJiGSBuYORg0ADSzExsEJqFHUIzszEkgNQykUqzMyiA9GMK4zDWAWItm0MGWJ4RLgA2h4UTTDGiUkiKoQx2iC5mbgZGDSZGJgUmZqARDCysDECL2NgZ2DkYODgZOLkYuLgZuHkYeHgZePkY+PgZeAUUBAQzmASFEoSEGYRFGIRFGYTFGITEM5jEJRIkJDOYWBkZ+LkYJAUSRJiB5rMyMjGzsLJx8/Dy8XOxCQqJS0gKiDsxAl0EDVoGqbnv7xzw8eI8AOJc5fl+YPa3pP0gtujFpwek8pntQexpPawHvy/bBWbvXy95UDNFBcw+Uit80HyGH1h9Z+H2A0f60iDibVMPTFyusg/EzvfzOyB+Pd0OxH5awXXg8aFQsHqT52b7i9yegtW8vLvB7qPuQbD4qq1P7WXm9YPZyUe4HcwsloP1brrbb5+0aiPY/B+Ny/b1SjWA2dXNGQ5Hd5uB2c060xyO/9wINpO/54hDuo6SLYh9peyZw8dTTWAzzxiwOC4OZgX7d3/9EQdmawj7ixmLYyqLDFj9NYaLDj21+8BmCoqtd/igo+wAYrdua3BgS+UCs8UAe4p6f8JVG3kAAAJuelRYdE1PTDQ0IHJka2l0IDIwMjIuMDkuNQAAeJx9VUFuGzEMvPsV+oAFDklR0jGx06IoYgNt2j/03v+jpDapFETt2qJX2lmK5AzlU4rr2/Xrr9/p78XX0ykl+s+3955+ChGdnlPcpMenz19u6fLy8Pi2crn/uL18T2yJm7/jn/fYh5f789sK0j2dLXdS1p7OnKEF5q9kGtd8l9MlnWuuTAJLZ8qtWallg5R0CyQaahV/XiAK3QA1XLYsao05IWvx393eJYA9GxWl6s9NGUU2QDuAjMZURpBUCTuXNZAlV2Gj7s87kXleH4EtgJqtsnsKl16e2nd590BKZpYiESWzKe1cekCXUWsT4z7ClEK08wlEMSlXqNrISLU22uWOYIi8mkVV0hm5UOdt3SGORK5dzeNzJLzs2PpU394DbdKMwzmbeRU2wDJcgqU7McjSGoF3wEFReCrsdUAA2pYhBEWSTYQ4SlMh/0g8KHKGOneR4VvrQeoHZFBkrnGmHgyRR9t3LjkYqpmJgxavELmkfJ8NEulTapkN3YvlpFITlm0DsSNjcyr9FQkX1Q4prz69b44wG/WtSx35FIGU0UDNdb9THAc9JWvISJzQot326ZgTrp4uc6Ng3li3bfF0u747SI6j5fF+u86jhWPM8yMWZB4S8KHzKICPMhsePmy2dYDr7F34aLND4aPPNkSMtdswDJamwjC89A6GkaVHMIwuvYBhyiJ6DGOLug9MXVQcUxfpIlcNg77IEmF41R/CMBadHSu86OlYkUU3OvzoIhANw2VRQkyd6IVyeIWn3yhvJDL3jogDVlf2V65j/vYX5PenP/DSRD6nCJMLAAABQnpUWHRTTUlMRVM0NCByZGtpdCAyMDIyLjA5LjUAAHicJZE7isRADESvsqENbaG/1JiJDBPOHsL5nmAOv1IbTAdFVelJ/n1ddF3Xp5/1frab73u7tvde33u/7z/er4t+vtvhMFHZxsFAauTjPAKCUXgcCJluYaVNYMpHwkBaiqMpDQRXJpOSEkS9XARqybyqKCmiTEaipCUZhLB3biL6GqjgwdHl5Biz5wkwi2m5mF2xXQXo4rIYxBDbhhCk6taiaiQWBhaFqZaRwHBywRLE1JpZCjE3fpWlpFd/wXgrAi6CPLpSVlFhTZ5roGg4znF6HYmbHWXalIoFMHZjVeM60ZlQ603qi2IKy5NCm49CIY9HlFdR4uz5DiYk1sfLbGgD7eUGg+l0bh5k5hx9CK7w2dsUR0Ukc/2UXscqXDBYo8b+/Qfq8GnIGRU4WgAAAh16VFh0cmRraXRQS0w0NSByZGtpdCAyMDIyLjA5LjUAAHice79v7T0GIOBlgAAmIJYGYjkgbmBkY0gA0ozMHAwaQJqZic0BTLOwOWSAaGZGJAZEhh1CM+NWwaZgArKHkYUDYjgjm4IKiGaBWMbEBOEzIfhQmp1BAWQApjKYBRAGE6YrGcHOZ8CguRkYGRiZFJiYM5iYWRJYWDOYWNkS2NgzmNg5Ejg4M5g4uRi4uFkYuXgYeHgZePkY+PgZ+AUYBAQZBIUYhIQZhEUYREQ5mDjFEsTEM5jEmRLEWBMEeRiE+Rh4JFgY+SRZmISlWBhFWIFWsTGJi7GyMLOxsXNwirGy8fLxCwjyAClhISAFZAsJ84n7MQKdBI0GBukF73cfUD2edgDE+R7cf2B7iDOYXRXfcUBlw4n9IPYytnUHssyVwWwtoeUHtHdH2IM99rbkQKHTZjCbgyX9wL25Fg4g9rYzvAe8BWLA7N1/WvaLtCmA2evOLdh/V6gZrP6G/OK9D57ttwWxD/LP2Hfn10aIXTYr7CcfUwWrOSZ43v6iZxBY/MBKJ4e97UvBbHaDVoeWzun7QOy6r2UOF1WngdUvvCLtsKzjEpg9daGmQ/+iSDD7l761Q8i5L2D1G05vdHjF2WIHYt8puu7wUlkHbObKeZoH2Hd8AIsvajc/4Hm6ESzOeJ/NvtjnG9icAJEwhx/HDcDhE5A8z6HL+yRYjRgAu+WGp0lWjpkAAAKMelRYdE1PTDQ1IHJka2l0IDIwMjIuMDkuNQAAeJx9VUuO2zAM3ecUukAEkuJHXHQxSaYzRTEJ0Ka9Q/e9P0rKSK0Aau2IsORnfh+ZQ8nr2+Xrr9/l70WXw6EU+M/P3cvPBgCHj5IP5fT69uVazveX0+PkfPtxvX8vZCU2437GvtxvH48TLOdylNotVGI5tqogDlKgwrj2b6ncypErm+dxIEEIWBfIljq5kqKKlCNWUeu20smbdW69IZUjVG0mygukbEgicLV431kVVsY1ga12UlctWBnCyZVtK9ctXlfCQrWHyrYC9tRIlVCUIrj0ln3loycQK7Tu2kKjQMfeFkCEDUmiDSycBGLAJXLUJ87NVTAB3gxohRz1gUqu7iPrzSPyvoJmgeI9chs6lSPpuALyACpa0COVd4pvfIXM+gQlGDVcztC80ZJGmAXiipH08GM4LG5L6zZ0dglycriB4QQtjfcoJUVduEtLfzlIurSdFaKqAtwHiSSybiuuwwA6cYfhJFv/BzILJFUigZicILHeV0knCqBWa2QRbVLdiGlVc2ob4cLNBhkvG6CsCEe8IbuaRuTJPQwirdqCpLzHsZB2jkRkaARLPzWArTZmd0jlprSuZMyX96ikczTQMC4WLb/S+Xq9PA2dbQydbtfLPobypn3WxKa0faBwrn1q5C37aIhN0X0AcCzb25xj9b2ZOZbvLcuxcO5MHAKnDsQhon6f3z7h1G/beZvaCofgqX9wCJn6BIfQqR9wCJt4j0P0ieA4hE9MxhQ0UxZTEE7UpCFo4iBndNQmrnEK4olTnKJNzBkQnRiyedMmJgzbe5zUt1zEx09ZI9/iDx15vlf44b0945M5M09y//iri+fDH0rWWMc8knPuAAABdnpUWHRTTUlMRVM0NSByZGtpdCAyMDIyLjA5LjUAAHicLVG7btwwEPyVlBLAW+x7SQsBDCjFVXGV6qBKfVo3/vgM6XTkcHbnwdfzep3v75foef7eTpwv2V7Paz9/nvt6WbdtHp/X9rHfct9/b7vve/s49/sW20/98bUZmfsY7aFUqSrtMGKXlPYQ0mHaDidJFQAMIEYtTo9e1oSkjK0dSm7eA0C693nPYB+NQWSxmshQvGCJV1+I0/CROoWiFIcjKCKhBKGo3rEnqUyr5liWukJKyMQtQEov0NvBFJrdIQ6JGQFsrgEHCRYPK/6P6sgxYiraYIeHGTLSBLOszrIQtj6yKQV3gQdUoxLwZwjZEep4GCVP60q9e/pCuuYo7HH+3hykykBQgWfCyoSwwFaTafA+B500JZenyJqZAXnhR/ARoRxrbpa9VGMsQz3re4bFWReEuDar82IJnz2l1ByDAUVjo+3t888bGm3ChJZFSezz1xuWfP0Dw3h7TImSeYwAAADMelRYdHJka2l0UEtMNDYgcmRraXQgMjAyMi4wOS41AAB4nHu/b+09BiDgZYAAJiDmgOIGRjYHDSDNzMLmkAGimRmJYjAkgAxigtCMzNwMjBlMjEwJTMwZTMwsCSysGUwMbAxs7AysDAkijEAlbAysLMxMjOJZIOVQdzBwTN0rtX8N8+x9II51itK+4okT7EHsuv/L7I+d3QVmL5gj4vDu3jY7EPuv2gf7RbM694PYD7Iv2327thnMzghlOVD7SxHM9ixyPWCU/AGsXgwA7igunbrS7T0AAAEXelRYdE1PTDQ2IHJka2l0IDIwMjIuMDkuNQAAeJx9klFuwzAIht9zCi5QCwM29mOTVFM1NZG2bHfY++6vQarMrWQVjATkiwW/PIDbx/z+8wv/RvMwAOCLU2uFb0bE4QaewHh5uy4wbefx6Ezr17J9QjFH92fyvK23oxNhghOGjCIpecZImgkw4G7tX7qTMRVziCFSFa4dkA2Mdo9kJUskVcHU4cQ4CkyE2bqBk0bFDpf2+4rmWBFOMaAm5N6E2UAMYoPZZwMFpdbSAdVXoYBZNfK+PpNSjyxOcsCSoreD5JpQO+BlmZ90vSs9rsvclBYLanKKBTfRxKNp456aBFZAbotGc23rWAGlzSxOPE72OIfXx1uxfPgDYJp5UFfUPlAAAACMelRYdFNNSUxFUzQ2IHJka2l0IDIwMjIuMDkuNQAAeJwdjcsNwzAMQ1fpsQVkQdTXho8ZJWtk+MgVL+LTh9d14z6Fz/MdxjIDJOy5Qor2UJasAg3hNC2dzboV94gDTbRS/xAxWwSGLnfa6KFnNfBY7ZVNVbK/WxTqLMxKLBpgqRCj3cF9bHqQS9DveQG9oSEOJ0zAWQAAAU96VFh0cmRraXRQS0w0NyByZGtpdCAyMDIyLjA5LjUAAHice79v7T0GIOBlgAAmIBYAYkEgbmBkc8gA0szMWBkaIAYLhgA7A1iAkQlDhQBEAC7BDqGZ2RkgNBsDmglwBjcDYwYTI1MCE3MGEzNLAgtrBhMrmwIzuwI7RwYTB2cCJ1cCF3cGExePAg+vBhMvnwIvvwIrQwI3e4IIyENsDKwszEyMrBzs3Fyc4qeAIoxQ7zIIqKT2HggPPrIPxLl9qukAv26XPYi99anmgULhw2B235Vj++/nM4LZm20/7n8lXLofxL7lF3IgomAzmJ3TnHlALtL8AIh9weP73iU2xWD1X/V32sVuFXcAsZe7v7O/kScGZrNOF3aI+Z0FVvM0pss+enuYLYhtUZvnMOHLPTsQu3lmg4PvlBaw+XN51jlcDzkEZs9nsnSYNYkRbJcYAIl9Uj4Z48SmAAABt3pUWHRNT0w0NyByZGtpdCAyMDIyLjA5LjUAAHicfVRbTsQwDPzvKXwBIjt+JP5kdxFCiK4EC3fgn/sLu6slRUSkTdrEk9SeGXWBbK+n588v+Gn1tCwA+M/t7vDBiLi8QL7A4eHxaYXj5f5wWzme39fLG5ABtdgT12/s/eX8clshOMKdFKGubnCHhTuLdMCCWxt76xWJvVVjoILNNeN/gJzAWkzFRAOoVZBpApQERlyZrUZcUY14AtQrsHcx10zStTHrBGmJ5MLUOE6KPYLUzSbIBmsiTbqJZb7x7CQTZM8zsVDFJhmPsklmQA9gEGhkLlALN5QpjhBCnfggadQdwCicZtVQqhNxNPQkyKl1n2lDNaoJSTq6bZIE53VGeZCyApeU0JNp4VBpJiKlOKE29caeRCJrazMiI/MVNE5yFNz0pF6nRIYh1yinO7auSTlWCSEnyIf19MulV98ezutp+Fai12HOYBx4WFCyD6PlpcNOMQEbnqHobRgjz+5D/ZiAD40lOu21lByIdqJJDlR36tC2wjsZag4kO75pG3TH63XFdvxJZvszb/mlOnJN2vYk5fz2Y4j35Rso5NOxwMohZQAAAOF6VFh0U01JTEVTNDcgcmRraXQgMjAyMi4wOS41AAB4nB2PO27GMAyDr9IxARxDb8kIOnXPJbx36fofvlQ8CZ8pknp+juf8fjb/7uPasvEAtpz7j78+h0/TRTYuns4lPG6bxJUvIfWsccusRbnGJZPEPMetMyV0DcK2W7REKajB4qyFJWwXrQAhF2vjiyYLpVmrnBjD3bGu2jInD1YgmQFPH/gSoyaoVAgEQQ1/gXHFgKOWmiHu0qmcyl3b+oAXhRWM4FiY+I2rsuzF5akKL1gEx7KBE5K6EzTBHg3QScb5+Qe1U0K4ykYAfAAABB16VFh0cmRraXRQS0w0OCByZGtpdCAyMDIyLjA5LjUAAHichZRrbBRVFMfP3J19ttvX7ra0u11mH7Rbtm67u7NtrbJ7CUpqqjRC9EPT1EERNhETQCKiAq2mjZIYpcGq1EIMWhShVpFgqnRv44MAlX4BrBArggbERx9oAq0BZ87sLrYkOMmd/+/+555zzz2ZmbGB/aMgX2ZQLyKPqDwWy6OF04EkK6dRlRCd4FWUN6g+N9Pn+NRcD4KsN8NSSn2KzadUT2sUlfOnH8QV1XC3heTaWXvqQPUNqpKUps9w6x4zq7nlwewMenWuSWdMVTC7K4KozLn/JEjukAxM+8nAmX1S2p2q5CbcvrGpROmE/9OLZByHvlzyLM0ADjgCRMMTwgOvBa0OdHrQG8BgBKMJTBlxkpEpZZolc1acZGVL2TlxkpMr5ebJvgUsVrDYeGLL9xFbgVAwByyFUFgUJ0V2ye6IE0exVOyME+dcYa4ADpfgcoPLAx4veOfxnLcESkp5rtQn+MrAN99HSvzgL+dJ+R3gD0CgwkAqKqEyCMEQhMIghnlOjIC3CqqqfaSqRqi5E/S1UEvAqoU8k5RnlpyFkmgH0QMRP0SCoL2LJ567eS6ygCdWo3xYHanV67S80SDfrZYMk1GbmWHKM+uysnNyZSmyO4qdhVqXwy56dN4Sf0SWQEVlMOLXhoIRMVwwKX8yXPLrgeinPfxCV3svVSY9S8nCipZNyJ9NjNDxYw8h89ND9MPlbyE/m/8Bfe6RJciB66/Q+sHpmMLVXx2mPwi/In/S/CPdaqbIT1ov0PhQNKGwpuwItW2fRh7e9yZdf8jGFHayRtrcMYK+2DmHOkeC6LfUL6anXS8i93pLaKipD7lj1Qq6+peTyO/G36H14hCy+fmP6fi1nchdjR30iZ/WI4+awjSWs2dA4YYT99Ozla9ibYtWnordmNqD+x78tjL6eecbyN1NU7HjwRDG1jUuiy16YC2yb/+XsYltk8rvBlbcuyR6afVKzHlx10uJ0YgFc97wtCaO9fPYnyvc7uh3TwWRc8uOx9xb/sE137TX0u6r89HvvydKr65rQ5beK2Kb/pyHPN4vsr99rcjDWQ+zlzMPYuzo7ztY7pr3kbds62InIyKu2entY6Ru8guFbaZz7HC5BmsbOjTF3NXqee1LbYMLzDuQXZcus+sxN8ZefPp1dubx3Xj25qav2YOkD7l4+xk2WBzAs/f07mVtw6XIY/AaO9+9AXmiirKeBrU/a4/YWFbYjtyweV2iJzyGeXadbUv4NwxgPcsPCGzjZj/28Jy7nj16tBPX/EGOsmuOUaxt2d4TbNVj6jt2Zd9vrLUrhP75dvNgXfUa5FO2v+iFt3W4ZqP+BZr5fSPygYJn2Ph9ak9+/uh04nL5Vsyf/y8BijEFswI2vwAABVt6VFh0TU9MNDggcmRraXQgMjAyMi4wOS41AAB4nH1Xy24cRwy86yvmB3bAd3cfcrAkxw4CS0Bi5x9yz/8jxZ5Vz2xMZOUldlslTpEssumnLV9/vP7+9z/besnr09O20f/8G2NsfykRPX3b8sP2/PnLb2/by/dPzx8nL+8/3r7/uYVsjbb584j99P3928cJby9b32VQwK/v5tqbbrTTfJ1/KRPH5tz6pvsIGjYKnAIXe2vDqQGnRs5c4Gx7Bw6/DePN9jaUy+c6/PkuXccw+BMxB4GfcQGc7aZN8GsGv+gaBa5Nf0NJSIDrwspe4Pr2Bn6jkzJO9+b4g1bgBvy1nUaI6XYDEBmk6sFwk5kR0eax3ZKiI5YKyTOW1piGbzfZVYeKVMisiu7GbbTpMwaPKH0q4oGnbhw9fbbWO5c8bfqk0dWBNHxKaIXM2sjuw0cf2813VFrcKmRMnx69I45b7IEk1Vk66kNmJJZI7QzSFbJPpFsgO8lzRKdZq5+QY+bTm3rQdlMUPcQrEQnNiJBNtEFWU4EcFU/hGZHgcKSOmHuUupQsEQoTjbtmiZRFrSqRKFqCdm4SSRM+u0kvkdk8EJAj9TyLmciqGyVLRAgY0MjQWyO1qpgSk6fjiVNq1rS1KpvSpkshRrNljkTQG1ULSVYIcVA07enK0UX1w8cdSX1A/bJT00EVMqcbjhXJbJalQrZG9XDlI57eeHAmC0Ct4lFBMmUfbIYekh2FMqkEpzrFAUfDHHriRlIqUw29hqqg1dRsdohE2UGa5QGyiw5IF72mUGbJMstzy3lqGBuIx8DXysCzPmgHdLqhQ1NweH7psyPyRAb7zHpnzNbS56wPmg19CVGg6CQD1azmOqVTTESCzjmhLJ2per5liQDtagPxzSbqpeYsm+g2MAgxXzImIXWpBG96PB73Ts5/5F6dvepgsyNP0aiFpfqkIbUldJYpdo7mUHo2MZTcymstDmhXcmg+e1Nwx5Ve25FUVe0yoSFS94f1g6sjq5jPOcIC/VFCxyEUIlXXe8tbrwhAaFOnyJWMeSlA+GNUXn2WivZhTWwOpx4901ZA5d7LuNzC5xBFCqi82/WQv+OisxyeSLCVqnI7ouJmRLNYWENISqr3YkF1gRubd4x98UorkMV7Is27IOq5XHSuBi6u6UNVgUzmdAzct2Wn+KxUR/e5adIb2nMIFMhjcwioDmmSnVEwqcqEy+BrjgYME9z3edtj8ypXIAYwtYHCWMx+bsRV4hHD17kuYHzavJWowWn19M9vrw/74rFBPr+/vZ4bZP7IuSjiy6bnPojMYtt7+fXLL+vQ5qGfOx7jHecqx3i3c2NjvPu5mDHe49y/ON/XNYun4cs6ZWl4UUQaLQ0vQpwUYdgua5Cl4cUSwzS/Ypm5rDWWhhdXqMfS8KKLNcXS8GLMSRlPl+vawWlkcRa+n8hj4vBdpjlPMsF5sphLZhdGFnPxu7fFXJI5jCzmksxhZDGXZA4jizkmrqXR63Vs27xtL/cup9GVbU1FwOipickZfhZnnYqAq8VZ/X6yOOcVkUYXZ01pwOAiyyydHPr9fDHXzDkMZtcD0jLzllfR5VLiNLb4W+Y8T0756t3b4m/JHyZvigehZxS5LawoLO7IFQXuAUljK/OW/GFs8bfkD+PX4c1pfDH3ZA7ji7ln5jFkXR6jdr2fL/5uR8b87EnMpDS+mHsyz5PF3DP/ML6Y+9Gdvoh7EodZGYmpdb50+2zPcWnYkPvJohfZnhDVKeCwI4RTruHHySmYmITtUqZox8mZxuhz2AQ91i3GoTWQe8hco8NB/Kcvc0peZ2J+//gfOT4//Qu6pfHQBM+V5QAAAtZ6VFh0U01JTEVTNDggcmRraXQgMjAyMi4wOS41AAB4nDVUu24bMRD8lZQngCL2vdwIAQJcCld2lcpQ5T6tm3x8ZnmOCuk0XA5nZ5b3/vJ8P38+Wc7X4zw/9ON4//Py/LCP/qjdsPjzeZzHj7fb23k7UIC1A0v4hx29/tTj/eW5n8zP89XO88f5tQ9b+unlebydqAbLteHt9p/y2tYEJ996G0pvvfGUb38PmxRqPHQal4+HTdOUNXhWxLLx8FlKgv9LWGU8YtYi5UEznYRyPHJShdi4AzJXii4S0Yxxbxq3aN5Mphp3marVRH1i1uqaKC4QYWkB65rMtXYN1VLwQGYB6hovL/D4dGbxrvHo4nvMwOncksmMNqKLdTUCEVrNU7G6xqanOpgVjYVEM2el7zYUSAGCskjeEpVFcRhNTondGC+T6ppySNqiL4TACGhzZ5JaF7msFJhmqZldI8Rwuk8TgZHgBidFQi5BmxNC2RCt4iGTUje38tK00RZJbuaVXJ0XhGm3UWy2UADpJhtIKRsG6YRkH1BqjNBHeylxIUsUx8Bmja1Fp5qFg9dAdyErA0+oBRHvXY5IHXo50vKrBfMOHkJTiCAIj2XZ84EZCnDsnWpYayViSLPZUQyHL8+sIURExLwjitonOoZHO2t0J0K2qyLpGjXJ8BYRrcd1xwYjc0NLyddOSchzc8Fj2wmQlHf0jztmmZB0gyyLN7LUYB8C57V6Y0EEAgYipK67Bu2sbag6x1aFSUaCPTgw+UKCnbd9nrU14YToGkxiTyAQ84URUsyE9fw3c9gKWByVsbq7BWo3BVQKabbN49z+ci6SHUPkl+WUtS8JwqC6uujIEwYmBlkmw3ftK5uo7BcBesEvAPxGz02W4lY+1mRz3AbFHerYAUjBXYdqbWccDWl9yYfZt/H5+7tiEnQoEo9hyBvfidvw+es7tA12aB5aeOsM1xk0HMr87z+tXBM+T8Pm0AAAAb96VFh0cmRraXRQS0w0OSByZGtpdCAyMDIyLjA5LjUAAHice79v7T0GIOBlgAAmIJaA4gZGNgcNIM3MgqAzQDQzXIKdASzAxMjGAFXBkAAyhQmVZmTmgMgzIZkAY6DoRKiE60AxCaQewmeH0Iyo4ozMCHPANCM3A2MGEyNTAhNzBhMziwILqwIrGwMbOwM7BwMrpwYTM1cCFzdQAY8CDy8DD58GEwO/Ar8Ag4Agg6AQg5Awg7AIg4gog4gYg6A4AzdDgggj0FA2Bm4uoJ/FtYAcRmjAMUgslnq/R3hlzn4Q58Dzwv1njNgPgNhTFkgfeP7qC1i8VtvhgO8+NjBbcGX/gSsTl+8DsVvfLTzgvbzdHsS+3njxwF/FhWC2z/HHB+6FaTqA2P5rOQ+ai5iB2SsWtBzQvcMPZh/uZz1wIVkTrL5qieT+W3fe2IHYZhX79635EQ92Q7Po0v2zGKaB2db5ffas23LA7HsTdtlbn+8Hu0fribiDmWyLLYh9jqvc4eMxTrDbXC7PcDC40QY2f1raCYd/u6LA7JItTx3ctzOB3fB4MZfjnc+vweL/8y47qNdGg8XvnOp1mHfkENh8MQCiB3hBNqRZywAAAj56VFh0TU9MNDkgcmRraXQgMjAyMi4wOS41AAB4nH1UUY4bMQj9zyl8gViAAcPnZrOqqmoTqd32Dv3f+6vgdDteCXVmQB7yxgHew6eW1/frt9/v7d9F19OpNfjP4+7t1wCA02vLRbu8fPl6a89vT5ePyPP95+3tRyPOB/L+jH16u79+RLA9tzN0IEezXDkxi7QIrev4lh5IZ3amdqaOSDwr5EgkdR6oU9sZu+Ng9ALJiRwRJhXO3YU0oAVS2q2dubP5eOQ5aJJxgdTcUzooDNWGHcSnjwI4E6hdeGKEsZOYCRRAS+CMeg2mNerK4jQLoCfQugIbUgAtelXmiNDuWQ4yK2Igo5OGVZKIj2aCqXm2UDW6WvUS/xKkABiFQ2clJaqQ44Ecc7hyEsDuIuXfL4aiN+YzGIyU1abMEipRE6Yqpnpuqm6KVT9RF5JlCi99IA3BMtPkiDLRAUsV0Xooi0+ORrcofiwhheKErUImSdxnVGG+5DG4rIcgJKc9eiiUv5swo1bApCjkMY2WPICJRwlMhkIeKhC0YshjjJJKSoI0mJwUnAc95IKVjmK+71FMTBoEqdFJIYx8C+TL7fpp7h8nweV+ux4nAYfRMe5xfLRxzDSnHYObcDmmE8P0GEEMm8egYZgd44RhfgwN5Qf7bHDuj9sI5GsIfJN6ZBo63hSNy/EmXFoR2fSJeesmQ1xubnLD5WzTFS7nm34wHe1CwXSEmyIwHdFG/SMyNo7XzsQbmbxK2znbGcr3j3M+1qc/oVUovPl1vHoAAAEyelRYdFNNSUxFUzQ5IHJka2l0IDIwMjIuMDkuNQAAeJwlkEtuxDAMQ6/SZQI4hv6WEHTl/cwhco05fKnpzn6mKJp77338vs/Xw89z7GOfuDzHG/R97leDfT4P/3yOK2eQJQ+ZaVY57mtN5qQECfNSkJhuiwdP8UwH8ElBukDIaxWITTaLthFbsGtiWVrjoqmyJA1MJ5GEN3MJtdbJNOXIcfEsVhMgmoUsOOKRWSy/TJdW2ICJVXnHQKCsBZnNyOVr3Nz6tVoUlcHfQZJiPPfWErMe5Wm+cIAFizp00v46oMavKbFSZwaR9hhyeaewzkrcYy4c2mRhcX2bUEOCmBLiAqN0M45xo8+V0n2SYf24UXk4dZ9pqtkzQUsHPibl/5mxmSPgYgE/+fZEGQUSwYGN5+cP5dhiuLM44gkAAAAASUVORK5CYII=\n", "text/plain": [ "" ] }, "metadata": {}, "execution_count": 44 } ], "source": [ "Draw.MolsToGridImage(fmols)" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "colab": { "base_uri": "https://localhost:8080/", "height": 1000 }, "id": "I6I_d6DW9zSp", "outputId": "8a9e7f23-95f7-4702-bd6f-2216fd2a8665" }, "outputs": [ { "output_type": "execute_result", "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZAAABOICAIAAAAQGayKAAAABmJLR0QA/wD/AP+gvaeTAAAgAElEQVR4nOzdeVxUVf8H8O/MsG8CAgoICu4i7oiCaJpbiWYqqKWmZbgFmqZWmpRmaqZSqT245FJuUOqDlhvuhjtqgigICsiqsu/DzPn9cXQefi44CzBz8fN+Pa9ePHjPvd/Rmc+ce+6554oYYwQAIARibRcAAKAsBBYACAYCCwAEA4EFAIKBwAIAwUBgAYBgILAAQDAQWAAgGAgsABAMBBYACAYCCwAEA4EFAIKBwAIAwUBgAYBgILAAQDAQWAAgGAgsABAMBBYACAYCCwAEA4EFAIKBwAIAwUBgAYBgILAAQDAQWAAgGAgsABAMBBYACAYCCwAEA4EFAIKBwAIAwUBgAYBgILAAQDAQWAAgGAgsABAMBBYACAYCCwAEA4EFAIKBwAIAwUBgAYBgILAAQDAQWAAgGAgsABAMBBYACAYCCwAEA4EFAIKBwAIAwUBgAYBgILAAQDAQWAAgGAgsABAMBBYACAYCCwAEQ0/bBQDUd+fO0cmTZGZG06aRkZG2qxE29LAAalNBAe3YQV99Rf3705o12q5G8BBYALUpOZnatycicnen5GRtVyN4CCyA2uTsTHFxRER37pCzs7arETwRY0zbNQDoioKCgtTU1Ojo6PLy8kmTJkkkEo12d/48paeTmRldukQGBhQYSCYmNVTpawqBBa+j3NzcpKSkpKSk9PT0jIyMqj8rtunZs2dUVJRGhxk8mI4coaFDycuLAgLI2lrTul97CCx4jezevXvGjBmFhYVSqfSFG5iYmDRr1szCwuLKlSuVlZVbtmyZOHGimgeLj6c2bcjIiPT1qaCArl+njh3Vrhw4BBa8LqRSqY2NTVFRkVwut7KycnV1tbe3d3BwcHV1Vfzs4uIiEomOHz++atWqQ4cOGRkZXbx4sUOHDuocb8YMWr+eevWic+fojTfo5Mkafz0klZKJCRUVkbExSST06BHp6ZGlZQ0fSJdgHha8LsLDwwsKCpo1a3bs2LEWLVq8bLO8vLyRI0fm5+d7eXlFRUW99957ly5dMlF17KmggH7/nYgoLY2IKDBQk8pf7No1un2bJkyg9etp7Fjas4f09amwkJydacKEmj+cbsBVQnhd/Pzzz0Tk6OjYtm3bbdu2vWwzS0vL0NBQIoqOjnZ1dY2NjQ1UPW7+2r37jIsLde5M9+6RszMNG6ZJ5S917RpFRNCtW0RE8fE0cyYtXEjnztXKsXQDAgteC1evXr1w4YKlpeXVq1flcnmvXr2q2Xj06NGTJ08uKyuTyWTGxsa//vrr9u3blT+WXC6f+f33fW7c8Le23uzjUxYYSHq1cypja0suLk/G8kWiJ79U/FAfIbDgtRASEkJEHTp0KCsr8/X1bd68efXb//zzz506dUpOTnZ3dyei6dOnx/HpVEr466+/EhMTHR0d/zx5MvDKleJJkzQs/qWaNCF3d2rcmIioWTPauJFWr6YePWrrcLqAAdR3WVlZhoaGEomkcePGRHTs2DFlWsXHx5ubmxORt7c3EbVv3764uFiZhgMGDCAiHx8fIgoICNCs9pcrK2MFBYwxlpvLpFLGGLt/n2VksORk9tZb7P792jquViGwoP4LDg4mIk9PTyJq166dXC5XsuGuXbuIyMjIyNXVlYg+/vjj6reXSqXHjx8XiUQGBgY87G7cuKFx+SqaMIERsR49WEVFXR+69mFaA9RzFRUVTZs2zczMbN++fUxMzC+//DJ16lTlm0+aNGnr1q0tWrRIT08vKSn57bffxo0bV1ZWlp6e/vzU05SUlMrKSiISi8Vyubxfv37Hjx+vtVf2Enl51KUL3btHc+bQDz/U9dFrm7YTE6B2/fbbb0TE5zFYWloWFRWp1LyoqKhdu3b09BTPxMSkQYMGL/s0icViBweHTp066enpEdGMGTNq6UW9wsWLzMCAiURs/37tFFBr0MOCes7T0/PSpUt8UtVnn322cuVKVfcQGxvr5+e3efPmYcOGSSQSPiLm6Oj4/NRTFxcXPmMrLCxs9OjRRkZG58+f79SpUy28rFf54YeKdes+sbX9MiysWbNmWiiglmg7MQFq0fnz54nI2trayMhILBYnJiaqtx+5XH7kyBEisre3T09PV6bJ5MmTiahly5YFfGi8jsnlE0aOJCIvLy8pH5KvFzCtAeqzmTNnElGvXr0qKyuHDh3Kx87VIBKJ+LzTwMBAe3t7ZZr89NNP7u7u1tYfffaZoXoH1YhIFLJxY7NmzaKiohYuXPjMHz58+PDq1av79+//8ccfZ8+ePWrUKE9PTwsLCx8fn/z8fC1UqzScEmqknJXLmKySVWZWZrYybKXtcuBZ7du3j4uLCwgIWLBgQWlpacuWLdXbT2JiYqtWrfT19VNSUuzs7JRsdedObrduVkVF9OuvVHuTsapx8eJFHx+fysrKsWPHmpiYpKSkpKam3r9/v7S09GVNpk+fvm7durosUjXa7uIJ2J6cPXMfzP06/euj+Uf/8/A/2i4HXmDz5s0SiUQsFh8/flyT/cyaNYuIPvroI1Ub7trFiJiREbt+XZPjqy8oKOj5qwR8DK5Dhw5eXl69evXq1q1bmzZtdu3aZWxsTEQ7d+7UTq1KQGCpo7Ky8tq1axPvT+T/93bpbQSWzlqwYAERNW7cOCMjQ709FBYW8s/8dbVSZ9IkRsRatWJaGcv64IMPiMjT03PgwIFdunRxcXHhqfS8pKQkftrboEEDtQf7ahsCS01ZWVkf3v+Q/4zA0mUymaxfv35ENHjwYJlMpsYe+Mf4jTfeUK+A4mLm5sZ8fVlOzqs3zs3N/ffff48ePar87NZqZGdnK6428Pn6nLW1dadOnYYOHRoYGLhy5co9e/ZERUWVlZUxxsaOHUtE3bp14/9X1yCw1Lc+e/3qrNU7c3aeKDiBwNJlGRkZ/KacZcuWqdpWLpe3adOGiP78809V2x44wC5fZoyxuXPZrVtszBjGGFu5khUWspQUdvYs27GDLVvGgoKKfX1927dvb2FhwQPFzs6ua9euqh7ueYsXLyai4cOHM8YiIyP//vvv2NjYwsLCaprk5ubySxMzZ87UvIAah8DSSFJ5UkxpTKm89LH0sbZrgeocOnRILBbr6emdPXtWpYZ///03ETk7O6sxOWDXLvb33ywnhwUEsBs32Hvvsd272ZdfsoAARvT//qdYb8vMzKx169Z83um6detUPWJVFRUVTZo0IaITJ06o1PDy5cuGhoYikWjv3r2aFFAbMK1BIy4GLm5GbkYiI2s9LNet0wYPHjxv3jx+vezRo0cv24wxlpGRcfHixfDw8IMHD9LTVbRmzJihp9YSMZGRtGsXJSQQEQ0cSGfPUmEhNW1KDg7UsyeNHk1z59JPP1F4eMT169cfP35cWFh4+/Ztfg/j7Nmzo6Oj1Xu9RPTHH388ePDAzc3tjTfeUKlht27dVqxYwRj78MMP7927p3YBtULbiQlQR6RSKV8G66233pLL5cXFxUePHt20aVNwcPAHH3zQt2/fFi1aGBr+b86Ul5dXfHy8WCw2NjZ+9OiRGkfctYvx/twnn7AbN9jWrSw5mTVuzJRZ9GHatGlE1KJFi/z8fDUOzRjr0aMHEW3YsEGNtnK5/N133yUiDw+P8vJy9QqoDQgseI2kpqba2NgQ0ffff3///v0XfoXb2Ni0bdu2e/fugwYN6tixIxFNnjxZvcMlJbGsLMYYu3CBPX7M7txhjLHjx5kyJ5dlZWVdunQhIn9/fzUOfeXKFSKysrJS9d5JhdzcXBcXFyKaM2eOenuoDQgseL38/fffIpFIT09v3bp1nTt39vLy6tOnj5eXV8eOHZ2dnav2sDhLS8tp06ZppdSEhAQ+DK9GL2ncuHFENH/+fE0KuHTpkoGBgUgkWrlypSb7qUGY6S48RUVFGRkZTZs2NTAw0HYtgvTZZ5+tWrXqZX/aqFEjJycnZ2dnJycnmUz2yy+/MMaOHDnSv3//uiySU+8m6uzsbGdn58rKyoSEBN5LUkNMTIyhoeHPP/+8bt26Nm3axMbGqrefGqbtxAQVVFRUbNu2jd8a4uLiEh0dre2KBKm4uPjtt9+2sbHp16/fxIkTg4ODN2/efOzYsdu3b5eWlj6zMV/8r1GjRkre81zjPv74Y1LxJmpe88iRIzU57ttvvy0Wi319fYnI29tbk13VIASWMEil0i1btiju3eVXrAwMDL755hudGhOtf2QyGe9b9e3bt7Kysu4LKC0t5X2rMXweV7WkUundu3f5pLNTp06pvU6D4mqDlZUVEV3m08l0AAKLMcbYiRPsq6/Y55+z+Hi2deuTKcmrV2u7LMYYk8lkYWFhrVu35lHFH1G1c+fO/v37i8ViImrfvv3Fixe1XWZ9lpmZyVdoWLJkiVYKUKwu/+uvv/LflJaWJiYmHjt2LDQ0NDg4OCAgoH///q6urvybzMHBwdbW9sKFC61bt7569aoaR+RPNuMXVX18fGr01WgEgcUYY2zSJMYYKy9nU6awJUtYZiZjjGlrucin5HJ5REREx6fPN3dxcQkNDa2srCwqKuKfH3d3d97nEovFAQEB1c9gBk2cOHGC30QdGRmplQL4c8YMDAzatm1bzZKnEonEwcHB1NSUni6R2rJlS1UnRhQUFPDBfr5Ma1hYWC29KDUgsBiTSv+XTTywvviCffstGzJEi0UdO3aMX9UmoqZNm4aGhlbt3h88eNDJyYmI9PX1vb299fX1icjV1VVbH6fXAV9VqlGjRmrfRK2hli1b8pnr9PS5GP379x8/fvz8+fNDQ0OPHTuWmJhYUVHBGDtw4IBIJNLX1+cdc1UnRvBHovHzUEdHxwpdepgFAosxxtikSSwvjyUksLlztd7D+uGHHzp37qyIqg0bNrzwHZOXlxcUFMTPClu1asXvdxOJROPHj3/8GPcJ1TyZTPbmm28SUb9+/ep+MOv+/fsSicTAwCAyMlKZWaz8nM7JyYmfS4aGhip5ILlczmOuW7duRPTdd99pVngNQ2AxxhhLT2fLl7P161lZGTt37slM5CNH6r6Qw4cPi0QiIrKzs1u+fPnzF62ecebMmVatWvFheG9vbz6NyN7efsuWLXVS7+slMzOTj2fX/cd4zpw5RDRx4kQlt6+oqOAz3fl/jYyMlLymzG9IcnR0FIvFhoaGWXzmq85AYDHGGDt2jBGxN9/Udh1s9erVRNS8eXPlxx1KSkrmz58vkUj4Nyp/xIu+vn54eHitlvp6On78OL+JWsMVAVVSXFxsbW2t6tW6u3fv8tEuPnau5GDWoEGDFONfaixYWNsQWIwxxvbuZURs+HBt1/Fk6SX+DgsKClK+4YULF9zc3Iioa9eu3bt3J6Jhw4bVXp2vp/Ly8srKyi+++IKIbG1t6+y4J7dt0xOLvby8VG0YHh5ORIaGhvwsb/To0dVvz2czmJiY8EF39RYsrFXCXq0hPp7S0oiITpzQbEcFBURE5uaal6ShwsJCIuIjU+aq1OPp6RkdHR0cHLxhwwY+1MJjC2rQpk2bmjdvzs/ZpVJpHR2VsTe+/77U0XHj3LmqNh01atT06dPLy8vLysrMzc337NmzefPmarbn9+J07ty5oKCgT58+iivUukPYgXX9OiUlERHt26fZjgoLiYieLp+mRTywOJUCi4gMDAy+/vrrLl268J1Y6MDLqU8YY2vXrk1OTo6MjCSi2bNn19GBIyMpNlZPJms3ZIgarVevXt2lS5fk5GQ+VjB79uy8vLyXbfz+++9fu3YtJSWFiPiwva5RZ4kfnfLbb3TmDGmwahAR6VwPSy6Xk+qB9cxO1G4OL3T06NG4uDgHB4erV68aGhoGBATU0YF//pmIaMYM0tdXo7WhoeGePXu6du168eLFt99+e+HChZaWlkSUm5ub9FR6enpGRkZSUlJiYmJeXp5IJLK0tHznnXdq9nXUCMEH1vjx5ONDmZka7WQrY3FduvRzcBhUQ1WpraCggIhkMhlp0EXiO0EPq2bx4cXmzZunp6ePGzeuUaNGdXHU+/fp77/J0JAmT1Z7Hy1atAgNDR07duyRI0dSU1Nzc3MzMjL4e+x55ubmZmZmGzZsUG/BwtqmizUpz9r6Sa+oaVON9nMlI2NddLTTpElaDyzeOeLjI+hh6Y67d+8eOnTI2Ng4JiaGiGbMmFFHB75zh2xt6a23SOmHIb7QmDFjNm7ceOLEiZs3b/LfWFlZubq6urq62tvbOzg4VP25JuquLVoOrNjY2GvXrvG1e9RgYkL//S916kQikUZl8C6JLnzCeSU8sNDD0h1r166Vy+VdunT5559/vL29PTw8auUw27fThAmUnU3XrpGPD61bR+XltH07Pb3nQRORkZHh4eFGRkYdOnRwdHTUV+sEU+u0GVhyuTwgICAqKmrHjh2hoaHOzs6q7iE/n65fp2vX6MEDjSrRnVFqXklZWRmhh6UzCgsLt27dSkTZ2dlUq6PRly7RhAlUWEhxcXTpEo0eTa1a0YwZ5Omp+b5FIpG/v7/m+9EubV4lFIvFs2bNsrGxOXz4cNu2bVesWMEHm5Uhl9OBA8QYTZlC69aRXE5SKb3krPzVsrKyiEjx5BJ1MEaHD1N4OJWVqb+T/x9YGvawEFg1ZevWrfn5+R07dkxISHBwcBgxYkRtHSkhgZYupfXriYjS0qhVKyKidu0oObm2jig0Wp7W4OfnFxMTM378+JKSks8//7x37963b9+uvgljdOAAeXjQsGF07hzp6dEHH9ChQ/T119SrF926pVoBN2/e9Pf3v3Dhgp2d3aeffnr16lU1X8nixaSnR61a0axZau6BiJ5mTXFxMWncw9KFDmM9wBhbv349EfH1XadPn16LJ1MtW9KCBTR9OhFR06bEF/mMjSV1Vw2th7Q9c/WJAwcO8DvRjYyMgoODX3aDeEQE69z5yaPcmjZlv/zC7t1jjLHffmPNmjEiZmjIFi9mytxefv369XfeeYdPAjQzM7O1tSUifX39hQsXqvPM2ylTnvwwY4ZSzxh4CZ4ybdq0sbKyUm+5GLlcLhaLRSKRVlabq3/4cwkdHR0lEomhoWEmvzG+luzcyRhj2dksMpKVlrJVq9g33zAVH6RYv+lKYDHGcnNzAwICeIJ07NjxypUrVf/02LFj3bt3b9++kIjZ2bHly9kz9wXn5bGAACYSMSLWoQO7evWlt03FxsaOHz+e33xnamoaFBSUmZlZXFysuCOvRYsWp06dUqro7Gz22Wds9Wo2eTLjzxb/6COWnc2UbF5FWVnZ2rVrDQ0NJRLJEdXvuy4sLFy+fPnIkSN5H83U1FTVPcALDRkyhJ7eW/fhhx9qu5zXnQ4FFnf69OmWLVsSkZ6e3vz588vKyiIjI728vHh/sF+/b3788dmoqurMGda6NbOzy7CxsQ0KCnrmGUdJSUkBAQE8lQwMDAICAp5ZqDsqKqpt27ZEJBKJXrEk3uPH7IsvmJkZI2ING7LTp9ncueyrr1hYGBszholELCCAKXcDc0VFxTPXHEQi0UcffZSbm6tM86KiouXLlzds2JC3XbBgARFZWFgo0xZe6d69e7Nnz+bjm1hEX+t0LrAYY4WFhYqVnhSfQzs7u1WrVpWUlLyyeXEx+/bb7TyVWrZsefr0acbY/fv3AwICFEuhBwQEPHjw4IXNKyoqli9fzgcsmjVr9nxnJzc395/Vq5mFxZNT06FDWdX3sVzOvv6aGRgwIubkxP76q5pS+fLHfF1HInJzc9u1a9eaNWv4x6Nx48Z//PFHNc3LyspCQ0P56qNE5O7uzm/+kkgkb+rAyhP1hkwm4+v2bN26Vdu1vO50MbC4qKioJk2aODs7m5ubBwcHq7rM68WLF93d3XlvRTHrxMDAYOrUqSkpKa9sfuPGDcVcGz8/P75kGj/tsrKysjA0rLS3Z/37s5ctpn7zJuvenRHJRaKls2Y9v+Iajyq+lBU9XaldMep09+7dvn378j/y9fVNS0t7pnl5eXloaKhijp+bm1v79u35z7a2tosWLXr48KFKf11QvXXr1vET7djYWG3X8lrT3cBijM2dO5eIgoOD1WvO+0qGhoaGhoZisdjPzy8hIUH55lKpdNmyZUZGRkRkb28/aNAgRXfvzTffTLhw4RXtKyvZDz/80r8/7x7u2bOH/5pHFV8glKqs1P5Ma7lcHhoayi8UWlpaKlaM5OePiqVyW7Ro0bVrV/6ztbW1GskOSvrggw/4d0OxMk+ah9qh04HFb4D4+eefNdnJmTNnli5deubMGfWaKzo7/DTN29tbpZXbkpKSFA/gHDJkyK+//lp1+eNnVmp/XlpamuIe1MGDBycnJ+fn5/O13Fq0aNGzZ0/+R+bm5vPnz1dyzAvUU1RUxBc8UPvJ9aA5nQ6s8ePHE9G2bdu0W4ZMJps+ffrYsWPVe8SDXC7fsGEDX/tRMTS2adMm5df2DwsLs7Gx4aG5fPnyJUuWeHl5KSZkzJ8/P4c/lwxqWUxMDP/e2r59u7ZreU3pdGANHz6ciPbu3avtQmrAgwcPeM9o0aJFajz6NDMzc9SoUYpriHw85fPPP1fmeQRQgzZu3Mi/J+Li4rRdy+tIpxfwq0+3mDg6OhobGxPR0aNHe/funZubq1LzRo0ahYeH792718zMzMzMbNKkSXfv3l22bJliWA3qxuTJk8ePH19UVOTv719aWqrtcl47IsaYtmt4qe7du1++fPnixYv1Y7VfCwuLwsJCY2Pj0tLSoqIi/rRLlTDG9PT0GGNSqZTP24C6V1RU5OHhcfv27SlTpvznP//RdjmvF51eD6s+9bAYY8XFxSKRqKysjK/zr8ZOiouL5XK5qakp0kqLzMzMwsLCPD09Q0NDfXx83n///Wc2ePjwYcpTycnJKSkpV65cGTp0KF8CEDSh04FVn27iLSoqksvlJiYmJSUlFhYWIrVW8KpPCS5o7u7uq1evnjZt2pQpUx48eFBeXp6amqpIqOdPFcVi8dq1azt27DhZg4VDgXT8lNDc3LyoqCg/P78eZFZ6erqjo6OdnV12dnaTJk1SU1PV2MmdO3fatGnTqlWrO3fu1HiFoKpBgwZdunTp+Wc6WFtbOzk5OTs7N2vWzNnZ2cnJ6dixY5s3bzYyMrpw4YIOPopGQHS3hyWXy0tKSkQikZmZmbZrqQG8c8TPBNXuIqGHpVNMTU3z8vI6duw4ZMgQ56eaNm36zDt29+7de/bs8fLyioqK8vf3v3LlCv4F1aa7gcXPoczNzflNhULHT2/5hUK1O4z16RxZ6NLS0g4ePKivr+/i4tK7d++BAwe+7DRfLBYXFRVFR0e3atUqPj5+ypQpO3furONq6w3dzYJ61pvgWcMnjmLt43pg7dq1Uqm0W7du+/fv/+KLL6oZlPT3958yZUpZWVl5ebmZmdmuXbu2bdtWl6XWJ7obWEZGRvPmzfvwww+1XUjN4PmrYWDVsxAXrtLSUj6DND8/n4iCgoKq3z4kJKRz587Jycn8hvwZM2bcUnVtXCAiXQ4sGxubFStWLFmyRNuF1AzeOeLr2+CUUOh27Njx+PHj1q1b37p1y9bWdsyYMdVvb2RkFBYWZmFhcf78eS8vr+LiYn9//5KSkrqptj7R3cCqZ3jniM+fwimh0K1du5aIrKysiGjKlCl8SY/qtWjRYsOGDUQUHR3t6uoaGxv7yn4ZPA+BVUdu3LhBRKWlpYmJiV999ZVKbXNzcxctWhQXF4fA0gWnTp26ceOGnZ3d1atX9fT0pkyZomTD0aNHf/TRR2VlZTKZzNjYePPmzdu3b6/VUusfBFYd6devn0QiuXr16qRJk/jAhzKKiopWrFjRvHnzJUuWLF68+OTJk0Sk/MPQoDbwCett2rSRSqWjRo1SrE2mjLVr13bq1EkxmDV9+vRTp07VUp31k1ZvvX69/Pjjj/zZPHyVmOqfalNUVBQSEmL39AHlbm5ufLF5ItqwYUOd1QzPSE5O1tPTMzAw4P+U//zzj6p7uHXrlqmpqaWlpZeXl0QiGTBgQG3UWV8hsOpUTk5OQEAAz52ePXu+cL3d4uLikJCQxo0bK6LKzc2N/2xvbz916tS6LxsU5s2bR0T8qShdunRRbycHDx5MSkqaMGECEfXr169mK6zfEFha8Ndffzk5ORGRvr7+/PnzFctj8ZXaFQ+VaN++fYcOHfjPNjY2y5cvx+K82lVQUMDX8+G9XU2W8cvNzTU1NRWJRFhXSyUILO3Iy8tTPBnI3d390qVL7Om3N+9VeXp68p8bNmyIldp1REhIiL6+vq2t7dKlS7t06aLOA3ef+v7774lo8ODBNVje6wCBpU1nzpxp3bo1Eenp6QUFBcXHx3fq1KlXr148qvhK7Xl5edouE544deqUnp6eRCI5ceKEJvuprKx0cXEhor+qfQocPA+BpWXFxcWzZ8/m87MU03ksLCwWLVqEh0rooEWLFhFRo0aNMjIy1N7J3r17iahFixYymawGa3sdILB0wrVr1/jzrg0NDYOCgrKysrRdEbyYTCbjj0Hq27dv9dd5q8Gfw/Tjjz/WbG2vA51eD+u1UlRUdOnSJUdHR36SCDorKyurU6dOmZmZS5cu/fLLL1VtHhsb6+7ubmZmlpqayp+lBMrDxFFdYWZm1q9fP6SV7mvUqNHOnTslEsmiRYtOnDihanPesZo0aRLSSg3oYQGoY8GCBd99952jo+P169f5UyOVkZub6+TkVFJSEhcXhy8nNejuAn4Aumzx4sUXLlw4ceLEhAkTDh48WHWZycrKyrS0tNTU1Pv37/OF3lNTU5OTkyMiIsLDw4uLi99++22klZq0PIYGIFgPHjzgfavly5czxr799ltvb28nJ6eXPdPo6NGjzZo1I6JDhw5pu3ahwikhgPoOHTrk6+srFotPnjy5ceNGvvqCWCxu1KiRnZ2dmZmZnp6eSCSqrKzMyclJSUkRiUSmpqbp6enqPTYJEFgAGvn8889XrFhhamravXv3R48ePXz48OHDh2AFtzUAACAASURBVDKZ7IUbm5iYlJWVHT58eMCAAXVcZ/2AwALQSGVlZatWre7du1f1l1ZWVq6urq6urvb29g4ODoqfN2/evGjRIjs7u2vXrjk4OGirZuFCYAFoKjc3d+XKlU2aNHF3d3dycnJ0dNTX13/hlnK5fPDgwceOHevTp8/x48fxBG9VIbAA6hSfdyqWS7f8uGTgmGnaLkdgMHEUoE41atToz7Ddswc3vbDru/v//qPtcgQGgQVQ17x8+nQd9B6Ty/5YOb0oJ0vb5QgJAgtAC/qM/dS1k09x3sM/V33C5C++pAjPQ2ABaIFIJH73059MLW3TE248TInXdjmCgUF3AK1JuXXJtEHDf0/+KRJLWnsOtG/uru2KdB16WABa49yue0PH5uWlRX3Gfnp+f2hG4s2bp/aW5D/Wdl26Cz0sAC3bvsC/YZPmDWwcSgvzur413qqxs0iEnsSL4e8FQMvsmrUZMm1ZdsodIrK0a4K0qgaWlwHQMrFYcnrXKrdew8pLCnBTdPVwSggAgoHOJwAIBgILAAQDgQUAgoHAAgDBQGABgGAgsABAMBBYACAYCCwAEAwEFgAIBgILAAQDgQUAgoHAAgDBQGABgGAgsABAMBBYACAYCCwAEAwEFgAIBgILAAQDgQUAgoHAAgDBQGABgGAgsABAMBBYACAYCCwAEAwEFgAIBgILAAQDgQUAgoHAAgDBQGABgGAgsABAMBBYACAYCCwAEAwEFgAIBgILAAQDgQUAgoHAAgDBQGABgGAgsABAMBBYACAYCCwAEAwEFgAIBgILAAQDgQUAgoHAAgDBQGABgGAgsABAMBBYACAYCCwAEAwEFgAIBgILAAQDgQUAgoHAAgDBQGABgGAgsABAMBBYACAYCCwAEAwEFgAIBgILAAQDgQUAgoHAAgDBQGABgGAgsABAMBBYACAYCCwAEAwEFgAIBgILAAQDgQUAgoHAAgDBQGABgGAgsABAMBBYACAYCCwAEAwEFgAIBgILAAQDgQUAgoHAAgDBQGABgGAgsABAMBBYACAYCCwAEAwEFgAIBgILAAQDgQUAgoHAAgDBQGABgGAgsABAMBBYACAYCCwAEAwEFgAIBgILAAQDgQUAgoHAAgDBQGABgGAgsABAMBBYACAYCCwAEAwEFgAIBgILAAQDgQUAgoHAAgDBQGABgGAgsABAMBBYACAYCCwAEAwEFgAIBgILAAQDgQUAgoHAAgDBQGABgGAgsABAMBBYACAYCCwAEAwEFgAIBgILAAQDgQUAgoHAAgDBQGABgGAgsABAMBBYACAYCCwALZNKpfn5+dquQhgQWADaFBISYmJiYmtrO3To0O3btxcXF2u7Ip0mYoxpuwaA19R33323cOFCxphI9OSTaG5uPmzYMH9//0GDBhkaGmq7QJ2DwALQAplMFhgY+Msvv0gkkpCQkLS0tPPnz+fm5t68eZN/JE1MTIYMGTJ+/PhBgwYZGBhou15dgcACqGvFxcVjx449cOCAoaHh9u3b/fz8mjVrlpKSQkT29vYtW7bMzc2NiYnhn01LS8uhQ4f6+fm9+eabJiYm2q5dyxBY9RMjliZNs9Wz/bf0307GnfRF+tquCJ54/PjxsGHDoqKirK2t//vf//bq1YuIYmNjw8PDf//998TERL6Zvb19s2bNsrOzFb+xsLCIjo5u3ry51krXAQiseogRm5oy1cPE41Hlo1JWOrfRXDOxmbaLAiKixMTEt956KyEhwcXF5dChQ61bt676p4yx8+fPh4WF/fHHH2lpafyXzs7OLVu2vHjxYklJyYwZM3766SdtFK4rcJWwHrpbftfFwGWyzeTPG3+u7Vrgfy5evNizZ8+EhAQPD48LFy48k1ZEJBKJvLy8QkJCUlJSzp49GxQU5ODgkJKSYm9vHxISIpfLHz16pJXKdYeetgsAeC3s37//vffeKy0tHTRoUHh4uLm5eTUbi8XiXr169erVa82aNWfOnLG0tOS/v3r1ap0Uq7sQWPVQC8MWiRWJv+X8VizHpB6dMGXKlE2bNsnl8mnTpv38888SiUTJhmKx+I033iCiyspKY2PjhISEvLw8RX69hnBKWA8llSe1M2pnKbEcbTV6lt0sU7Gptit6reXn52/ZsoWIgoOD169fr3xaVaWnp9ehQwfG2LVr12q6QCFBYNVDhwoOzX4w+4/cP6wkVlYSKxGJtF3Ra83U1FRPT08ul+fk5Hh6eqanp6u3n65du9Jrf1aIwKqHzhefJ6KeZj21XQgQEenp6XXr1o2Izp49e+nSJbUTB4FFCKx66XzReSLyMvXSdiHwBM8aCwsL0iBxeOpduXKlBgsTHARWfZMlzbpXcc9cYu5m5KbtWuAJHljl5eWkQeK4ubmZmJgkJibm5eXVZHGCgsCqb67eutqzqOdAg4ESkTqDu1AbeOcoNTWVNAgsiUTCx92jo6NrsjhBQWDVNyd/P3m+z3m33ehe6ZBWrVpZWFikp6dbWVllZWUpZrGrCmeFCKz65vz580TUsydG3HWIWCzu1KkTETVr1ozUSpycnJzExESMuyOw6hWpVBodHS0Sibp3767tWuD/4Z0jPsFd1cS5f/9+r169BgwYIJfLiSgyMrI2KhQEBFa9EhUVVVpa2rZtW2tra23XAv8P7xyVlZWRioEVHR3ds2fPuLg4PT29L774gohatmxZS0XqPgRWfVBSUnLgwIEpU6b4+vqampp26NBB2xXBs3hg8XH3y5cvK9nq2LFjffv2zczM7Ny5c2ZmZnZ2dr9+/fbt21eLheo4BoKVmZm5YcOGt99+28jISPEP2rhx46SkJG2XBs+Sy+UNGjQgIisrKxMTk6ysrFc22bJli76+PhF5e3vzHyZMmFBeXl4H1eosBJbwJCUlhYSE9O/fX0/vyb3rYrG4a9euwcHBcXFx2q4OXorfxjxv3rzKysrqt5TL5cHBwfwf19vbm/8QFBQkl8vrplSdhcASjFOnTk2fPr1du3aKzpSxsfGwYcM2b96cnZ2t7erg1YYMGcL/4dq1axccHHzr1q0XbiaVSgMCAohIIpHw9UglEskvv/xSx9XqppoMrLy8vMLCQpWanDhxonfv3o8ePVK2QXk5W7OGffMNO3VK5fqELC0trVGjRvztbmVl5efnt23btoKCAm3XBSooKiry8fGpej2kQ4cO3377bXx8vGIbmUw2aNAgIjI1NfXw8OA/HDhwQItl65QaC6ySkpI+ffp069bt4cOHSja5fPkyv8r7/fffK3uYlSvZtWuMMTZ9OsvNVatSQeLjrA0bNjx+/LhUKtV2OaC+yspKvpqora2tIrl4n+vOnTuMse+//97Ozq5NmzZ8RPLy5cvaLlmH1FhgpaSkuLq68r/61NTUV24fHx/PuwzvvfeeTCZT9jBTpjz5YcMGduWKusUKz7x584iIP8MO6ofy8vIDBw5MmDCBD8Zz3bp1mzNnjqOjIxE1b968aucLWM2eEmZkZPDpvE2bNr19+3Y1Wz548KBp06ZENGTIkIqKChWOsXw5i4lhjLGZM1lOjmb1ComPjw8R/fXXX9ouBGpeWVlZRETE+PHj+XIOIpFIT0/P09MTQ5PPq+Gn5uTl5Q0dOvTcuXPW1tZ//fVXjx49nt/m0aNHvXv3jouL69GjR2RkpKmp0uthPnpEOTm0fz+Vl5OnJw0cWIOV6zKpVGppaVlaWpqdnW1jY6PtcqC2lJWVHTp0aPLkyTk5ORcvXsTtCs+r4YmjlpaWkZGR7777bk5OzoABA44dO/bMBiUlJe+8805cXJy7u/vff/+tQloR0Y4d1Lo1nTxJN25QZWVN1q3bYmIy7O2btWnTBmlVvxkZGb377rsDBw4kops3b2q7HF1U8zPdDQ0Nw8PDP/zww6KioqFDh/7xxx+KP6qoqBgxYkRUVJSrq+uRI0esrKxU23VUFBFRQQH9+SclJdVo1Trt7FnnxMTYXr2ua7sQqAu4w7katXJrjkQi2bRp05w5c8rLy8eMGbNx40Yikslk48aNO3LkiJ2d3aFDh+zt7VXeLw8svjSHlwCW07xz5862bdsePnyo4X746+7e3aAGagKdx2+TRmC9WK2OkC1fvpyIRCLRsmXLPv74YyJq0KBBdHS0Ovt68IARsQYNmEjETE2ZDl/aT0xMDAkJ8fb2FovFIpHI2tpaw2s9zs6M6MnFBqj38vPzxWKxkZGRatejXg+1PtN9/fr1YvGTfpyJicm5c+fU3NGePYyIde3KiNgbb9RojTVAJpOdP39+/vz5VR/na2JiwgfpGjdufP36dfX2nJbGiJilJVN+7gcIXatWrYjoGp9yCFXU+moN06ZN+/DDD8VisZ6eXo8ePTw9PdXbz5obN0J69jzp6FjUvr3s6d1VWieTyc6dOzdz5kxnZ+eePXuuWLHizp071tbW48ePDwsLy8rKmjZtWteuXTMzM994442zZ8+qcYh//yWxmDw9SYyVNV4bWFn0pWo7Ebdu3SoSiUQikaGhIRG9++67paWlauyHX+LlC6fowp0KBw8e7NevH584w7m4uMyaNevUqVOKW1sPHjxIRAYGBnx6h6Gh4d69e1U6Sng4e/CA5eezjRtr4TWArlq1ahURTZ06VZOdSKXSyZMnd+vW7bfffqs3d3HVbmBFRETwFQVWr1596dIlflW+T58++fn5Ku2npKTEwMBAIpGYmpqKRCKtT6h7/PixgYEBP9Vt167d/Pnzz549+/yd9Ip77kUiEV+zWCKRbN68WfkDBQayWbMYY0/+C7Xq0aNHR44cKS4u1nYh7NSpU0Tk4eGh9h5KS0v9/PyIiL9LjYyMfH1968H9p7UYWFFRUSYmJkQUHBzMf3Pr1i0nJ6cWTZtmvvkmU2I9IAV+MsVP7Fu1alUr5arizJkzRGRnZ6fMylM//vgjf9P06dOHh9cPP/xQfZPCQhYWxr7/ns2ezfbsYQcPIrDqAp9PcObMGW0XwgoKCsRisaGhoXqrXz1+/JgvStOgQYMRI0Z06NBBMY5sbGw8atSosLAwXchlNdRWYP377798mtW0adOq/v7evXv3e/ViRKxVK3b/vpJ74/2UJk2aENHEiRNroV7V8KufPj4+DRo0WLly5Su3/+2333hP08fHh7915s+f//xmmZlswwb29tvMyIgRMSMj9sknjDE2bRoLDGQC/2oUgClTpvCzAW0Xwhhj/OqNGpfUExMTeVsXF5e4uDj+XrWysurRo0fbtm2rJhfvc6m6wop21Upg3b17t3HjxkQ0ZsyYF9zYnJnJOndmRMzent24Uc1+kpOTQ0NDfX19+addJBIR0bffflsbNavknXfeISI+MrVhwwZlmkRERBgbGxNRz549+eqRU6dO5X85igX5+vY9SsSImETCevdmq1axNWsYY+z2bbZ4MWvdmr0o5aDGbNiwgYjef/99bRfCGGPvv/8+Ef30008qtbp48aKdnR0f7X3w4AFjbMOGDfzUhLOzs+vVq5ebmxv/NBGRmZlZ9+7dtT7MoqSaD6y0tDQXFxci6t+/f1lZ2Ys3ystjffowIvbCs/QbN9jixaxLF4+nk0sNDAx69erFV3ewt7d/2cpndYbHMb+l/ubNm0q2OnXqFL8vv2PHjjy8OnbsWHVBvrZt3x06lG3ezJ5/8+zfz/T0GBGbPh3zG2oLn6vZpk0bbRfCKisre/fu3ahRI319feXHnvbv388HYQYMGPDM9jExMcHBwVWTq3Hjxr1793Z3d+fXxLp27Vprr6Ym1XBg5eXl8QUbPD09X9HVLClhH33E7t5le/awb75hCxaw1FT26afM1ZXxbgbR/oED/f39d+7cmZeXxxgrLCzs378/799GRUXVbOXKu3v3LhHxCwgWFhYqrI3D2NWrV/kX4NChQ42NjZ2cnEjpBfkOHGDGxoyIvfsue9kXwQudO3fu7NmzWEXrlcrLyw0NDa2srPPz1bmQXVOKiop8fX3593TVOYx+fn7h4eEvG3vauHEjPxGZNGlSNTNOeXIpnrujp6fHb0Rp3rx5rb2gmlSTgVVcXMxXdHVzc3v8+LFSbXJy2OzZjDGWkcG++II5OTEiZmPDxo9nERHPfy7LyspGjBhBRKampocPH67B4pW3fft2IuLTLAYNGqRq8/j4+AEDBmRlZfEhuU2bNikfJadP86n+8qlTfyoqKqp+45iYmOXLl3t7e/PZ9n5+fpg5/UqDB6cSaXM520ePHnl5eRGRtbX12bNnHzx4wO+aUJzBKcaeFG+AqhejFRe4qieXyy9evDhnzpyJEydWVlbyi+/Kfma1qiYDa926dUTUrFmztLQ0ZdvcusVCQp78PGUK27+fRUVVf85TWVn54Ycf8u+fPXv2KHkcmUx29OjRKVOmHDlyRNnaXmLatGl8+JyIvv76a/V2kp6ezjtor3wewTOuXWNDhizmI2jPv8OkUunx48cDAwOdnZ0VnX8zMzM+avbWW28J9NpQnZk6lRGxVau0dPg7d+a+8w69aOm+1NTUFybX5s2b/f39eV9JyeHU5/E5N5GRkTXxGmpXDZ8Sfvfdd6rdN1dayiZNYlIpO3v2f8n1KnK5/LPPPuPTmv7zn/9Uu/vSY8eOBQUFOTg48H9UPT095WPuhfg5r5ubGxGpHX98EYuBAweq0TYpKalFixZE1LZtW764a0lJSUREREBAgGLddyKytbUdP358REREeXn5zZs3+d9A9+7dlV/D+jW0cSMjYu+9p+l+Pvvss3Hjxu3evfuVHeH/+ecf1rBhuYHBrNGjq3kIWEpKyjPJJZFILCwsjh07pna1gYGBRLR8+XK191BndOCpOXfusOXL2ZYtqg4mL1++nP+bPT9FICcn5/fffx81apSZmZniA9yiRQt+NUAikaj9XVRUVKSnp6evr29oaCgWi/ngmhrmzJlDVWaoqSotLa19+/b8xMHb25sP4XNubm5ffvnlpUuXnpnIGh8f36xZMyIa9uWwtAqlu8CvmWvXnky5UVtlZeXUqVOJiN/aoZix+Yoh3X37noxQDhqk5ASWxMTEZcuWNWzYkIiWLl0aHh4eo+798Vu3biUiPz8/9ZrXJR0ILA1s2bKFDzQGBgbKZLKsrKxt27b5+voaGPxvJRa+vP+VpwvAKxaQUC8sIiMj+T6JyN3dXe3K+TiFJsNwOTk53t7e/LKj4rmE1V8/TUtLe+uTtxpca+By0yWhLEHtQ9djFRXM2JiJRGo+4aSoqIg/y8vExGT48OFeXl6KflBsv37M15dt28ae73NFRDCxmBGxadOYikME/Juvd+/epMGS/3yxQFdXV/Wa1yVhBxZjLCwsjMeTubm54s2hr6/fv3//tWvXpqSkPN/kl19+4RdfgoKCVLrGxxhbsmSJYgArICBAvZrLysqMjIxEIlGOZsvS5+bmLl26dNasWZmZmUo2yanM8b7jTVep0b+NoovVWuenvlu2jN2+zTIymPIjsVxGRgafK9+wYUPFqiQpKSmrVq3y8fKSN2z45PK3uTl77z0WFcUiI9nixSwkhOXlMW9vptY36M6dOxWXgAYPHqzGHhhjinF3FR64pyWCDyzG2PHjx42NjfX19fkwZGho6CufA75v3z7+ePdx48Ypf+0sLS2ND2AFBAR06NBh27Zt6hUcFRVFRO3bt1evuYaKZEWDEgbRVWpwvcHpwtNaqUGXubuzI0dYZCSLiFChVUJCAh9YbN68OX9a17NSUlhICPP2ZiIRI2Jr17KZMxlj7MIF9uOPTN0LuPHx8UTEJwba2NiotxP2tMuvyUBY3agPgcUYS0lJ2bZtW0lJifJNjh8/zp+KOHTo0OobVl2Qj4gsLS1HjBihybQmfi/+xx9/rPYeNFQuLx+TNMb4mvGZwjPRxdG/P/79ofThtsdq5m898+mnbMoUdvAg27eP/fEHU+ay6vnz5/m8PKUedZOYyJYvZ8eOsS1bnvxGg1UZ5HK5paUl79YRUXJysnr7CQoKIqJly5apXUndqCeBpR7FAhK9e/d+Zvj8ZQvy+fj48BHud955R711chhjo0aNIqJff/21Jl6EmmRMdqPkxqnCU1+lf5VQlnCy4OSnqZ9qsR5dUFHBZDI2ezaLi2ODBrGvv2ZEzNj4pUNP3J9//snfEsOHD1dh1kh29pMZiFevKn99/IX69u1LT1eC//PPP9XbybZt24ho1KhRmlRSB17rwGJPF5DgJ2hpaWlSqZQ/lZffdsMpFuTjF3qqrpOj3lVCvvPqH91YNxamLcyoyOA/v+aBVVjI3nqLTZ3KFixgjLGvvmJLlzJPzycncHzoKTDw6//+979VbzgLCQnh/e7AwEBVp9Sxv/5iS5awlStVu3HhOXPnzlWMu3/55Zdq7EEul8fExBCRi4uLJpXUgdc9sBhj9+/f5/dYGRsbP7Mg36efflp1QT6FW7du8XnqXbp0eeV4GWMsOzubX76cNGnS/fv3eQf++fWz6t6arDWKoffXObDS0linToyINWrEnrmAoRh6cnBI5dnE75LZv3//rFmzNLniXFN2795NRB4eHqTWrReRkZE9evR49OgR7ycqs2KSFiGwGGPs8ePHfI4SVbsgX1WKmHN1db179+4Lt4mNjf3uu+88PDwUly9tbGz4wzjefvvt2nkpqsmtzP0k5ZPg9OADeQe+Sf9G2+VoR2wsa9qUEbHmzVk1s56Tkh4tW7asc+fOiq80vo7u7t2767DYF0hISCAiW1tb/kWoUtstW7bwuyD8/Px4HGt9ZYHqIbCeyM/P3717t0rLD2VlZXXp0oWI7O3tbzxdJ0cmk125ciU4OLht27aKd7axsbGHh0ePHj34tCkiGj9+fO28DlDNqVOnvL0fETFvb6bkNf34+Phvv/22TZs2Dg4OO3bsqOUCX00ul1tbW9PTG/LvK73MnGLqdY8ePfgPI0aMqNVSNYfA0kjVBST++ecf9nTtea5hw4be3t7dunXjk565Dh06jBo1SuXxDqgFu3fvNjQ0tLR0mTw5X5UrzDrnzTffVIy7//HHH6/cvrKykq9WKJFI+IIFEolk3bp1dVCqhhBYmiorKxs5ciQRmZqaHjp0aObMmU2aNOndu3eXLl34LHyqMhNdFwbagVOMl6sxf1jXzJs3j4hGjx79008/vXIQSjEd39TUlD+ex9TUNEKlWWfag8CqAVKpdOLEifxrqurtx8bGxsOGDfv1119xv7Gu4Z9wsVisIwsia2j16tVisdjAwCAoKKj64VfFdHwrKys+Zadhw4b85EAQEFg1Qy6XT506VSKRkNIL8oEWnThxwtzcfNeuXdoupGZkZWVVnYjTsmXLBQsW3Hhu/XHFdHxnZ+emTZtSNfPydRUCqyadPn1648aNWNtTEHT/vjmVSKXS06dPBwUF2T9dWJxPzeF9Lr4NvxO2ffv2fJBeqXn5OkbEGCMAqC/kcnlUVFR4eHhYWFhmZib/Zbt27fz8/Pz9/desWbNjx47S0tLhw4fv2LGDrwEvIAgsgPqpsrLy5MmTYWFh+/bte/z4Mf+lSCRijAUGBq5Zs4aPYAgLAgugnuM3xoaHh2/evLm0tHTGjBk//fSTtotSEwIL4HVRVFQkkUiqrk8rOAgsABAMsbYLAABQFgILAAQDgQUAgoHAAgDBQGABgGAgsABAMBBYACAYCCwAEAwEFgAIBgILAAQDgQUAgoHAAgDBQGABgGAgsABAMBBYACAYCCwAEAwEFgAIBgILAAQDgQUAgoHAAgDBQGABgGAgsABAMBBYACAYCCwAEAwEFgAIBgILAAQDgQUAgoHAAgDBQGABgGAgsABAMBBYACAYCCwAEAwEFgAIBgILAAQDgQUAgoHAAgDBQGABgGAgsABAMBBYACAYCCwAEAwEFgAIBgILAAQDgQUAgoHAAgDBQGABgGAgsABAMBBYACAYCCwAEAwEFgAIBgILAAQDgQUAgoHAAgDBQGABgGAgsABAMBBYACAYCCwAEAwEFgAIBgILAAQDgQUAgoHAAgDBQGABgGAgsABAMBBYACAYCCwAEAwEFgAIBgILAAQDgQUAgoHAAgDBQGABgGAgsABAMBBYACAYCCwAEAwEFgAIBgILAAQDgQUAgoHAAgDBQGABgGAgsABAMBBYACAYCCwAEAwEFgAIBgILAAQDgQUAgoHAAgDBQGABgGAgsABAMBBYACAYCCwAEAwEFgAIBgILAAQDgQUAgoHAAgDBQGABgGAgsABAMBBYACAYCCwAEAwEFgAIBgILAAQDgQUAgoHAAgDBQGABgGAgsABAMBBYACAYCCwAEAwEFgAIBgILAAQDgQUAgoHAAgDBQGABgGAgsABAMBBYACAYCCwAEAwEFgAIBgILAAQDgQUAgoHAAgDBQGABgGAgsABAMBBYACAYCCwAEAwEFgAIBgILAAQDgQUAgoHAAgDBQGABgGAgsABAMBBYACAYCCwAEAwEFgAIBgILAAQDgQWgfffu3Zs/f/6hQ4e0XYiuQ2ABaF9ERMT3338fEhKi7UJ0nYgxpu0aAF53eXl5jo6OpaWld+7cadmypbbL0V3oYQFon6Wl5ejRoxljGzdu1HYtOg09rBq2Pj3dUCRqYmg4yNpa27WAkFy6dMnT07Nhw4YPHjwwMjLSdjk6Cj2sGlYsk31kb4+0AlV17959rb9/nIuL4d692q5FdyGwalhWRcXGjIzowkJtFwLCM+PNN22vXBH95z/aLkR3Cf+UkDG6fp0aNCBXV+0WImOMEa158GCuk5N2KwGhKiqiJk0oP5/+/Zfc3bVdjS4Sfg9r7ly6d4/++os2bdJuIasePJgaH+9mYqLdMkDAzMxo3Dgiog0btF2KjhJ4YFVUUHk5jRhBgYF0+bIWC/nz4cOw7OxbxcXOGC4FTUydSkS0YwdVVGi7FF0k8MCSSEgqffKz9s5trxUV/ZCaSkTznJ3bm5pqqwyoD9q3p19+ofBwOn6ciou1XY3OEX5gtWpFy5bRvHk0ciSVltZ9FICLLQAAIABJREFUCamlpXMSE6WMfdC48XAbm7ovAOqbRo3o33/JxoamTyeZTNvV6BaBBxYRzZ5NU6eShwetX09Nm1JZWV0evLCwcPgbbzhmZ3s1aDDDwaEuDw311tGj9Omn5OFBXbpQQoK2q9Etwg8sIurdm/z9KT6eHj6kiAgNd/bTTz8NHjx448aN58+fLygoqGZLmUw2evTo6EuX/v3ss++cnMQikYaHBiAiMjR8cjKYk0MWFtquRrfoabuAmvDWWxQTQ7a2dPs2bd9O/v5q72nJkiWLFy+urKw8cuQI/429vb2bm1u7du34fzt37mz6dJRq7ty5hw4datiw4d69e80MDWvghQBUVND06fT552RnR4aGhG77/6eNeVjx8dSqFRFRQgK1bEkpKRQfT926kaWlmju8dYvc3MjSkkpLSSaj1FRq3FiN3Rw+fNjX11cul/fr18/R0TEmJiYuLq70/4+LSSQSV1dXd3f3ioqKgwcPGhgYHD9+vFevXmpWDlBVQgL160chITRyZA3uVS6Xx8XFXbx4cevWrR4eHkuWLDER7uQbVvdmzGCMscpKNnMmu3yZzZ3Lzp9nEyawggL199mlCyNi3bszIrZqlRo7uHXrVoMGDYjIx8fnrbfeysvL479PS0uLiIhYvnz5+PHju3btqrjJSywWm5mZrVmzRv2aAaoqKmLt2zMiNmaM5jvLyMiIiIgIDg729fW1rnKjmJ6enp+fn1wu1/wQWqGNU8KHD2nlyiezEPbvp3nzyMaGMjPpn39o8GA19/nBBxQdnWVhcaZ37x379u2fPVul1o8fPx42bFh+fr6Hh8fZs2f19fVjYmK8vb2JyMHBwcHBYejQoXxLqVR6586d2NjYRYsWxcfH4yZVqDHTp1NMDLVuTaGharQuLS2Njo6+dOnSxYsXL1y4kJycXPVPHR0dnZ2dnZycDh8+HB4ebmdnt3bt2hqqu25pISSnT2fl5ay0lM2cyZYtYwkJjDG2dSs7e1btXUqzs4e3bq2vr8+/TK5fv65824qKir59+xJR69atDQ0NieiXX36pZvvExMQJEyb06dOHiHr27Kl2zVBf5eTkzJ49293d/b333rt06ZIy3Znc0FBGxMzNWVycGkdctGiRgYFB1c+1ubl5165d+/Xr5+Hh0bBhQ/7L9evXnzhxgr/JV6xYocaBtE4bgRUUxBhjMhmbPZtlZrKpU9l337FPP2WadVOHDRtGRD4+PkQ0e/Zs5RtOmTKFiOzs7GxsbIgoMDCw+u0fPHggkUiMjIwsLCyIKE6tdxjUS1euXAkICOCXZURPrxo7OTkFBARERERIpdIXtrpw4YKFhcUGb28WFqbGQQsLC/X09MRicfPmzbt37+7h4dG0aVPR/79mbW9vP3z48IMHDzLGdu/eLRaLRSLR5s2bNXq12qCNwHpebCybOZNt2aLJPv744w/eS+LpU1FRoUyr1atXE5GxsXHbtm2JaMCAAS97V1U1YMAAIuLnjAsWLNCkbMaYVCp9//33ra2tBw0aNHfu3C1btly+fLm4uFjD3UKdKSwsDA0N7dy5M08HsVg8aNCgGTNmBAYGNmnSRJEadnZ2AQEBhw8frvrmzMrK4tvMmTNHvaPv3r2bf1Xv3LlTcSx9ff2uXbsGBQVt27YtJibmmSbr168nIolEsm/fPvVftjboRmCFhzMi1qWLJvsoLy/nXSR+BWT27NlXr14tLS2tpsmRI0f09PREIlGPHj142OXk5ChzrN9++42I2rdvT0TOzs4ymUyTymfMmFH1C7nqt2L//v35e+7KlSslJSWaHAVqQ1xc3Pz5862srPg/maWlZVBQ0N27d6tuExMTExwc3KZNG8W/rKWlpZ+f37Zt2/Lz8wcOHMjHFsrLy9Wrwd/fn4hWr16dnJw8YcKEdevWXb169ZXfu19++SX/qj537px6x9UK3Qis8nLWsCEjYv/+q8luPvjgg+cH6ezt7X19fefPn88/9ooIu337tqWlpeIs0srK6s6dO0oeqLi42NzcnPf2iejEiRNq17xp0yYiMjIy2rZt2/79+5cuXTpmzBh3d/dnhiT4d6aTk9O0adMqKyvVPhzUiLKysrCwsP79+yv+dbp27RoaGlr9l8qNGzeCg4Pdq6wbw4eTGjdunJ6ernYl/K2YlJSkUkO5XP7RRx8RUcOGDW/duqXe0euebgQWY2zqVEbE5s5VewelpaUdO3YkoubNmy9cuNDf39/NzU1fX/+Zj72BgUGHDh1GjBjRuHFj/s0mEokkEsnff/+t0uEmTpxIRL179yaiiRMnqlfz6dOneTBt2rTpmT+SSqWJiYmKGRXt2rWTSCT87XXgwAH1Dgc1YtOmTYrJww0aNAgMDIyNjVVpD/fu3QsJCfH29tbT0zM1Nf3444/VLua///0vEXXr1k2NtpWVlSNGjCAiR0fH5ORktWuoSzoTWOfPMyLm4MDU6j7I5fL33nuPiJo1a5adna34veJjHxwc7Ofnp/jYE5Grq6ujo+PIkSOJ6Oeff1b1iCdPnuT/0iKRyNTUtLCwUNU9JCSwwYP/JKLPP/9cme1LS0vHjh1LRO+//76qx4KakpeXZ2VlZWxs7ObmFhoaWlRUpMne9u3bJxKJjI2NnzmLVB4/q1i6dKl6zUtKSvgZRrt27R49eqTeTuqSzgQWY/EjRgR27Hj40CE12i5evJiIzM3N/33VSWVxcfHly5eDg4OJyNbWtqysTL1xR7lc7uLiohjJ2r59u0rN8/JY27aMiH3yyXXlh8Du378vFouNjY0V81qhjvGhHx8fn5ra4fjx44mob9++akzmlEqlfNxWk0vVOTk5bm5uROTu7q72TuqMDgXWt99+S0Rjx45VteGff/4pFovFYnFERITyrfhQgkpNnrFw4UIi8vLyIqL+/fsr37Cykvn6MiLWrh3Lz1ftoG+88QYRCfGCdD2QnZ3NB4zOnz9fU/t89OiRra0tEf3++++qtj169CgRubm5qX30f/75Jzg4+OeffxaJRFZWVmrvp87oUGClpqby+U25ubnKt7p27RofUPjhhx9UOtyKFSuIaNSoUSqW+T8JCQn8fNDY2FgsFqekpCjZcNYsRsRsbFhiosoH3bJlCxG9+eYAlVuCxj755BMievfdd2t2t1u3bm3btlvPntGqnpNNnTqViL766iu1Dx0QEKAYip0+fbra+6kzOhRYjDFPT08i2rhxo5LbZ2Rk8Ot0EyZMUPVYaWlpEonEwMBAk1P3d999d/bs2d7e3vr6+o0bNx4+fPiCBQt279598+bNiooXX1eWydiHHzJDQ6be1eSCgoI33/zVwqJAxYtCoKl791i/fvuMjRs8P61JQ3K5vH//SiI2aZIKrWQymb29PRFdu3ZNvePKZDJ+6cnV1ZWIjh07pt5+6pIOBVZaWhqfz2JiYrJo0aKwsLBbt25VM52ktLSUz5/y8vIqKytT44iDBg0iovXr12tQNbt586apqenzNxW2bl3q5sZGj2ZLlrC9e9m9e8zLixUUsCNH2MWLTJP3/LhxjIh9840mVYPKPviAEbGpU6ub2ae2+HhmZMREIhYZqWyTs2fP8qtMah/09OnTRNS0aVMisra2VmbKtNbpSmCVlpby7pXh/19YSl9f39XV1dfXNzg4OCwsLCYmRjFEPW7cOP7XnZWVpd5Bd+zYQUQ9evRQu+xHjx41b96ciEaOHHnz5s09e/YsXLhwxIgRbdq4Gxoyov/9b+xYNmYM++ortncvO3VK7QMyxtjRo4yItWih4b1MoIKYGCaRMAMDdc7ilbR4MSNiLVuyaic7P1FeXs7f/5999ll2drbyUwirmjlzpuZTc+qYTgSWYlKCo6Mjv0HPy8vrnXfead68uVj87JqopqamHh4e3bt3JyIzM7MbN26ofdySkhI+d1S9iywVFRV8CLxr167P30lTUsKuXmXbtrF589jbb7P169mcOWzVKvb115oGlkzGnJwYkZonlaCGd95hROxVt5lqpLyctWvHHBzYzZsv3iApKWPHjh0zZ87s0aMH/163srKaO3duq1atnJ2dU1NTVTqcXC53dnYmIj4FX5OrT//H3r3H5Xz+fwB/33f3XVERKeSUJoecRQ4lTBhymMlmE/v+ENuIDWsnYtjCNrFjNjYb300OI+YU8903pyinQoiyUU5JpfN93+/fH1fraw65u++77q56PR/fx/dh9flcn3fUq+tzfa7PdVWkShFYh1euFJMSWrRoQUQjR44s6UYVFBQkJCRERESIlX1cXV3FKyxKpdLOzm7NmjVHjhwxeA4LM4vJvoa9DygGLJ2dna9du6bP8bNmcWEhe3oaG1jM/M47TMRvv21sO6CP2FhWKNjGhm/cKN8LJSby5s0souP77zkri6OjOSyM/f3ZyYl79/7fZoVKpbJRo0ZEZG1t3aFDBzGRKj09Xf9rHTt2jIgaNGigUChsbW1Lf4mt8qgEgbVpEysUCT4+Pbt2JaKOHTuWPgkzIyMjOjpa9LDEe1hPXV+hFOI2vnHjxmV93+XTTz8loho1ahw7dkzPU8SaN9u38/r1ZS3zYVev8qJFrNNxWhpj9N1g3t7efn5+M2fO/Pzzz3fu3Hnx4p8Pvc+XmspZWazVclgYr1hRESV9/jmPHs0ZGTxjBru4/GNUoXv3c8OHD1+8ePG+ffsyMzOZeebMmeI3fcuWLYmoe/fu+k9kfeedd4hILJb74osvlufXZErmDqyTJ9nGhonY2zuzQwevli0v6zdIIN5IEONHDg4OBr84qtPpRCP79++PiooaPXr0/PnzN27cmJiYWMoY5O7duy0sLBQKxc8//1ymy504Ycx8/n/w9ub16zk6mjduNLap6ik7O/uh0QYfn9csLNjFhfv358BAXrKEg4N55kxm5hkzKqiqzz/ngwf5nXd4xgweP5579eI33+RffuGUlMccrNVqxZvP9erVEx0uPz8/PcfOxbomYjbihg0bTPxllBuzBlZaWvFgTM+eTMRWVtpDh/Q8taioqH79+kTk5uZGRFu3bjW4CjHrfcKECQsWLHhovN/d3d3f3/+h8f7z58+Lka/58+cbcLlWrZiId+82uN5is2ZxUBBv385ffMHu7uzvzwsW8KZNfOGCCdKwOigqKjp16tTmzZuXLl06ZcoUX1/f559fbWHxj07N22/z8uX8xx8VGlhXrvDKleznp9fxBQUF4j6jadOmYtb7uHHjnjppPj4+XjwZtLCwsLKyyjJmdfKKZdbAevVVJuIOHdjSkolY7+lXgnjGId6EGjVqlMFVJCQkiNv4Jk2adO7c2dvb28PDQ7wk+NBv4BUrVqSnp4uBthdeeMGwhbEXLmQifvllg+stNmsWX7vG/fvznDn/+Bkj4j59Xu3cufO4ceNCQ0O3b9+enJxs7MWqjYICvniRd+3iL77gOXN4wQK+e5cDA4v3IagAe/fy9etcVMT67xaQlZXVpUsXImrTpo2YRP3ee++Vfsr69eutrKzESxrDhw83tugKZNbAysriceO4bl3DBpDj4uLE/aBKpbK0tLx9+7YBJeh0OtGpLnkpukSNGjVat27dq1cvHx+fLl26NGjQYPfu3c8++ywRde7c2eC3XlNSWKnkGjXY4NcBk5I4La34G/rrr3nXLj5xgn/6iYODeehQdnHhFi3aPfiFGPPqRjW3YAHfu8cnT/LgwRV0xf/+l5VKLmuG3Lp1SwxjderUSaz/8dlnn5V+ys2bN8VrsD/88IPh5VY4MwVWeDh/+CF/8QVrtRwSwoMHG3YbI+7APTw8iOiLL74woIX58+eLYcvY2NjY2Ni1a9fOmTNn8ODB4onvoxFWpseCTzJgQEH37lvWrTNkYnFGBrdqxU2acGLiE4/JysqKiYn57rvv3nzzzQEDBkjxykWllZrKCxZU3DTdNWuYiA1Yj+Py5cti2nqPHj0UCoVSqTx+/PhDx1y/fj0iIiIoKMjLy8vKykqpVFpZWRk8jdEszBFY//kPi3d3160rHssxdNBl6dKl4uEIEXl6epb19M2bN4t/2seuMJWZmSkiLDg4WMyoEJkVGhpqWLUlfvhhLRH5+PiU9USNhocMMfCtaTBMcjITsaNjBV3u/feZiOfNM+TcM2fOiNHVnj17Lly4kJlv3bq1Y8eOuXPnDhw40P6f+36qVKpGjRqtWbPGxF9AOTNHYIWHc1wcM/PZs0Y+Ky55H1BsKRj/pCl3jxMXxwMGfKpUKj/Vex9DsZ7EiBEjDCr2f+7fv29ra6tQKPR8JFpi+nTD35oGg9Wvz0QVNH3kpZeYiNeuNfD0ffv2iTmlzZs3F4+/H9SkSZPRo0cvW7bsv//9r6SbBpgjsGJiWNxgf/mlMVt7Cc899xz9vR+EnivhMXNaGjduzEQcHByn/7Vu3rypVqtVKtUNo2cQivcqFpTlTuOHH3Y5OGgNfmsaDDZsGBNxGWewGKhbN2PfYdiwYYNarRZjsjY2Nl5eXmJbgLKuoVw5mWkMa+NGXriQf/nF+JbETiHu7u5E1K5dO31OycvjHj2YiL28uKwvTfv5+YnHhYbU+oCoqCgicnJyOn/+vD5zVg8cOKBWq5s08Vm/XspfjFJbtIiJiidklbfu3V/r1evztDSj/pUPHTo0Z86c06dPV73l/809cdRoeXl54uZ8xYoV+rxeoNMVr3bg4sIGjDZu3LiRiIYNMHY5Kq1W6+bmJpacf9KErxJXrlwRa7y9jZdxzGHfvoKuXXdNmFC2aTcGyMjIICJbW1t5t5IvbwoWW8bLzM/Pb/fu3UqlsmPHju3atXN3d2/fvn27dr0bN7Z59GBmWrqUPvqIDh6kB7Yv0VdBQcHhgQP7HDyoPH2a2rV7+glPFhsb++qrr+bk5Ij1/x/8lJ2dnfgq2rZt6+zsPHfu3IsXLz733HM7dux4dPoFlLesrKw6deqo1erMzMyHVhMxrdjY2G7dunXo0OH06dPldxW5mTsxTSAuLq5r164PfV3NmxfUrs1eXhwYyCtX8rFj3KwZ37rFW7fy778b9xar2ODHdJ2d/Pz8hISEBx9HPjRn1crKql27dhJNR656xJiD/u+NGkZsiWryFU2rElWFJWP56dKly/HjxzMzM8+ePZuQkJCQkJCYeCkhwTIzkw4dokOHiIjGjaNnn6XQUPLxISKqX9+I640fT998Q+vW0UcfkSn6O1ZWVm3bthUbAQh3796Nj48/d+5cfHz8/v37HRwcVq9eLVYTB7Po3r37uXPnYmJiunXrVn5XuXDhAhGJ2394rKpwS/gkt29TfDydPUsJCeTjQydPkrs7nTtHQ4dSv37GNd2mDSUm0u7dNGiQaWqFyi08PHzq1Knjxo0Tm36XhytXrvj4+CgUimvXrokxzTFjxoieHfyPubt4FWfWLNZquW9fNmKf5r8tWsRKJRu6GRxI59ixYzY2NnZ2djExMeXRfkxMjOhYNWrU6MGutLu7+wcffBAXV4bJN1VbVe5hPeTSJXJ1pV9+oYwMmjbNuLbu3KHTp+nYMWrYkMaPp0eWRYUqRqvVuru7X7x40crKKiwsTGxXYyr79+9//vnns7OzfX19f/zxRzc3NxcXFwcHh/Pnz9++fVsc06xZsxEjRgwbNqxv374qVVUYyTGQuROzQiUkMBHXrVvm6VcPy87miRNZo+Hff+ey7xoNMioqKgoODhY/Na+88oqRez6XWLdunZjdEhAQUFhYuHfv3pIHwRYWFh07dvT29nZycir5gW3YsOHo0aMPVtfZw9UrsJi5c2cm4k2bjGvl5En+5pviP0+danRRII1ff/1VvAfWpk2bc+fOGdnaihUrxK4FQUFBJZPv0tPT165d6+fn9+AUCldX1z59+ri4uBCRWA0pNzfX6K9GPtUusJYvZ6IyL9/xsFu3iqc1XL3KISEmKAvkkZiYKB7p1qpVa5Ohv/p0Op1YOVKhUCxZsuSxx2RmZq5fv3706NFilSvh7bffFhu1PLoYQ3VQ7QLr5k1Wq1mlMmIqVlISFxTwv//NCxbw3Llcln2qoWrIzs4Wy6gpFIqgoKDCwsIyna7RaCZNmkREKpVqtVi5pFR5eXmRkZGBgYGOjo7x8fHjx48no/fTlFS1CyxmHjv2jo/P5+HhEYacnJrKjRpx7958966p6wLJhIeHi+GnPn36pKWl6XlWTk7O0KFDicjGxmbnzp1luqJIxi+//JKIJkyYUNaCq4Bq9JSwxKZNm/z9/bt06SLWLC2D/Hzq25diYsjbm/bvJ0vL8ikQpBEdHf3iiy+mpaU1atTo888/7927d1ZWVkFBQW5ubk5OTmFhYWZmpkajyczMLCwszMnJycnJ2bx587lz5xwdHX/77TfDpqGKVztat259/vx5k39FlVx1DKzCwkJnZ+f09PTTp0+LPd30wkwBAbR+Pbm40LFjhOnIQEREaWlpL774YnR0tEKh109T8+bNMzMzDx8+7Obm9ug+wfooKiqqXbt2fn5+enp6nTp1DGhBXtUxsIjo9ddf//rrr+fMmSPWLNXHjhUrhoaEKJjp8GF64DUaAI1GM3z48AMHDtSsWdPe3t7S0tLGxqZmzZpWVla1atVSqVT29vZqtdrW1jY9Pf27775zc3OrW7dudnb22bNnDbuil5fX4cOH9+zZI7bMqUbMe0dqLkeOHCGiOnXq7NmzR5/V+DZv3qxUKoc880xhGQcdAB5UUFAgFlO3sbFRKBSG7ZzCzG+99RYRffjhh6Ytr/KrplO0GzZsaGdnZ21tPWjQoAYNGtStW9fb23vKlCkrVqzYt2/frVu3Hjz41KlT48eP1+l0/aZOVQ8ebK6aoQqwtLTs1KmT2L6X/94v3gBiH4OYmBiTVieB6jjHPzs7e9iwYdnZ2U5OTt7e3gkJCRkZGYcOHTokFnYgIqLGjRuLFanq1KnzxRdf5OTkjB8/fvbs2WYsG6qG7t27x8TEiFUnY2JihgwZYlgjRHT06FFmfnQDzSqs2gWWTqcLCAiIj49v1arV0aNHxfdNRkbG2bNn4+Lizp07d/bs2dOnT1+7du3atWt79+4lIltbWy8vr1WrVpm7dqgKRNbk5+eTEV2kZs2aNWzYMC0tLTk5WeznVE1Uu8B69913t23bVrdu3e3bt5dsfFSnTh1vb29vb2/xn8ycnJyckJBw9uzZ3377rX79+p999lm5LjUJ1YcIrCtXrhBRTEyMTqcz7Flht27dIiMjjx49Wq0Cq3o9Jfzpp5/Gjx+vVqt37drVv39/c5cD1VT9+vVv3bolukiJiYmtWrUq0+nz58/v3r37iRMnPvjgg1GjRkVERFSfhbOr0aD7kSNHJk+eTEQrVqxAWoEZifmiYnfxMt0VarXaKVOmLFiwYOzYsQcPHnRyctqyZYuTk9P48eM3btyYk5NTXhVXGtUlsFJTU0ePHl1QUDBt2rTXXnvN3OVAtSbuCsUgg/6BVVBQMHbs2FWrVllZWbm6uu7evTs7O7t58+Z379796aefxowZ4+zsPOPUjE33NuXoqm5ymXdWRcXIzc0Vu1QMGDCgqKjI3OVAdbdnzx4iat++PRF5eHjoc0pGRoaPjw8R2dvbt2vXjojq1q17+PBhZr58+XJYWJiXl5d9E3vLE5YUR9Ynrf2S/MJvh98sunm98PqP6T/G58avTTd0O+nKpOoHlk6nEy/Wt2zZ8i7eWIZKICMjQ6lUWltb16pV69lnn31oG8pHpaWlderUiYicnJyaN29ORC4uLomJiQ8dlnw7+ZMbn/RK7KWMU1IcURwtubFk7JWxSflJkfci3/zrzXL7gipO1Q+s9957j4hq1aqVkJBg7loAirVo0YKIPvjgg/ynrX6blJQkDnZ1dXV2diaidu3aXbt2rZRTrhde//LWl/0v9t+SsWXNnTXig1UjsKr+GJaNjY2lpeWmTZva4gVAqDSaN2+uUCgWLVpUt27dYcOG/fjjj1lZWY8eFhsb27Nnz6SkJHd394yMjNTU1D59+hw8eLBRo0alNO6sdn7d8fV9bvvcrd3TitLK7Yswg2oxrSElJUWsLQtQSeTn5wcGBp49e/bEiRPiIzVq1Bg4cOCoUaOGDRsm1mDIy8t75pln0tLSunbtevbs2by8vJEjR/773/+uUaOG/hdadGNRERfZW9jf196f23BuuXwxFahaBBZApfXnn3/++uuvO3bs+M9//qPRaIjIwsKiR48e/v7+/v7+586dW7hw4eHDhzUazb/+9a9Vq1ZV6y1zEFgAlURaWtrWrVu3bNlSklxKpdLR0fHmzZtENH/+fLEGfDWHwAKoXDIyMrZv375jx46dO3cWFBQolcrly5e//vrr5q6rUkBgAVRS2dnZq1at8vHxMWwl5SoJgQUA0qj60xoAoMpAYAGANBBYACANBBYASAOBBQDSQGABgDQQWAAgDQQWAEgDgQUA0kBgAYA0EFgAIA0EFgBIA4EFANJAYAGANBBYACANBBYASAOBBQDSQGABgDQQWAAgDQQWAEgDgQUA0kBgAYA0EFgAIA0EFgBIA4EFANJAYAGANBBYACANBBYASAOBBQDSQGABgDQQWAAgDQQWAEgDgQUA0kBgAYA0EFgAIA0EFgBIA4EFANJAYAGANBBYACANBBYASAOBBQDSQGABgDQQWAAgDQQWAEgDgQUA0kBgAYA0EFgAIA0EFgBIA4EFANJAYAGANBBYACANBBYASAOBBQDSQGABgDQQWAAgDQQWAEgDgQUA0kBgAYA0EFgAIA0EFgBIA4EFANJAYAGANBBYACANBBYASAOBBQDSQGABgDQQWAAgDQQWAEgDgQUA0kBgAYA0EFgAIA0EFgBIA4EFANJAYAGANBBYACANBBYASAOBBQDSQGABgDQQWAAgDQQWAEgDgQUA0kBgAYA0EFgAIA0EFgBIA4EFANJAYAGANBBYACANBBYASAOBBQDSQGABgDQQWAAgDQQWAEgDgQUA0kBgAYA0EFgAIA0EFgBIA4F7YM4bAAAgAElEQVQFANJAYAGANBBYACANBBYASAOBBQDSQGABgDQQWAAgDQQWAEgDgQUA0kBgAYA0EFgAIA0EFgBIA4EFANJAYAGANBBYACANBBYASAOBBQDSQGABgDQQWAAgDQQWAEgDgQUA0kBgAYA0EFgAIA0EFgBIA4EFANJAYAGANBBYACANBBYASAOBBQDSQGABgDQQWAAgDQQWAEgDgQUA0kBgAYA0EFgAIA0EFgBIA4EFANJAYAGANBBYACANBBYASAOBBQDSQGABgDQQWAAgDQQWgPSGD6e9eykzk+bPN3cp5QyBBWCgc+fOjRo1qmPHjgcPHjRvJS1b0tatlJ9v3ioqAgILoMwyMjLeeeedzp07//rrr/Hx8T4+PmPGjLl69WrFV5KSQvv3ExEFBVFYGBHRpk2UlVXxhVQQBBZAWWg04V9/7ebmtmTJEq1W++qrr77xxhtWVlYbN250d3efP39+Xl5exRSSm0vz55O7O738MhUUUOvWZGVFN27QSy+RqyutWEFabcUUUrEYAPT0++/cocMPvXsTUb9+/U6fPi0+/NdffwUEBCgUCiJq3Ljx2rVrdTpd+VWh0/G6ddy4MROxQsE9e3JQEDNzXh7v38/e3kzEROzhwdHR5VeFeSCwAPSQlMQjR4okKOzWbcuWLY8ecuDAgY4dO4p+QJ8+fU6ePFkehRw7dmzkyPEqVRERt2nDbdowEVtacnJy8QE6Hf/8MzdpwkTcsKFm3Lj/+/PPP8ujErOouMDS6XTffPNNnz595s6dq9FoKuy6AAa6coXXrOG4OI6KYisrJmI7O/74Y87Pf9IZWq127dq1Tk5ORKRUKgMCAm7cuGGqclJTU1999VWlUklEvr4f9et3XaFgIm7UiNet44e6dDk5HBLCfft+TUQ1a9YMCQnJyckxVSVmVEGBFRUV1bVrVyKysLAgoh49epw7d86wpm7durVp06ZLly6ZtkJ5ffXVw38AE7hxgydP5uvXeeFC3r+fXVzY35/166pkZGTMnDlTrVYTkb29/fTp07VarTG1FBYWhoSE2NnZEZGVlVWfPn1sbW179hxjaclBQZyV9cQTr169+uKLL4p71SZNmnz//ffGlFEZlG9g6XS6X3/9tVOnTqKf3KhRoxdeeKFx48ZEZG1tHRoaWlRUpH9rWVlZoaGhderUqV27tp2d3dq1a8uvcolMm/bwH8AEtm7lXbuYmW/e5JCQ0lLhCS5cuODn5ye6WsuWLTOmlnnz5jk4OBCRh4dHo0aNxE+Tv79/SkqhPqfHxMT06NGDiOrWrbt7925jKjG7cgyskl4VETk5OYWGhubm5jLzvXv3Jk6cKFL/5ZfXx8c/vamMjIyQkBB7e3vRmvhVQ0QvvPCCAV3uuLi4zp0729nZjR49WpRkiMxMnjuXP/yQ16wxsAUTef11XrSIFy3il182byFVy6FDvHo1M/OJE/zllwY3M3jwYCJ6//33janF39+fiMaMGePp6UlEbdq0KVPu3L59OykpqWXLlkT02WefGVOJ2ZVLYD0pqh60Z88eDw8/e3udWs3BwVxQ8PimMjI4JIQHDJguWvP19Y2OjtbpdOHh4bVq1RJd7vDwcD0Li4uLGzFihMhK8f+tWrU6ePCgIV/kwoV8+TIzc0iInncK5QQ9rPISEsILF/KsWZydbXAbCxcuND6wgoKCiCgsLOzo0aPh4eFlHQIOCAgQ4zBEtH79emMqMTtTBpZOp9Mnqkrk5HBwMCuVTMTt2/Px4//4rIiq2rXFsGLKoEHPPZQsqampw4cPF9caMmTIX3/9VUptZ86c8ff3FyFlY2MTFBS0YsWK1q1bi+QKDAzM1v+bsrCQExP5tddYDEysXcuHD+t77iOuXLli5Hjcpk3FhWzcaEwz8IgDB3jCBP7hB2PaMG1gGXY6AusxtFqtu7t7yVjV559/nv/khykP+v13dnVlIq5Vi995hwsKOCmJFy8ujioi9vXlUvpAERERdevWJaLatWuHh4c/Ov/l0ahKTU3Nz89v27atSqXq06ePpaUlETVv3nz//v1P/SI5IoLd3LhJE/7uO966lYuKePJkvnCBhw3jMubOzZs3g4OD1Wq1hYXFsGHD7ty5U6bTS8yZw8uXMzPPnGlYA/AE33zDRBwYaEwbCCzTMtlM9wMHDiQlJanV6s8//zwpKWnatGlWVlb6nNivH505Q0FBtGABnT9PK1bQzZukVFJWFnl50e+/U1QUeXk98XR/f/+zZ8+OHDkyMzNzypQpoqslPhUfHz9mzJiOHTtu3LixZs2aQUFBly5dWrFiRcOGDbVabb9+/XQ63R9//OHi4tKmTZvk5GRfX98pU6ZkZ2c/5jIaDX3/Pbm50ZgxdOkS2diQtzcVFNAnn9DMmRQaStu3U8eOtHy5PvOLU1NTZ8yY0axZMzFbmoi2b9/evn37bdu26fM39qiMDEpJMexUAKmYKvn++9//EpGXl5cxjcyaxfPn808/8YYNrM9g/IMiIiLq1atHRLVq1Zo3b96jvapHTzl06FCrVq2ISHS1RMK6uLhERUWVHKPVaiMiIvp07qyrU4eJ2NWVw8P5oYeb6ekcEFDcIezZU/vkGRuiV1WjRg0iUigUfn5+cXFxly9f7tevn/jn8Pf3v3Xrlp5f8u+/8zvv8Jw5nJnJb7zBM2dyYmIpk4RKk5OTc+zYMUPOrMJM0cP6+ON8O7t7ISEG/av8DT2sEiYLrO3btxPRkCFDjGlk1iy+f599fHjDBkNOT01NHTlyJBGJ54mlRFWJ3Nzc4OBgMTvsmWeeEXe1CoUiICDg1q1ba9aseeaZZ0SU7PX353XruJTxzl27uEkTrVL5rIdHSEhIYeE/Hjk/NqpKPiseI9ja2hKRk5PTU2dsREdz//7FCfnyy6zV8saNPGoUN23KbdtyTIxef11Cfn5+eHi4s7Ozg4NDVtkf3ldlprklZCI27o4QgfU/JgusdevWEdHLxj1aF8PGUVEcG2t4I+PGjSMiDw+Pmzdv6nnK4cOH27RpQ0RKpbJbt26iqyWeQhJR69at161bp9ejmXv3dr73nujZdevWLSEhgZ8WVQ8St6Xion5+ftevX3/0mD/+SPLxKY4qBwdevJjPny/+VFQUt2zJRKxScXAw5+U9pdicnJxPP/20fv364oqenp6Yjvugyz/+uKFHj1jjwgaBZVomC6wvvviCiF577TVjGlm2jO3t+cMPjaokJCSEiPr37+/q6vrtt9/qeVZeXt7bb78tulo9e/Zs1qyZs7Nz/fr1w8PDyzS7lZn37NnTtGlTIrKysmrdurW1tbWIQn9///in3eiWMmMjOjq6f//+anXNJk2KHBw4JITv3Xv49Nxcnj2bLSyYiN3dNUeOPD4ZS3pVIqo6duwYERFRru/ryuibb74hokD0sCoTkw26Z2ZmElHt2rWNaeTePbp3jxQKoyq5d+8eERUWFl65ciUnJ0fPs6ytrZcsWRIbG9u5c+d58+YNHDgwNTU1JCQkMDBQpVKVqYCBAweeP38+ODi4qKjoypUrBQUFfn5+x48fj4iIaNeuXennijkW58+fHzZs2L1796ZMmTJ06NC1a9f6+Pj07t17//79tWrVePvtmORkmj+fHv3LrlGDli2jQ4fI3Z0cHT/t1avrlClT7t+/X3JAQUHBqlWrXF1dp0yZkpqaKqLq5MmTJUN+AJVZpQssosf8HBpQiUajob8Hs/TXqVOn48ePP/fcc6KROnXqGFZDzZo1Q0NDf/nll6lTp+7du3f79u1dunTR/3RnZ+dt27Z99913tWvX3rlz58SJE6Ojox0cHD766KPk5ORp07z+nur/eN2704kT1Lt3noWFxapVq7p06RIdHY2oqnhFRdSlC61aRT4+VFBgggaZ2QStyKxsfYdSiH5NWQPiIZmZRCYNLAMCVNwVmiR//f39xUsVBlAoFBMnThw0aNDQoUOVSuWYMWOmTZtmV3pQPcDKihYuDBk50u9f//pXfHx837591Wp1QUEBEXl6eoaEhAwZMsSwwkB/6ek0fTodO0Y//URubtS8ubENhoeHb9q0afny5e3bt9f/LBcXl06dOon5hrIzWWCZsIdlXOgVR6f44TQ4QE2Sv8Zr3Ljx6dOnDT7dw8MjLi7OwcEhOztb/IWsWrVq0qRJ6FLp4969e5aWllu2bAkODnZ1dTWskdGjackS+nu00BBXr17du3evpaXl5s2bU1NTL1++7OHh8dprr82fP1/PO4APP/zwlVde6d69u4WFxYULFwwvpRKoXLeEdeuG9O49pW7dZOMrESvVGlyPSb6cykCtVou5qWK1k5KFMeGpXnrpJaVSeefOHXd393fffffBocCnKiykZcvo6lWqV49cXenYMbpxgz7+uGz7ROTk5MybN69NmzaJiYmWlpbR0dHp6el9+vRh5pUrV7Zo0WLFihXiTqIU9+7de+utt9q3b5+ZmWllZfX666+XoYJKyFSj9+IZxKFDh4xppEOHDkR06tQpYxoRM6fEKhyXxfvJZdewYUMieuzEArkUFhYSkXhuYGlpae5yJJOSkhIYGCjWzGvYsGF4eLg+K1tFRbG7OxPxkCG8dClrtezpycOGMRE3acJ6rooUGRnZrFkz8UPq5+d34MCBoUOHiv90cXHx8PAQf27duvXOnTsf24JYTVBMWxGrCVaBpUdNFlhiHpOYeWQwMRsguWS1V4OIlYPE3Vx6erphjYhpU/fv3zemksrg9u3b9PfTAycnJ3OXI6XY2Fivv98O8/DwiH7ySumJiTxkSPEsuVateMeO4tlwYrX1jh2LP9W3L5fySzkuLs7b21tcTjwwKflUVFRUyRu7HTt2FEvLiURLSkp6sJH//Oc/JevQld96zRXPZIEl3kB+6jyj0olbsLt37xrTiLj3EWPnZZ1CJZT0SqrA1KRLly4RUZMmTYjIzc3N3OXISqfTRUREiC6PQqHw9/dPSUl58IC7d+8GBwc/++x2Iq5Th0NDH7NiklbLa9eykxMTcb9+ewICAh6a23z79u2goCDxrVuvXr2wsLBHpysXFhaGhYWJnxS1Wt2rVy8bGxsisra2Fj99FbwjRgUzWWA1a9bMwsKiadOmD76IVyZarVapVCoUCmNWfBcDDaJ/ZGtra1gjt27dIiIHBweDy6g8ck6eTO3e/eTAgSf79IkeN87c5cgtJycnJCREfHeJhdJzc3OLioq+/PJL0a+vUaPW7Nk5pa+7cfcuv/12nq1tPdHzDQsLKywsFDEkJgyr1eqgoKDMzMxSGrlz505JtNWpU6dXr17e3t73799/tDwT/xWYm8kCKzIysm3btuL3z9SpU8v6VtqZM2dGjBhhYWHRsmVLY8q4fv06ETk6OophLMMaEb0SV1dXYyqpLPbtY6LiuxFfX3NXUxUkJyePHj1a3G3Vr1+/5IWB/v37nzlzRs9Gzp07N2jQIHFiw4YNGzRoIP48YsQI/V+Qio2NLbl5dHZ2Fi//KxSKV1555dq1a4Z+fZWaKRfwKyoqCg0NFS/iOTs7R0ZG6nPWiRMnSlYBtbKyWrBggTE1/P7776KHdfXq1du3b5f19N9++23Tpk3Hjx8XwwfGVFJZbN7MRNytGxPxCy+Yu5qqQwwSKZVKW1vbJk2aGLbDwO7du0sefykUit9++82ARiIjI11cXFQqlVKpLH2IrQow/RLJCQkJYuVpIvL39y9l2PuxS+sZefWcnByx5oGjo+Mvv/yi/4lRUVHdu3cXv+6++uorIurZs6eRxVQKa9YwEffqxUQ8caK5q6lSNBrNhx9++Mknn+i5VuWjioqK6O/Vuq2srAyu5O7dux988MHixYuN3J6n8iuXNd2LiorCwsJq1qxJRA0aNPj1118fOqA8oqpEXFzcgAEDRGIOHTr0qX3j3377rSRhHR0dn332WSsrK6VS2bdvX1OVZE6ffcZE3Ls3E/Fbb5m7GvgHEVhiKMqYwKo+ynHXnKSkpD59+pR0tcQSwOUaVQ+KiIgQz/JL2aWipFclhti9vLxKVlbo3r176YvES2PlSq5Th8WSNMbdboPJIbDKqnz3JdRoNJ9++ql4bFGvXr22bduWRNWcOXP0X6/KMKmpqSNGjBB5NHjw4AdnzT0UVX369NFnvSop6XT8/fe8eDH/8QfLP62sikFglVVF7PwslgBWKpUqlapce1WPFRERIR45l+xSsX///gdvAKtsVAnffcd79rBWy1OmsKHTaKGcaDWaid7egb17T/T2ntqvn7nLkUAFbVWv1WrnzZsXGBholqetaWlpzz//vAipQYMGpaSk+Pr6Vv2oEl57jcW8wbVr2bgXp8D0ioqYqHjFRfSw9KDgarPCzvr162fMmJGeni6mwhcVFSmVyhdeeGHevHlPXVdPYkuX0vDh1Lo1ffABvfYa/b3ROVQKGg2p1WRhQVotWVmV7d3oaqkaBRYR3bp1a/LkyeJl0cGDB3/44YedO3c2d1HlLCeHli0jCwtydaVXXjF3NfBPCKwyql6BJRw6dEihUPTq1cvchUC1h8Aqo+oYWACVBQKrjEy24igAlJlKRYcO0YkTZGFBZVn1v9oy2YqjAGCIX3+lNm3IxYV27DB3KRJADwvArLKzqX9/IqJt28xdigTQwwIwq5JF2bVas9YhBwy6A5jVpk108iRpteTjQ9h77WkQWAAgDdwSAoA0EFgAIA0EFgBIA4EFANJAYAGANBBYACANBBYASAOBBQDSQGABgDQQWAAgDQQWAEgDgQUA0kBgAYA0EFgAIA0EFgBIA4EFANJAYAGANBBYACANBBYASAOBBQDSQGABgDQQWAAgDQQWAEgDgQUA0kBgAYA0EFgAIA0EFgBIA4EFANJAYAGANBBYACANBBYASAOBBQDSQGABgDQQWAAgDQQWAEgDgQUA0kBgAYA0EFgAIA0EFgBIA4EFANJAYAGANBBYACANBBYASAOBBQDSQGABgDQQWAAgDQQWAEgDgQUA0kBgAYA0EFgAIA0EFgBIA4EFANJAYAGANBBYACANBBYASAOBBQDSQGABgDQQWAAgDQQWAEgDgQUA0kBgAYA0EFgAIA0EFgBIA4EFANJAYAGANBBYACANBBYASAOBBQDSQGABgDQQWAAgDQQWAEgDgQUA0kBgAYA0EFgAIA0EFgBIA4EFANJAYAGANBBYACANBBYASAOBBQDSQGABgDQQWAAgDQQWAEgDgQUA0kBgAYA0EFgAIA0EFgBIA4EFANJAYAGANBBYACANBBYASAOBBQDSQGABgDQQWAAgDQQWAEgDgQUA0kBgAYA0EFgAIA0EFgBIA4EFANJAYAGANBBYACANBBYASAOBBQDSQGABgDQQWAAgDQQWAEgDgQUA0kBgAYA0EFgAIA0EFgBIA4EFANJAYAGANBBYACANBBYASAOBBQDSQGABgDQQWAAgDQQWAEgDgQUA0kBgAYA0EFgAIA0EFgBIA4EFANJAYAGANBBYACANBBYASAOBBQDSQGABgDQQWAAgDQQWAEgDgQUA0kBgAYA0EFgAIA0EFgBIA4EFANJAYAGANBBYACANBBYASAOBBQDSQGABgDQQWBXkiy++SE5ONncVAHJDYFWE5cuXT58+ffTo0fn5+eauBUBiCKyKMGnSpNatW584cWLy5MnmrgVAYgisimBnZxcREWFjY7Nu3bpvv/3W3OUAyErBzOauoRzcvk3ffktFRTR+PDVvbu5qiv38888vv/yylZVVdHR0t27dzF0OgHyqaGC98QZ99BFZWdHrr9OaNeau5n+mTZv25ZdfNmnS5MSJE/Xq1TN3OQCSqaK3hDod1a5N1tZkaWnuUv5h+fLl3t7ef/3110svvaTVas1dDoBkqmhgEVFODmk0VFRk7jr+Qa1Wb9y4sWHDhvv3758/f765ywGQTBW9Jbx+nb77jrRa8vOjxER65RWysDB3Tf9z4MCBgQMHarXazZs3P//8808/4c4dSkyk9u2pdu3yrw6g8qqiPaxGjahnT7p4kQICaMIE+v13cxf0D/369Vu8eDEz/9///d/ly5dLO7SwkJKSKCSEtFqaOZPS0yuqRoDKqIr2sIho0iRavZp696boaBo/ntauNXdB/8DMo0eP3rJlS+PGjVu3bq3RaLKzs4uKimY3bx5w4gTdv0+FhZSTQ0S0eDH5+5ObGx04QLdu0Ysvmrt2ALNRmbuAchMQQKtX0+XLpFDQ5s305Zdka2vumv5HoVB8//33f/zxR35+/r59+0o+nmFrS3/99b/j1GpSq+n+fSKi+/epZs0KrxTKLimJ1q0jIvrXv6hZM3NXU6VU3cDy8aHmzSk5mdq1o4QE2raNXnnF3DX9w/Xr19PT0+3t7ffu3atSqWrVqmVhYeFcuzZZWJCdHanVxQl79y698w61aUMXL9KKFeauGvQQGkpffUVaLc2YQatWmbuaKqWKjmERkUJBY8cSkRio1kZEGN/k8uXFfwgLM74x2rVrFxG5u7u//fbb169f9/Dw6NSpk1Pz5tS0KdWp87/+YN26tGoVDR5Mjo7Fv7ehklOrydKSatQgZdX9+TKTKv0XGhBAVlZ/KpVLevZ03LcvLS3NyPZKxsdLHyjXkwgsrVZ76tSp7Ozspxx96RItXEiffmqCC0N502goL6/4Rp6IcnPNWk2VUqUDq3Xr4T16NIuO3qLVZuTm/vzzz0a2l5tLixfT4sUm+A7MycmJjo62sLBITEwkokGDBj3lhMGDqX59OneOTp0y9tpQ3ubOpWXLaPlyCgmhs2epbdvK9sxHXlU6sIh8R40iIp1OR0TrjL6fqlmT3n+f3n/fBGPf+/btKygoaNOmTWZmpru7u6ur61NOUKnI35+I7m3a95QjweyaNqV582juXDp7lmbOpJQUCgykAwfMXVZVUMUDa+zYsWq1+tSpU3Xq1Dl58mR8fLwxrQ0cSDpd8R+MJO4H69atS0SDBw/W55T0V2f1aJvtvmY2XumRw7175O9P+/ZR795UWEgjR1JCgrlrkl4VDyxHR8eBAwdqNBqxct6CBQuMmXe2cyeFhxORCSai7t69m4jEsJqegeXg4XJPY5uWRvv3G3t1qAj29rRuHVlY0MGD1K0bZWXxqFEZt27pe/rNm4RfTY+o4oFFRAEBAUSUl5dHRJs3b/b09Ny0aZO4SdRfbi5lZJCtLV27RqmpxpYUHx9/9epVR0fHpKQkW1tbb29vPU8UEzN++snYAqCCDB1Ky5YRM8XHa7t0mVunzsChQ3OfOgJaVESTJ1NkJE2dSlevVkih0qj6gWVnZ0dE9erVW7ZsmbOzc2xsrL+/v5ub24oVK0SKlS4jg956i3r0oP/7PyKiOXNo2TJjSxL3gy1btmRmX19fKysrPU8cN44cHcnZ2dgCoOK8+SZNm6a1tw8kWnfzZmxs7IQJEx7/+zInh44coa+/pt27ydeXJk+mDz7Ab6eHcVU3YMAAIhLv7hUUFKxdu7ZVq1bia3dycgoJCcnIyHjsiampPHo0OzoyEatU7ODAb77JzPzjjzx5Mo8axT/9ZGBJffv2JSJPT08iCg8PL9O5777LR44wM3/yiYFXh4qm0Ux78UUiat68ub29PREFBwcz840bN3bv3r115Up+8UVu1YqVSiZiIv70U960iZn52jVesMDMxVcyVTywTp48qVAo7OzsHkwlrVYbGRlZsuannZ1dUFDQ9evXSw64ePHi6NGja9a8YW3N1tbs7MyjRvGWLXznDjOzTsfh4UzECgUvWMA6XdlKyszMVKvVYmo7Ef3555/6nJWayn/9xcz85ps8dSoXFfHMmWW7LphRdnZ2p06diKhdu3ZKpZKIHBwcxLdfy7p1i3NKreaOHXnCBI6J4Vdf5chIfuMNvnDB3LVXLlU8sKZNO9Ot25A5c+Y89rO7du0SnR0isra29vX1jYmJ6dmzp62tbffu3f39v9m9m/PyHt9yeDirVEzE/v6cm6tXMRqNZteuXQMGDFCpVE2bNr169erGjRv1OTE6mhs2ZE9Pzs/nt97iuDgOC0NgSebatWuNGzcmIoVCIb7latWq1bt37+nTpxf+8APHxXFBwf+Ozs/n06c5M5NTU3ngQMRWCXME1vnzxf82p04xM9+8yZs3c0KCya9z6RJbWLCVFV+7pi3lsBMnTgQEBIhvo969e0dERGRlZenT/m+/sZ0dE3FAQOKNGzdKOTIhISE4OLhBgwbiO1XMZmjbtu3x48efepXly1mtZiLu2JFnzOC33mJmfv99DgrSp0aoRBISElQqFRFNnDgxKSlJp0/nfPJkJmI3t+LufbVnjsCaP59v32ZmnjaNs7J4wgQ+d44XLOADB0x7ncBAJuLJk59+ZGZmpo2NDRGtX7++TJc4c4YHDrxtZVWrWbNmp0+ffuiz165dCwsL69y5c8mIYatWrUJCQjZv3tymTRsiUqlUwcHBBQ/+an1Adnb2rFnrxb2njw9bWDARh4YyM2dkcFRUmSoF8zt//jwR2dvb5+fn63tOTg57ejIRe3uz/mdVXWYKrPfe40WLePhw3r+fN2xgZr5/n2fNMuFFbtxga2tWKvXqTYeGhhLRs88+a8CF7ty54+PjQ0S2trZbt25l5tzc3IiICD8/P/HrlIjq1KkTGBgYHR1d8ks1Ly8vODjYwsJCjGvExcU91GxiYmLbtm0VCoWPz6YePYqHzIKDWVtaZxEqtblz5xLRpEmTynba9evcpAkT3QwM1KtTxswaDX/7LX/0EZ8/b0CdlZm5e1gnTvCXXzIzX7nCixaZ8CLvvstE/MILTz8yPz/f2dmZiPbs2WPYtfLy8l555RUiUiqVLVq0qFGjRsm42JgxY7Zv315YWPjYEw8fPtyyZUsiUqvVwcHBJYdt27ZNPE5q3rx5r14biLhuXd61y7DqwKT27i3+7v33v5mZf/+dP/yQw8L4Cd3kB7m5uRHR/v37y3zR06dPdevWuGHDefPmPeazGg0nJPC6ddtiQ9AAACAASURBVDx7Nvv68rx5vGwZHz3KRUU8YcITR2HlZI7AWrqU09OZmYODmZnnzuWFC3n6dL51yyTNX7nChYV88yZPn86xsU8/Pjw8nIg6duyo76+vx9HpdOKpnxgL8/T0DAsLu6PHuENubm5wcLB4ctSxY8dTp07l5eWJVwt79OhRs2ZNZ+cmzz57KznZ4NLApD79lC9fZmaeNo1v3y4eSjx6lMPCSj8vJiaGiBo2bKjRaAy47O7du1UqlUKh+OGHH+7fv3/kyJGvv/46MDCwX69ebGtb/JxR/M/Hh6dMKT4tLIzPnTPgcpVW5XhKmJ/Py5Zxv35s0L/lQyZN4uXLmZlnzHj6wRqNRvze++WXX4y5aHp6OhFZWVkpFApra+uyflNGR0e3aNFCdMpCQ0OPHj3q6+srumkBAQE5OTnG1Aam9OmnPHs2L17Mgwbx0aO8Zk3xx0sy4glmzpxJRDONeLgr9gxXKpXKfy6zVeDqyk2bcs+e3Lcvd+vGzzzD777LaWnMzDNm8L17Bl+xEqocgaXTccuWTMRbtxrf2KxZHBLCKSl6BdaGDRuIyNXVtaioyJiLHjhwQDz4IyIPDw8DWsjMzJw0aZLooIn7QWtr62+//daYqsD0Huxh3bpV/NT25En+9FP28+OgIM7MfPQkrVbbqFEjIoqJiTHm4rNmzRK9eDc3t169enl7e7dr1+6St/c/elhEHBvLH3zACxbwli3GXK4SqhyBxcyffcZE7OtrfEuzZnF2Nk+fzjNmcJ8+HBTE16498WAPDw8i+uabb4y86MqVK4nIy8uLiP71r38Z3M6ePXscHR1dXV3r1at39OhRI6sC09u5s3jsYu1aZuYdO/jDD3nJEj56lBUKJuL69Tk8/KF7hf379xPRM888Y8ywAzPn5OSo1eqSmVzCzj59uGFD9vXloCBeu5YTEqrwo5lKE1gZGWxjw0QcH29MG/v2FT9s3LiRR48u/n1jbc1TpnBS0sPH7927l4jq16+fq+fUzyebPHkyEYnXmD/77DNjmlq8eDERvfHGG0aWBBUtJoa9vMT3nK5Dhz/27i35zKRJk4ho7ty5Rl5h48aNoofVpk2bsWPHLlmyZO/evXdMNPgrhUoTWMw8ZQoT5Ys+dtnl5LCXF6vVxdMkxEeOHeNRo4pf0rKw4KCgT06cOFFySv/+/Yno448/Nr72rBEjknv1ihwyJKRbt8P79hnT1FdffUVEU6dONb4qMIPISH7mmfO9exORr6/v6dOnCwoKxFThBKNnR48aNYqIlixZYpJKZVSJAqsgPj60e3cHe/vMx40ClK6wkAcPZiJu3JhTUh7+bFISBwVx69bnxWill5dXZGTksWPHxOsRT3r5uQy02uInNbVrMxGXOuv9qb7//nsimjBhgrFVgbkUFKxduVIMRKpUqueee46IOnXqZGSrmZmZNWrUUCqV10oZ46jqKlFg8d/LGKxcubJMZ2k0/OKLTMSOjqVNlLt27casWbPEajMl78eI9+aNlZTERNygQXERxvnll1+I6MUXXzRBYWA+d+7cmTZtmlqtFjdx06dPN7LBn38+WrNmvX79+pmkPElVrsDatGkTEbm5uek/NqnT6WbMWOTqmm9vzydPPv34zMzMsLCwhg0bWlpatmjRIjU11aiKhV9/ZSL28DDJc4Nt27YR0fDhw01QGJjbjBkzRGDVr1//6tWrxjQ1cCDb2Oh++un60w+tuipXYGk0GtHx2fvAgGXpZs+eTUSNG3c6dOjxs8kf6/jx40TUpk0bZr5x40bQ328SX7lypQzveZVYsKB4wh5R8aJZRtizZw8RDRgwwMh2wOy2bt0qpk2JtWXc3d0NHn+4eZNVKra0rO4vQVeuFUc3btx49+5dhULx66+/ElFsbOw333xTyvGLFi365JNP1Gp1ePjiXr3U+l/oxo0bROTi4kJE9evXX/H3jspjx449dOgQEaWlpX311Vdvv/02ER05ckT0ep7I1pbc3KioiIiofXv9y3gs8WaPPquhQmV2/vx5sbhoaGjoH3/80b59+3Pnzr300ksajcaA1n75hTQaeu45+nsdrWqqEm1Vn5SUNGXKFCLq2rXrt99+26VLl6KiotOnTxPR7du3Bw8eHBsbS0TJyclNmjRRqVSffPLJ3LlzLSws1q9fP2TIkDJdKyUlhYiaNWv20Me3bNni6OhIRNu3bz9y5IhSqUxOTv7zzz+VpW/hO2wY5edTzZr0ySfUokWZKnmUCCyxawZI6u7du8OHD8/MzBw3btycOXOIKDIyskePHnv27Jk6dep3331X1gbFpppiL/PqrLL0sPLz88eMGZOVldWzZ8/jx4+rVKquXbv27dtXzG+ysLAICgoSR+7YsePu3btEtHLlSqVS+fHHH/v7+5f1clevXqXHBZazs7MYJe3YseO0adNu3Lhx5MiRs2fPltaWVkuLFtHs2eTrS1FR5ORU1mIeYm1tTehhyUyj0fj7+yclJXXp0kW8qUpELi4uO3bssLGxWb169dKlS8vU4P37dPMm2drSsGHlUK5czH1PWmzne+8RUfPmzW1tbYloTckrWk/Wvn17MnSC5YoVb/Tv77p584bSDxON//HHHxEREU886Pr1/y28bYrJU0lJSUTk6upqZDv5uvwMTUahrvBkrh4PI8B03njjDSJq0KDBX2JZ6wds377dwsJCoVDov/La8uWcns5ZWYzXtLiyDLr/9BMTXfTx6ebuTnpPQTp//rxKpVKpVGfPni3rBc+f7xYbS/fvHy79MLEm3507dx5c8f1hBQXFL76mp5tkSa/r168TkbOzszGNRGVFBf0V9HHax//J/s/81PnGVwV6EtPorK2tj4jNQh4hulfW1taHDz/l24+ZNRqeOJGDg/n2bV640NS1SqgSBNaFC8UrDffqld+iRdDAgffv39fz1MDAQCIaOXJkWa956pRjbCwVFppiTgMz79rF8+bxBx/wzZvGNyYWfrC3tzemkf9L+T8ta5k5U5OJwDLS9evX27dvP2bMmJCQkA0bNpw5c+ZJi8QeOnRIbNr23XffldKg6ILVq1fv0qVLD33q7l2OjuawMA4IYHd37t+f33qLv/mGt25FYDGbP7Byc7ljRyYqXgfWxobL0l26efOmWIWqTIuiabX3Y2PpxAlrZqPeRC0P9+7de+ONN+zs7GrWrOnv73/x4sWytnAi58SOezsmpkwU/4nAMl5UVNRDAykqlcrV1dXX1zcoKCg8PDw6Ojo7O/vq1atOTk5ENHv27NIb1Gg0w4YNI6LWrVufPn06MjIyJCTEz8/P1dW1c+d9Dy674OTEb73FWi2PHYvAYjZ/YL35JhNxixZcsyYTFb8BXxYLFiwgIk9PT/3nmublnY2NpYSElmW9Vnn7+eefxUYVKpXK0tKSiNRq9euvv54m1jZ6mhxtTvC1YNUJlcNph+/vfD83de6GuxuO3j+KwDJSXl5ebGzsjz/++M4774wYMaJFixZibesHKZVK8bhm0KBB+qyGduXKlYcWXRAGDfq0d2+ePp1Xry7eSUf8TMTF8caNvGhRFVveqszMHVi3bvHw4dy8ORNxWde6Zmbm3NzcJk2aENHPP/+s5yn37v0WG0sXLw404HLl5PLly+KNMyJq3779888//+effwYGBopV4WvWrBkcHFz6nMNt97Y1jW9KcaQ6oXrrr7eytdmphanxufFFXHSrqBq9zV8xCgsLL1++HBkZGRoaGhAQ4OHhUaNGDUtLy/r169+9e1efFr744gv6+4mwvb39+++/v3HjxtK30gkKYiIeMICfsOB2tWC+wEpI4EWL+JNPODubw8K4Sxc2dF1NMavFxcVFz0nqubnxaWkfZ2X9btjlTKuwsDAsLEw8G7W3t/f09BS/eEX+nj9/3t/fX3ykbt26oaGhj66E89dff02YPcH6pDXFkWeiJ54JmkVhYeHhw4e1ei9EJZZO6969OxEtXbpUn1OSk4tfV/2//zOiUMmZKbC0Wh4/nouK+PJlfvddZjbmt4ZWqxVbaX2i3/btly/7FxbeKCoywQC5kQ4ePNiuXTvRsfL09BS7AdeoUSMkJOTB8I2JiXn22WfFYY0bNw4PDxfro2o0mrCwMPE696AfB31+63Mx0A6V3NWrVxUKRY0aNWrUqKFQKFIeXWDkCWJji1eNE7u9VUNmCqybN7lkMbOnLYatj127dokeyqP7Pmi12Tk5sXfurP3zz6DERK/bt8NTUz/866+3Cgr02iO+nGRkZAQFBYkJ9M2aNevSpYvIo759+yYmJj72lKioqJLDWrduvXTpUk9PT/Gffn5+em55D5XBxx9/TEQ9evQgIh8fnzKdu2ULW1jo+vWbV9rcwKrLTIFVVFTcr711i5/2SEVPAwcOJKI333wzPT09Kipq6dKlY8eOHTasf2ysMjaWSv6XnDyBmYuK0q9eNUFQGua9994Tj5OsrKz69OkjHoTXr19/7dOeOeh0uoiICLFrhng8KuZPV0zZYCoFffue9vEJ9vVVKhRfffVVWU//5psdoieuz0yuKsZ8Y1jR0RwSwgsWmOr1823btikUipK9SwW1Wh0TY5eQ4J6cHHDzZlh2drRWm52auuivv+ZkZJhgwwsDHD9+XIxJdejQQbwbpFQqp0yZov97/IWFhRMnTiQid3d3bKgjn3PnmIjt7VmtLnJxuSd2OSyjUmZyVW3mfkpoNK1WGxUV5e/vL540q9VqS0tLLy+vadOmrV69+sSJExpN5XqmsmPHDiJq2rSp2LWpffv2hw4d0v/0P/74w8XFRQzZ+vn5lV+dUF7ef5+Jild/HzrUsDaKiooGDx4sBgfuVaeZDpVotYayunfv3po1a7766qvLly8TUY0aNby9vaOiojw9PQ8ePGju6p5IzLSqV6/exIkTLS0tx44dK+bv6Emn06WkpNSuXZvwgrSkIiKIiDIziQxffkGlUm3YsKF3797du3e3sbExXXGVnZSBdeHCha+++mr16tU5OTlE1KhRo0mTJk2bNs3GxqZevXrHjx+/fv262AauEipZ7kqhUIwfP76sp4uZO0VFRYQlaGQUE0OXLpGTE509SzVr0ogRBrdkZ2d38OBBMSGm+qgsy8voQ6fTbd++fcCAAW3atFm5cmVOTo6Xl1dERERKSsr8+fPr1atXo0YNX19fZv7tt9/MXewTGbnclThdBBZ6WPKpW5def526dCFmGjaMjIub6pZWJFEP686dO507d7527RoR1apVa/z48dOmTWvVqtVDhw0bNiwyMnL79u3ivehKyMgFRR8MLPSw5HP0KDVsSF270owZ5Oho7mrkI00Pq169ek2aNHFzcwsNDU1JSfn8888fTSsiGj58uFKp3L9/v7hbrISMXJ9PnF5QUGBMI2Ae0dGUm0sffECFhVSzJnl4mLsg+UgTWES0bdu2CxcuBAcH16lT50nHODk5eXp65uXl7du3ryJr059JelgILCklJFDPnkREvXpRfLy5q5GSTIHl6Oj42BfcHyIW7ti+fXv5V2QIKysrpVJZWFio0+kMOP3BwMItoWTatqVjx4iIYmKM36ykepIpsPQ0fPhwItq+fbthiVABxG2dYXHz4Jg9eliS8fEhpZIWLyalknx8zF2NlBTMbO4aTM/NzS0pKenw4cM9RQ+8knFwcLh79+6dO3ccDNqzSa1WazQapVKp0+m0Wu1TdvQBqEKq5ve6n58fVeK7wpJhrOzsbINPF28g4q4QqpWqGVhiGCsyMtLchTxeyW3dsGHDBgwYEBcXV6bT//zzzytXroiZDXfu3CmXEgEqpaoZWL1793ZycmrYsGFubq65a3mM+/fvixeeT506tW/fvm7dur300kuXLl3S51ytVvv999936NBBo9E4OTmJF30Aqgtzv8xYXvRcfdQsFi9eLAaeateu7ePjIzpcKpUqMDCwtP3EmE+cOFGyBtbQoUNjY2MrrGaAyqDKBlYld/r06ZINqx0cHDw9PR9cvv3RdcHv378fHBwsVqRo3rz5zp07zVI2gHkhsMzp0KFDvXv3FrHl7OzcpUuXkuXblyxZkpeXJw6LjIwUG22oVKqgoKDs7Gzzlg1gLlVzWoNc9u3bN2vWrDNnzhDRM888U7Nmzfj4eEdHx8uXL2dlZc2YMWPz5s1E5OHhER4e7oH3OaAaQ2BVCjqdbvPmzcHBwcnJyUTk7u4+evTounXrzp07Nzs7297efv78+dOnT8eUK6jmEFiVSH5+/hdffBEaGip2qxfGjh372Wef4WkgACGwKqHMzMzFixevXLnS1tb23//+t9hcAwAIgQUAEsGYCABIA4EFANJAYAGANBBYACANBBYASAOBBQDSQGABgDQQWAAgDQQWAEgDgQUA0kBgAYA0EFgAIA0EFgBIA4EFANJAYAGANBBYACANBBYASAOBBQDSQGABgDQQWAAgDQQWAEgDgQUA0kBgAYA0EFgAIA0EFgBIA4EFANJAYAGANBBYACANBBYASAOBBQDSQGABgDQQWAAgDQQWAEgDgQUA0kBgAYA0EFgAIA0EFgBIA4EFANJAYAGANBBYACANBBYASAOBBQDSQGABgDQQWAAgDQQWAEgDgQUA0kBgAYA0EFgAIA0EFgBIA4EFANJAYAGANBBYACANBBYASAOBBQDSQGABgDQQWAAgDQQWAEgDgQUA0kBgAYA0EFgAIA0EFgBIA4EFANJAYAGANBBYACANBBYASAOBBQDSQGABgDQQWAAgDQQWAEgDgQUA0kBgAYA0EFgAIA0EFgBIA4EFANJAYAGANBBYACANBBYASAOBBQDSQGABgDQQWAAgDQQWAEgDgQUA0kBgAYA0EFgAIA0EFgBIA4EFANJAYAGANBBYACANBBYASAOBBQDSQGABgDQQWAAgDQQWAEgDgQUA0kBgAYA0EFgAIA0EFgBIA4EFANJAYAGANBBYACANBBYASAOBBQDSQGABgDQQWAAgDQQWAEgDgQUA0kBgAYA0EFgAIA2VIScdO0bXr9Pzz9Nnn9G4cbR/P509S/n5NHIkeXubukIAgGIGBVZREaWm0p9/Uloa6XT0++/07bfETIGBCCwAKD8GBRYRnTtHtWpRSgrpdGRpSUSkUJCFhQkrAwB4iKGB1bs3vfQSXb1KSiUpFBQbS7dvU5MmJq0NAOAfFMxc5pPS0ykvjxo3psREat6cFAr67Teys6P+/emHH0ihoFdfNX2lAFDtGRRYT3LyJHl4kIUF/for+fmZrFkAACIy8bSGzp1p7lzSaGjMGDp40JQtAwCYuIclTJ1K4eFUt276wYMObdqYuHEAqMbKYeLoV1+Rv/9vHTp08PVNSUkp5UBmvnDhwo8//jhlypRnnnlm9uzZpi8GAKqQcuhhERXk5w8cNOi///1vmzZtoqOjHRwcSj6VlZV15syZQ4cOHTx48OjRo3fu3BEfVyqVzLxq1apJkyaZvB4AqBrKJbCIKCsrq2/fvidPnuzatetnn3125syZmJiYY8eOXbx48cErNmjQoGnTpnXq1GncuPHq1astLCw2bNjwwgsvlEdJACC78gosIkpLS+vZs+e1a9e0Wm3JB/+fvfuOa+r6AgB+sthbZAoiAmIQF1MBFWetOGrFqi2iVXHjqBa1tVhHRVsVpWqxLnBTR8UBilscIDgRcYDIRpC9SXJ+fzzkRxExeUkIwfv9+OnHhvfuPcFweO++e8/lcDjm5ub6+vp8Pj81NTUzMxMAGAzG27dvt2/fvmrVKiUlpQsXLvTr109KUREEIb+kmLAA4Ndff121apWOjo6trS2Px8vNzX39+nXD/KWrq+vk5OTk5DRnzpx27dotWLBg27ZtGhoa169f79mzp/QCIwhCHkk3YQ0ZMuTSpUshISEnT548ffo0ALDZbCsrK1dXVxcXFzs7Oy6Xy2Aw6o8XCAQTJkz4559/jIyMbt26ZWZmJr3YCEIcDx48KCsrc3Nzk3UgnxcpJqyCggJ9fX0Gg5GTkxMdHZ2SkuLk5NSrVy8lJaVmzqqpqfHw8IiKirKwsIiOjtbX15dSeARB29mzZ0eOHGlvb3/v3j1Zx/J5kWLC2r9//9SpU4cOHXrhwgWRTiwpKXF3d79//769vf3Vq1fV1NSkFCFB0FNVVWVkZFRYWPjo0aPu3btLoMXqalBUlEA7bZ0UC/idPHkSAMaOHSvqiRoaGpGRkVZWVnFxcaNHj66urpZCdARBn5KS0oQJEwAgNDRU3LZqa2HePNi2DXx8IC9PAsG1adK6wiorK2vfvn1NTU1GRoahoSGNFlJSUlxcXHJycjw9PQ8fPsxm0y0s0UrcuQMMBjg7w44dMH06XL4MsbFQVQWzZkHHjrIOjhDZvXv3HB0d9fT0MjIyOBwO/YYiI6GsDMaNg8REuHABFi2SXIxtkLSusM6dO1dVVeXi4kIvWwGAubn5uXPnVFVVT5069ccff0g2PBkoKIDCQgCA16+hthZOnAB/f/j5Z/j9d1lHRtDh4ODQvXv3t2/fRkREiNVQVRWoqgIAqKpCZaVEYmvDpJWwTp06BQBfffUV7RaWLFly8uTJbt268fn8R48eSS400Z0+DWvXQnAwCARitXPsGPz2G8TEQGkp6OoCAKiqAo8nkRiJljd58mQA2LdvH83zExIgIwPc3eHYMYiOhs2bQfTxk88OSkFVVZWGhgYApKSk0GuhvLxcVVWVwWDo6ekBwIMHDyQboQieP8dff0VEPHUKjx2j387Zs3j+PCLikiVYWYleXlhaik+e4C+/SCZOosXl5uZyOBw2m52dnU3jZOzYEQ0M8M4dLCrCa9cwJ0cKMbY1UrnCunjxYklJiZ2dXadOnei1EBkZWV5ezuVy3759a2ZmJstJpImJ4OQEAODqCk+e0G+nSxewsgIAGD4cOBxYvx527oTbt+GrryAzUzKhEi1LT09v+PDhPB7vyJEjop1ZWwvjx8ObN6CrC0OHwokT0L8/kBk8QpBKwhL/fpBqQUdHBwDGjRsnqcDosLaG+HgAgNhYsLGh346FBXTuDAAwcCCwWGBsDEuXAp8Pdnbg7y+ZUIkWN2XKFADYu3evaKfNnw/Xr4O+PuTkQGkpPH8ujdjaJMk/JayurjYwMCgqKkpMTHz16tXAgQNVqTFFodXW1urr6xcWFpqYmKSnp9+6datv3770A6qqgjdvwNwcaD/KOXoUXr0CTU0YMgRMTUFFhX4wjbx6BV27AiI8fQpdukisWaKl8Hi8Dh065ObmxsfH9+7dW5hT4vbvt/fxATYbzMzg2TMYOhTOnycbuAhJ8ldYqampRUVFbDb7xIkTo0ePHjduXG1trUgtXL58ubCw0NLSMj093cDAwNnZmX40WVkwfz48fgw+PlBSQrORykq4cweOHIGuXeHaNfrBfMjCAry9gc+Hdesk2SzRUths9sSJE0HooferV6/29fFZ3K1btYMDPHsGXbrAsWMkW4lAGgNjXC4XAExMTKgh84kTJ/L5fOFP9/HxAQCqYMOcOXPECmXbNkxIQES8dAmPHqXZyIIFCID9+iGA5MfI37xBRUVksfDpUwm3TLQI6hE2i8WaPn16YGDgxYsX09LSmjzy9evX7du3pz7bfQ0NS3v1wqSkFo5W3kllNua9e/eGDBly+/ZtS0vL6urqI0eO6Ojo/Pnnn8KcKxAIwsPDASAjIwPEGwgDAGAygSoOwefT/z1GDbpTc2Tu3hUrng+ZmvJnzkx49OjoH3+sF3UohGgFunfvbmtrm5SUtHv37voXNTQ0LC0tzc3NuVyujY0Nl8vt0KHDqFGj8vLyevXqFR0dDQDX//57BBkHEJWUEmF+fr61tTUA9OjRQ1FREQA2bNggzInXr18HgA4dOgCAjo5ObW2tWHHk5OC0aXjgAE6dimVlNBtJTkYA1NVFANTSQlGuFoWRlZWloqLCYDBkOXuDEEN1dfXevXu3bds2a9as/v3761KT7P6Lmg2vrq6urq4OAH/88Yeso5ZL0kpYiJienm5qagoAdnZ2TCaTwWDs2bPnk2ctXLgQ3t8PTpkyRawItmxBd3f86y+8cwfFTHz6+giAhoYIgImJYjXVlMWLFwPAqFGjJN4yIRMFBQVxcXEhISF+fn4eHh7m5uZUGSUmkwkAXl5esg5QXkm3HtbTp0/79etXUFDg6uoaHR3NYrH++eef5u/y5s6du2/fvo4dOyYlJZ0+fXrUqFH0u3dxgdu3wcEB4uLg6FEYP55+U6NG4dWraa6u2VVVgpkz+06YQL+ppuTn55ubm5eWlhobG7dr105VVVVVVVVLSytUT08ZETQ0QEMDVFXB2Bi+/hoiI6G4GEaNkuTzSkLKioqKlixZsmfPnnbt2mVkZDRfZIn4KGlnxDt37lDTGqhSZ8rKyjdv3mzm+KqqqmPHjjEYDDU1tYqKCvodZ2cjk4nKyqisjEwmZmbSbwpx3x9/KLBY1FuYNWuWOE19zKKmVr3ydXQQ4P9/HB1x3Tq8eBETE3HaNGmEQUhPUVGRsrIyk8n82Kg88UlSLC9DcXZ2Pnr0KJvNvnnzprOzc2Vl5YwZMxpWSQaArKysM2fOLFu2zNXVVUtL65tvvunYsaOKikpVVRX9jk+eBIEAunWDykro0weMjMR5Fx169Kjh8wsLCwHgrsTH3QEAoKKiAt7XvLe2tu7du7eDgwN27QouLtC/P7i5gasr2NpCejoMGQJdu4K6OlkrK180NTVHjRolEAgOHDggfmvFxcUbN268fPlyQUGB+K3JjZbJi6GhoQwGg8lkDhs27Pnz50VFRRcvXlyzZo2Hhwf1oLcei8WysbGhCo26ubnRv8gaNAgBsE8fBECxBzhLSkqYTKaioiKHw2GxWKWlpWI22MjDhw85HE7DatEAoMLh/OfyCgBHjcKZM5HHQ0ScMQMFAsmGQUhbZGQkAPTkcsX8tyspKaHK+VIfFW1tbRcXFx8fn4CAgPDw8OTkZEEb/WxIdwyrofXr169YyZlpuwAAIABJREFUsYLFYhkZGWVmZgoaVD4wMDBwdHR0cnJydnZ2cHBQV1fPzMx0cXF58+bNyJEjT548KWoxrIKCgjNjx35ZUdE+JQXevYPkZDA3FzN+GxubxMREQ0PD7Ozs69evS3BfHx6P5+TkdP/+/fnz5y9evLi8vLy8vLykpKSqrMyjrAwqKqCwEMrLoaICunQBe3s4dAhUVIDLBUkPpRHSxufz48eOtY+OZp4+Da6u9BoRCARjxow5c+aMqqpqly5dXrx4UVZW1ugYHR0dLpfbtWtXc3NzMzOzCW3mo9KS2bF+w0EOh8Plcn18fEJCQhISEpr8bfD06VNqLaGXl5eovy6otV29e/fuqKl56JtvJBI8tWqM+p1GLXmVSLOIuH79egAwMzOT+IUb0RqtWIEA4gxBLlu2DAC0tLQ8PDxycnIQMTMzMyoqKjg42NfXd/DgwR/uhLBq1SrJvQFZatGEJRAILl26dOrUqZqaGmGOj4mJoQbsf/rpJ5E6GjlyJAC4uLgAwOrVq2kF2xi1AqO+tqSLi0uiJOY3vHjxQllZGQAuXLggfmuEHHjxAhkMVFNDWr+fjh8/zmAw2Gy2ra0tAIwfP77Jw7Kysi5duhQUFESVnHdzcxMv6NaiRRMWDWfPnqXuB7ds2SLkKaWlpUpKSkwms127dgCQQC3NEc/z58+VlJQYDMbFixdPnTplZGQEAIqKitu23RAu9zZNIBAMGjQIAKZOnSp+kITccHFBAAwJEfW8+/fvq6ioAICrqysAUKMrzRx/7Nix4cOHU6XlXr16JUbErUVrT1iIePDgQQaDwWAwQkNDhTl+//79AGBsbAwAlpaW4gcgEAgGDhwIANPeX8YXFRX5+vp26dJDQaG6Wze8e5dmy3/99RcAGBgYvHv3Tvw4CbmxezcCoKenSCfl5OSYmJgAgJOTEwAoKSnFxsY2fwo10koVO/mlTZSKlIOEhYgbNmygbsciIyM//CqPx0tISAgJCfH19bWzs6OGmajrMj8/P/F737lzJ5VWCgoKGr5+40aFpSUCIIuFixaJvPInKytLS0sLAP755x/xgyTkSUkJ/vsv7t6Nx48LudKrpqaGyj7dunVTUFBgMBiHDx/+5FlUDQnqrrBjx44i1SBoneQjYSHiDz/8AADq6upxcXGImJ2d/e+//y5btmzAgAGNNi5UVFS0tbWlFjCOHj1azOe7mZmZVFo5fvz4h1+tqEA/P2Sz6yZ17tyJiHj7NublfbrlMWPGAICHh4c44RHy6vvv8dUrjI4Wsv7HjBkzqHtAaqBj+fLlwpxVVlZGLV2kFsldunRJvKBlT24SlkAg+Pbbb6nrLOp2r6HOnTtPmjRp69atd+/era6uRsTY2FgqkS1btkycfoVJK48eoYMD7t2L3bvjjRsYFIRXr2JUFN6+jY8eYXIy5udjRcV/xrqOHTsGABoaGunp6eKER8il6mqcP7/u7zNn4o8/4tChuHAhBgfjzZv4wfhAYGAgACgrK1tYWADAsGHDhH9IPXXqVHi/OPfbb7+V4JuQCblJWIhYU1Nj875IsZqamouLi6+vb1hYWG5ubpPHR0ZGUg/1goMj6PVYn1YyMjKaP5LHw7w8XLcOp0/HzZvR37/xlE8rK08mk6mtrW1qamptbU1t0vHXX3/RC4yQe9R4KI+HPj7o6Njws/Kvk5O+vr67u/ucOXO2b9/++++/s9lsBoNBVbK0trYuKioSvp8bN25QAxpMJlNZWbmwsFBa76hFyFPCQsSampp//vknOjpayLvxQ4cOubr+paCA+/aJ3Ne7d++o+Sy7du0S5vi8PPztN3zwAG1tcccOHDwYnZzQ1hbNzVFbGzt3HtzwkrB9+/ZKSkr5+fkih0W0DSdP4ooVuGQJPn6MKSl4+jQGBKC3N9rbbxg6tOFHhclkMplMamcDbW3tFy9eiNpVly5dAKBXr17Cf5hbLTlLWFu2bBH1V8SffyIAcjh1m2wJz9vbGwD69+8vzChYRQU+eIBHjiAi/vYbNnlBVltbW1BQkJqa+uTJE0dHR+FHIojPTWpqamRk5KZNm6ZPn66trQ0AkZGRW7dupTdZb+3atQBAXaD16dNH4tG2JOknrNpaTE7G8nKJNEZvruaPPyIAqqjgrVvCnrJz504Gg6GoqPjs2TNhjl+2DJWVUZh5F8+fP+dyuVZWVgwGQ1VVNYfsRkc0a82aNQAwceJE2i1kZGSwWCwlJSVNTU0AkMiEZ1mRcrWGmhqYORPu3oXFi+HFCzEbu3DhAo/WPskBAeDtDRUV8PPPzR1G1ZB49OhRVVUVtQWsqqpqiRBbVzx6BJs2QXU1WFh8OhhTU9OSkpIXL17Y2dmVl5dTMzYI4mOmTJnCYrFOnTpFFQuhwdjYeNCgQVVVVd26dQOAkJAQiQbYolirVq2SYvPXr4OBAUycCPb2sGcPuLuL01hERERKSgqNTXQYDPDwAESYMAHCwqBfP/jjD6B2Dnv9Gn78EUaNgo0bN0ZFRbm7u587d87a2lpTU/P8+fP5+fn79+8vLS11dXXlfGSXMB4PRo2CjAxYtAimTft0MGw2W1lZ+dy5c8rKysXFxQ8ePJgyZQo1Bk8QH9LQ0IiOjn7x4oWZmZm9vT29RjgcztOnT0eOHHn9+vUnT57ExsY+fvw4Ozu7trZWS0vrY5/t1ki6F3BXriA1vS0rC/39xWkpK0sCxVTOnMExY/DxY1ywoO6VigpUVcWqKnz58mWjkuoVFRV+fn4sFgsAOnXqdPHixSbb/P33WgA0Nxdh4mhNTY25uTm8n7I8e/Zs+m+J+AwcPnwYABwdHWm3QD2koipxs/67G4ujY7cnTzq9fPllevqSvLw9ZWV3ebzCtLT5WVmrq6peSu5NSIaUE1ZNDU6bhocO4axZ+PIllpbi6tX0yquPGoUmJpicLFY4Z87ghQs4fTr6+v7/xbi45iJ6+PChnZ0d9U/r6enZ6LneixcvTEzMHB1DPpLNPoqqJ9GxY0c2m83hcJLFfGNEm1ZZWUkNvT9+/Jh2I6GhoQDA4XD27Nlz9OjRX375xdPT08bGxtt7QFwcNPyTm7s5JeU7gaBagm9BUlpq0L2iAnNz0d0dAfD77+ldLCUmopg1Xc6cwStX8MoV7NJFhLNqa2sDAwOpRaf6+voh79es1i9dprFZBo/Ho3YV6tOnDwB8//33orZAfFZmzZoFAEuXLqV3elxcHFUUJDg4uNGXBILaysqkwsIT2dnrUlImJSb2Kiu7U1Jy5fXryeXl98QOXMJaalpDaipaWSGXi6qqCIAyepz/9GndNRqNaVmvXr2ilkADgIeHR3p6+q5duwBAV1f37du3NIKhrvONjIwUFBRYLJaQjyOJzxNVmFtfX1/I0kwNZWVlUYtD5tdPr28Wn19eVZVSWPjv27c7RY9UuloqYb19i126IAD27IkKCgiAmzcLc15NDVI3YQUFWF1d9/fiYqyspBPF4cN1MxvmzqVzukAg2LlzJzVArqGhQdXqOnbsGJ22EPl8fo8ePeB93a5JkybRa4f4TFAFsM6cOSPSWZWVldSkPzc3N2rV2ifx+WX5+fvz8/eVlFyqrW1dc5tbcOJocnLdvn7Ozshkhg8YIMxy88REtLHBsjL098eEBAwIQEQMDcWYGDohHD6Mv/+OZ8+iOBsAZmVljR07FgA0NTUdHBzoN4R44sQJANDT01NUVGQymY8ePRKnNaJt27hxIwCMHTsWEYODgw8fPvzgwYPKT/3q/v777wHAzMwsT5gV+Q2kpk6Pi4Pc3ED6EUtBy9V0BwB4+BD694fKyuAvvph15oyCgsLZs2eHDBny4YG1tfDoEcTEgIUF3LwJVEl3T09YuxY8PODWLZgyBRwdRe7/yBGoqYEePWDDBjhyhP77uHbtGjUAb2Ji8urVKwUFBXrtIKKDg0NhYWH37t3Dw8MBQFNTk7p2U1FR0dLSUlNTU1FRUVNT09TUpF58+/bt9OnTu5Atzj8/ubm5JiYmDAYjIyOja9eu7969o143NDS0sbHhcrnUf3v06EFVaACAjRs3+vn5qamp3b59m7pAE15h4YmUlHHKyrZc7mMJvxNxtHSGvHJlTd++8H6bQhUVldu3b1NfefPmzalTtxYvRhcXVFauWwr600+4axdu2IDjx2NCAvr54evXuHkz/SsscW4JEZHP5y9evFhDQyM+Pp66odu+fTvNthAR8c2bNzU1NYMGDaL2BBaGhYWFpGo81Nbi6dOIiElJSNY1tn5Dhw4FgE6dOrm5uTk6Onbq1KnJKVSWlpZ8Pv/ChQssFovBYISFhdHoSyCofviwfVwclJc/+PTRLUUGawlPnz5NfR+pB2SqqqpDhw41NDQEAE3NjgwGAiCDgV27orc37t2Lu3ZhVRVaW0vglrCkpG7w6yP1HT7h7du3gwYNateuXUREBL6/oTM0NCwXb+ERtUudjo5Oenp6QUFBSkpKQkJCTExMVFTUyZMnDxw4EBwcHBAQsHLlyh9++IHaFW3mzJni9FivogLNzTEmBvfuxQet6GNJNG379u2NZlGx2WwTE5MePXq4uLg4Ozt36dJFRUXFxsYmKSmJquO2du1a2t2lpfnGxUFamu+nD20psln8TJUGZjKZDX8/6OrqjhgxYsOG8shIrF/gzONhVRUiYkUF8nh1SxKrqujN5RJLeHi4tbW1rq7u3r17qVcEAgE1RWv7dvr3+Xl5eXp6egCwT7gnl8+fP5fg1K2KCly+HKdPx7//xlu38No1stVha3f16tXdu3cvX758zJgxlpaWH+6Ax2AwTE1NdXV1AcDT01OcApbl5Q8ePGh//PiXQo7WtwCZVWuoXxI0YMCAAwcO0Cia0WJqa2t9fX3bt2+voaHRaLuky5cjTp/u/+iRCZ9Pc4euSZMmAYC7u7vwHyyqjASNyV8fqqjAn3/Gu3exb9+6Gl4mJujnJ+4EXaLF1NTUJCcnh4eHBwQEeHl52dnZUfOtOnTooKOjUyZq3e4PODrawUfK7cqEzBJWTk4Og8FQUlIqKSmRVQxCGjNmDIvFUlZWbnIaS1KSW1wcZGevo9Hy+fPnqYE8kXY0SU5O5nA4ioqcjIznNDqt9+YNlpbipk2IiIsX47p1aGpaN3TIZOKQIXjoENLeeJuQldra2qdPn1JXWFQ9cXFs3boVAEaMGCGR2MQns4S1Y8cOABg9erSsAmheWVnZ1atXEfHx48dXr161sLCYMGFCk0eWlFyKi4MHD7R4vIImD2imi06dOgHAZuGmpDV04MBP8fFWKSlNhySM/Hzs1And3bHhpFc+Hy9exEmT/v/QQ0sLZ87E5csxIQEFgrqi9UTrt2jRIgCYN2+emO3k5+crKiqy2ezm9xNrMTJLWNRshv3798sqgObl5uZSO7AePXr0xo0bmZmZzVTRfv7cPS4OMjP9Repi7ty5AODg4EBjE+mamsz795Xj4pgVFQ9FPRcReTz84gsEwC5d0NwcP9wsqqgIQ0Jw8GBkMLBdO5w3D2fNQh4PFy2i0RshA0+ePKGe5FRRY8BioDZsnzJlyqtXr2S+746U62F9RFERVFcbamvreHh4yCQAYdy4cWPdunWnTp0CACMjo0ZPZxoyMloDAFVVT4Vv/O7duzt37mSz2cHBwc20/DEcjpGu7gwAQVbWalHPBYClSyEyEtq3h4ICSEmBf/5pfICmJkyeDFFRkJAAe/eCoiJ4eoI8l1H67HTr1s3e3r6goODMmQgxm6KG8Pfv329hYaGsrGxjYzN+/Phly5aFhobGx8dXVVVJJGBhySRNhoYiAA4dKt5SZmlqdIX1yeMrKh6XlFzNyFhRXNzEzomNVFVVcblcAFi5ciXtCGtqsu/fV4mLY5SViTbF4/jxhwoKqKCAXC4C4KBBn37k+sMPiIiLFsn0Cqt+Snf9uFphIXmo2Yy9e6N79343fLhY36KbN29S86JtbW0NDAw+TCAcDofL5Y4bN27lypW//fabtIekZZOwRo9GANyxQyadC6WoqOjQoUOIeO3atSdPnghzSkrKBEQBIr+oKDwvb09BQVhx8YXS0ptlZfHJycm5ubn1j2xWrlwJAF26dPnkuormpacvffiwfWHhSeFPiY+PV1ZW7t597uDBv5ubV5uZfWILxcpKfPkSQ0OxsBCzslDEdWwStWgRUg/X583D6mqcMQP//BO//x5bx9hKK/TuHSoqIpOJaWk0W3jz5g0152bJkiVHjx4FAAUFBXNz8z59+vTv379Pnz7m5uYN7w84HI6JiYlUbxtlkLDKy1FFBZnMtvZJKyoKT02dVlx8MSmpb8PqQtHR/9nnVUNDg8ViMZnMmzdvitkjj1fM4xVlZf2albWquvrTc9/z8/OpYX6qcKC+vuXDh5/ImPHxdUNdAGhnJ2a84lm0CC9cwMuXccoUjIhA6kH7ixe4YQP+8QceO4aPHmGrmS7USnh6IgCuX0/n3IqKCqrA6ZAhQ3g83v79+6nZ3Y0oKChYWlo6OTl5enpS12LR0dGSfh//13jWWQs4dw4qKsDFBYyMWr5zKdLUHKGp6ZGa6q2pOUJR0UogKOfziwSCCh6PbW6eXlJSUlFRUVFRUVJSYmpq2qtXL1dXVzF7ZLE0qqtfCgRVxsa/CQRl2dmrmUxVFkudydRgsVSLijTz81XrVyOqqal5enq+fv26W7duDx48YDAYgYGre/RQar6LsjIAAGqt5PsFarKjrAxsNjAYwOPVxaSgABUVsGYNCAQAAGw2dOp0efjwy6qqXC6Xy+VaW1tThcw+T1Onwj//wL594OcHDIYIJyLi999/HxcXZ2VlFRYWxmKxvL29vb29i4uLX7169fTp08TExJSUlKdPnyYlJb18+RIAJk+e3Llz54CAgP3791MFSKRCernwYw4dQnNz/P33lu9ZunJzt2VkrCgpudrMMQKBoKCgQKJPiAW5uVtev55aWnq7Ud3Idev6Nfq3ZrPZenp6vXv3BqFLwZ07V3dtBYDN7n4tfQ1vCcvK6q6z5szBuDhcvhzHjEFLS2SxEGDF+wqxAMBkMnv16nX27FmZhi4zPB4aGyOTiaJWKl29ejUAqKurJyQkNH9kaWnpvXv3QkJCXr58+fz5cwaDoaamVlpKcx71J7VowsrORmpeyJEjSHa3kgiBoEYg4JWUXHr7dltm5s/p6YtTU32Sk8e/fDli167pdnZ2lpaWxsbGVIFdDodjY2OTk5Pz008/CTmX4ujRuoJAAPiRiWgtJTOzboidSvfl5XjvHhb8d+5bVRU+ehR5/Hh9/V9qGZO+vr4MAm4dwsLq7p7fFxn4tH///ZfavVXU2luI2LdvXwAIFWbDO1paLmFVVuKzZzh8OB4/juvXY3Z2i/XcltXU5GRlrc3KWs3jfeLpTHFxsampKQD88ccfwre/ezcCoIsLAuCMGeLFKgulpaXU9t137tyRdSyycfMm2tlhXh4uXCjU8YmJidT2hRs3bqTR3d9//w0A7u7uNM4VhnTnYWVlwZkzsGwZuLqCtjacOwfDh8Ply1BeLtVuPyMcjr6h4U+GhitZrE+MMGloaOzZs4fBYKxcuZIadBAGNYZFVb5RU2v+2NZITU2NWnq5b98+WcciMz4+EBAAALB5Mzg6wpQpsGEDnDkDycnA5/+nHF5BQcGoUaOKi4u/++67pUuX0uhr/PjxKioq165dS0lJkUjwjUk2/5WUlNy8eTMwMNDT09PWdji1vIP6w2LhokW4bRu+fo2mppidTebQyAD10ztixFdCPnpeswYBsF8/BEAxJo3JEjWwoqGhIWYVIEQsLy/fsmXLtGnTwsPDW8O0b2HcvIknTmBwMPbtixMnYsMfSQ6nRl1dvWfPnhMnTly7du2xY8eoG7revXuL873y8vICgEZlAiRFYgnr2bNnLi4ujarQde9eM3o0/vYbXrmCJSVYVITUYszwcNyzB4cMoVmanaDt3bt3w4bN1NXNFbLs4K+/oooKurkhAG7YIOXgpIbafPfgwYNitjN79mwdHZ36j7eCggKXy/X09PTz8wsJCYmLixNzYp3EPX6M9+5hZCTy+ThiBL57hzduYHAwLlyIQ4ags3Pjzdi1tbV1dXUzMjLEeSOXL18GADMzM2kkdIklrKFDh3I4HBaLZWdn5+vrGxISkpCQ8LGSKWVlaGyMADhunLg7dxGiCg9HAFRVFbaGTGIiRkRgQQG2mhIjIgsODgaAQYMGidMItUmSgoLCsGHDhgwZYmJi8uH9ioKCgo2Njaen5/jx4zMyMiQVPz23b6OiIn77bXM/YsXFxTExMXv37l26dClV3K1nz57Dhw+3sLCgXUhLIBBQ+wRfuXKFZugfJ5mExefzqWn7sR+uo/2IJ09QWxsBUEK1MwkRjB+PADhwoFB35eHh2K8f5ucLO2rbChUXF6uoqDAYjJSUFHot3Lp1S1FREQB2797dsNm4uLiwsDB/f39PT08ul1t/h6GgoODg4CBO8TwxZWXVXRPUb3L+SaWlpWpqagwGg8rFVLUSevz9/QHAy8uLdgsfI5mEde3aNQCwsLAQ6azr11FJCQEwIEC4/Tx4PCwpQX9/XL0apfbc9HOQl4d6egiA74unNiE9HffuxQkT8MABPHYMlyyR44SFiN9++y0AUOtDRZWWVm1s3AkAfqAWVX5ceXl5fHx8aGgotRfctWvXaAUrrspKdHQUdqFoQ9QQZ79+/QBg8uTJtAN4/fo1k8lUVlYurK8dLCGSSVgLFiwAAD8/P1FPDA/H7t3v6ujobt26tYkv19ZiQgKGhKCPD3K5+P33uG4dvnyJiPjTTyjrS265dugQ9u2LjTZvLS/HqCj080M7O6SK6wPgkiV49Sru2IEDBsgoVkmIiooCgE6dOol61VNejr16YffuRePGzRa+EBC1XNTb21vkQCVh6dJwAOzcGd+9E+1E6srDwMCAyWSqqqoWFxeL2nVVVZWXl1dSUlLXrl0B4McffxS1heZJIGEJBAJqgs/du3dpnP7337sZDAaLxTpx4gQivnnzJiwsbPHixW6uroJ27f7zVKNHD5w9u+42Zv9+/Fxn1khKXh5aWGBpKe7Ygdu2obt73Ra31B91dRw9Gv/8E0+fxocPkcfDOXNkHbEYBAIBtY5SpKsegQAnTEAAtLJCka4VUlJSGAyGqqqqRKoX1NTUCL8x+IYNGwBg0KBZwq3Z/w+BQNC5c2cAoHaEanj/K6SpU6cCQNeuXdXU1Nhs9g5JVziQQMKKjY0FAGNjY9p37GvWrAEANpvdrl27hkOYRT16oIkJurhgv35oa4uKirhtW90zDx8fLCoSP/jP2bt3OHMm/vIL7tiBK1fWTT2xs0M/P4yKaoPriGlc9VCzOtTV8VMLVJrQv39/ANizZ4/IZ/5XXFycuro6k8nU1NS0s7Pz8vIKCAgICwtLSEj48DFcZGQktSXVP//8Q687alEOtaOVq6urSOdu3rwZAJSVlS0sLABg8ODBNTU19ML4GAkkrOXLlwNAk/XOhTdv3jwqSWlqatrb2/fr169nz57RAwc2mjeCt27h/v24bh3ZlEp8797hmjX4++84dy5ev47Hjzde6NLGUFc9ioqKhw8fTk1N/eTxaWmoqIgsFp47R6e7gwdP9O//49ixL+mc/F5RURF1b9Xk/oNqamr29vbe3t4BAQHh4eGnT58Wf2uv9PR0agcDNTU1ABD+yi4qKorNZjMYDGoSibW1dZEULikkkLCsra3FfKaAiHw+n3pC0fDfY6OzM5qZ4YQJuGUL3r5NZm1JFpWwqqvR1haTkmQdTYuwsLBQez9hX01NzcHBYdq0GQEBGB6Or14hdb2SmYkXLiAiXr6MN27gn3/S7KusDNXVEYD+95bP51MleblcbnFxcUFBwc2bN4ODg/38/Dw8PKipAx8aP368mE8nBw0aBABUxYUVK1YIc0pKSgq17QU1YK+jo/PypViZ+mPETVhU6WhdXd1a8XYKzMjIYDAY1G2/i4uLr69vWFhYDlkhLU1hYbh1K5aVYWbm5/K7IDs7e8aMGe7u7lRdOgCwsLCpv4JXUsKePXHDBuzdG7OycNEicRdjTJ1at3s5PT/++CMAtGvX7mObKr17945KYQsXLhw6dKiWltaoUaPEn9B/8OBBALCxsaGGej75qKGkpIQ62NHRkRqPPn/+vJgxfIy4CevXX38FgOnTp4vZzrZt2wBg+PDhNHZkIOjp0QMB8KQI9UrblPz8/Bs3boSGRi1YgEOGoIlJXdoKCMBdu9DXVwIJ68YNBEBjYzqzo8PCwhgMBofDkcb0y+ZVVFRQt5bURVxkZHNVv/l8/siRI6knsFTpsaaf+EuIuAmrZ8+eAHCO3l1+A+7u7iCJxROEkKhSou3aodibqrQdxcUYE4MXLmBYGIaEoJ2dBJa7UsVaqXtM4d2/f5/64d8po43VfHx8AOCLL75Yv359drOVVZYtWwYA2tra1HRTac/kECthPXv2DADU1dXFXEKVn59P1S0qaNujvq3JvHkIIN9zQaXk8WOMikKBACdOlEA2378fAwKwpARzcoR98Jqdnd2hQwcAmDp1qrjd03X79m1qpH/+/Pk7d+68du1aXlPF/xMSEphMJofDoaZB9OnTR/xdxZonVsJatWoVh8PR09MTc5Bv9+7d1P2gOI0QwquuRl1dBMCHdHY1/CxcuoTdu6PoU6Eby8xEc3PMz8fNm1GIJ5NYXV3t5uZGTSmolunUEgsLi0aPJrW1tevnVYSHhycnJwsEghMnTlAD7UZGRi2w2SoD8T8FcUTy8OHDAQMGFBcXL1u2bP369bTb8fDwOHfu3K5du2bMmEG7EUJ4J09GBAXdUlaedv58J1nH0krdvl237UBaGoi+b+T/ZWVBUBDU1oKxMZiYwOXLwOVC167A5Ta9p8GMGTN2797dsWPH2NjY+icDMlFRURESElJWVvbs2TOqdntJSUmjYzQ1NVVUVLKzs5WVlW/evGnrVTDEAAAgAElEQVTXoDi1lIiVsADg8uXLX375ZU1NzaZNmxYvXkyjhdLSUj09vZqamszMzCY3PiMk7ssvv4yIiAgKCqqf/kZ8qGtXSEqC8+dh+HD6jWRlwZEjoKYGV65Ax47w++///5KWFvTvv7h9+1Jra2sbGxtra+sTJ04sWbKkxX74RVVYWEhtP0H9NyEhIScnBwCYTOamTZsWLlzYEkGIf5EWGhrKYDCYTOaRI2E0Tj98+DAA9O/fX/xICGFkZmayWCwFBYUmRyWIeuvXIwCOH0+/hYoKzMzEP/5APh8dHTEyErdsQR8fdHVFHR1ks1FB4T9VXMWcpN7ycnNzd+/e/fTp0xbrUTKLn4OCgkxMzDt3fhkRIfK5np6eABAYGCiRSIhPom7ex4vzg/h5yMhAFgs1NSvz8+nMbCotRVtbnD8fqXlRlZXYaCFNbi7vypUr27dvnzNnzsCBAw0MDExMTCZOnCiJ2NssiRXw++mnUmrV1b17IpxVWVmprq7OYDDevHkjqUiI5lErEyJo/G75/MyevUNLSzsoKEjUE/n8uu3NuVwUfssria+8a3sktgnFmjVq338PpaUwfDgkJQl7VkhISGlpqbq6urrsd+n8LAgEgtWrV0+aNGnIkCGyjkUODBjQrqiocP/+/aKe+MsvcPo06OjA6dMibN7R5IJBoiFxB90b4vFgzBg4dw64XHj8uOlnKzwe7/nz57du3YqOjo6Pj6dmciGim5vbhQsXlJWVJRUMQYivpqbG2Ng4Pz//4cOH1FQjYZw+nffVV+1ZLIiIgMGDpRrg50eyF2zl5ThiBP77Lx45goh47hzyeJiZieHh6O+Pgwdjz56ljQJQVFQ0NDQEgJEjR4q5IJEgJG7u3LkAsGjRIiGPf/Dggaqq2oABF7duJbtCSZ4kr7DqxcfDnDkQGgp79kBODhw48P8vKSgAl+vcqxfXycnJzs5u+fLlly5dMjU1LSkpKSoqWjR79ubt2+G/NRsIQobi4+Pt7e3ZbPaAAQO4XC6Xy+3atSuXy6WKEzTy7t07R0fHlJQUb29vGjeSxCdJK2E9fgx374KGBujowIYN4OAALi5gZwd9+0LDIn0lJSXu7u7379/v2rUrs7j4drt2GqNHw5o1Eg+JIGgbOnTo5cuXBQJBwxe1tbXNzc25XK6NjQ313w4dOgwbNuzatWt9+vS5evUqtWkFIVnSSljPn4O2NixaBPHxoKra3ME5OTkuLi56VVURVlZa0dHA40FQEJAJjUSrwefzExIS0tPTExMTk5KSPjbtW0FBoaampkOHDvfu3SNToKVEKgkrIQEKC8HNDX7+GX799dMrG5JfvTIZO1bhyRPo2xfu3AEACAkBLy+JB0YQktLktO9OnTqFhYXZ29vLOro2SyoJa948+Pdf2LEDRo0S+pzHj6F/fygqgj594M4dUFCAZ8/gIzUVCaIVev78eceOHZWUlGQdSFsm+YSFCKamkJEB8fHQu7coZ167Bl98AdXV4OYG33wDc+dKNjCCIOSd5BMWtczdzAxSUkR/3PfvvzBpEuzdC19/Dbt3w7t3MGYMdOsm2QgJgpBTbIm3eOoUAMDYsbQmJ4wZA8nJYGgIAQEwbBh07w7Tp8NffwF54EIQBIDElubUi4wUAMCYMXTPNzQEAHjzBnr1AhYLbG3hzRuJBUcQhDyTcMJ69OhRcnL7YcN2uLiI15CODmRlAQC8ft10oTOCID4/Er4lPHnyZGVlQadOT5hiZsIlSyAwEJhMGDZMhMWjBEG0aRIedLe1tU1ISLhw4cLQoUMl2CxBEARINmG9fPnSyspKS0srNzdXQUFBUs0SBEFQJHBLWFlZef/+/ZiYGGoz1JEjR5JsRRCENNBMWFlZWfU1reLi4qqrq6nXORzO119/LbnwCIIg/k/YW8LCwsKYBgoKCuq/xGazbWxsnJ2d7e3tra2tXV1dpRYtQRCfNWET1oQJE44dO1b/v4aGhnbvubm5aWlpSS1CgiCIOsLeEvbr1y8zM9PJycnZ2dnJycnExESqYREEQXxIKtUaCIIgpEHyS3MIgiCkhCQsgiDkBklYBEHIDZKwCIKQGyRhEQQhN0jCIghCbpCERRCE3CAJiyAIuUESFkEQcoMkLIIg5AZJWARByA2SsAiCkBskYREEITdIwiIIQm6QhEUQhNwgCYsgCLlBEhZBEHKDJCyCIOQGSVgEQcgNkrAIgpAbJGERBCE3SMIiCEJukIRFEITcIAmLIAi5QRIWQRBygyQsgiDkBklYBEHIDZKwCIKQGyRhEQQhN0jCIghCbpCERRCE3CAJiyAIuUESFkEQcoMkLIIg5AZJWARByA2SsAiCkBskYREEITdIwiIIQm6QhEUQhNwgCYsgCLlBEhZBEHKDJCyCIOQGSVgEQcgNkrAIgpAbJGERBCE3SMIiCEJukIRFEITcIAmLIAi5QRIWQRBygyQsgiDkBklYBEHIDZKwCIKQGyRhEQQhN0jCIghCbpCERRCE3CAJiyAIuUESFkEQcoMkLIIg5AZJWARByA2SsAiCkBskYREEITdIwiIIQm6QhEUQhNwgCYsgCLlBEhZBEHKDJCyCIOQGSVgEQcgNkrAIgpAbJGERBCE3SMIiCEJukIRFEITcIAmLIAi5QRIWQRBygyQsgiDkBklYBEHIDZKwCIKQGyRhEQQhN0jCIghCbpCERRCE3CAJiyAIuUESFkEQcoMkLIIg5AZJWARByA2SsAiCkBskYREEITdIwiIIQm6QhEUQhNwgCYsgCLlBEhZBEHKDJCyCIOQGSVgEQcgNkrAIgpAbJGERBCE3SMIiCEJukIRFEITcIAmLIAi5QRIWQRBygyQsgiDkBklYBEHIDZKwCIKQGyRhEQQhN0jCIghCbpCERRCE3CAJiyAIuUESFkEQcoMkLIIg5AZJWAQhe69fv/bz84uIiJB1IK0dSVgEIXvh4eEbN24MDAyUdSCtHQMRZR0DQXzuioqKjI2NKysrnz9/bmlpKetwWi9yhUUQsqelpfXNN98g4t9//y3rWFo1coVVJyUlpVOnTgwGQ9aBEJ+p2NhYJyendu3aZWRkKCkpyTqcVopcYQEAlJSUuLq6Ojo6xsbG0ji9srJyw4YNo0ePlnhgxOfD0dHxz/Hjn3XqpHjypKxjab1IwgIAeP78OQDExcX17dt33rx5hYWFQp4oEAhCQ0O7dOmybNmy8PDwu3fvSjNMoo2bO2hQ+7g4xl9/yTqQVgwJREQsLi5evHgxh8MBACMj05CQKoHgE6fcvJnVu3dv6tvYu3fvK1eutEikRNtVWoqamgiAjx/LOpRWilxh1dHQ0Ni0aVNCQsLQoUMtLbd5eys6OEBMTNMHv3gB48dD//76lZUMY2Pj4ODg2NhYd3f3lg2ZaHPU1OC77wAAdu2SdSitFBl0b8KxY7zFi9lZWcBkgo8PrFsHOjp1X8rLg19/hV27oLYW1NVhzZrkGTMMVVRUZBov0YYkJICtLWhrQ04OKCjIOppWhySsppWWwurVsHUr1NbCqFHQqRMEBsIff8C+fZCYCCwWTJsGq1eDvr6sAyXanr/+AktLqKmBfv1AVVXW0bQu5Jawaerq8Pvv8OgRjBgB3t6QmQmXLkFmJixdCoMHw/37EBxMshUhHfr68Pgx6OrCnDnA58s6mtaFXGF92u3bkJ0NFy4Amw07dsg6GqLNmz0bdu4EANi6FYYNA2trWQfUipArLGEtXAgnTsg6COJzoKgI5eUAAAUFoKEh62haF5KwPq1zZ+jdG7hc2L+/RfstKiqaNGlSSkqKUEdv3Ahr1sDixZCfD6tW1b34669Si46QjpoamDMHli2DNWtAURGMjGQdUOvClnUAckBfH+zsoLQUOneG4cNbqFMej+fk5PTixYuKiop///33E0cnJQGTCStXwps3sGMHvH0LRUUAAPn5LRAqITEvX8LAgRAYCEFBEmxVIBA8e/YsJiZm//79Dg4Oa9askd/n2iRhCUVREZ4+BTu7jx7A4/HYbDYiCgQCFoslfo9sNnvkyJFBQUF37tyJj4+3a6ZvAMjPB0NDAABDQ8jPh9JSOHQIAMiQrTwpL4exYyEjA44fh6+/FrOxnJyce/fuxcfHx8fH3759u6CggHr9zp076enpx44dk9dls7KdtyovBg1CVVXcteujB8ydOxcRnzx58tdff9Fo//Dhw43+goh8Pt/V1RUAhg4d+onzS0pwyhTMzsagIDxzBufOrXt93jwawRCyMXkyAmCXLlhcTOPsioqK6OjozZs3f/PNNx07dmz0Y25sbNynT5/x48draGgAwNz6T4i8IQlLKCNGoIIC3rr10QMmTJhw69atAwcO0EtY9R+gef9NMTk5OVZWVtra2s2t+1mzBtPSMC0N//4bo6MREe/cqfvS3bs0giHEVFBQsHjxYltb20mTJsXGxgo+ucgLsTA4GAFQXR2fPaPR4y+//KLw31mm6urqdnZ2AwcOdHBwaNeuHfXijh07rly5oqioCAAbNmyg0ZHMkYQlFDc3VFHB9PSPHuDp6XnlypW9e/fSS1g+Pj5r165du3atl5dXoy+dPn1aV1fXzc2t6TPXrkUAtLTE2loa/RKSFRcX5+Pjo6qqCgD191wmJiY+Pj7h4eG1H/k3unv3roaGxi4XFwwLo9FpaWkpm81mMpmdO3d2dHR0cHDo2LFjozs+Q0PDMWPGnD17FhGPHj3KZDIZDMaePXvEereyQBKWUIYPj9bQuN1MThDzlvBjV1iUmTNnqqmpnTp1qvEXjh1DBgOZTDx5kkanhKSUlpYGBwf36tWLyg5MJnPYsGFz586dP39+hw4d6rOGnp6ej49PZGRkTU1N/bm5ubnUMT/88AO93o8ePQoAbm5uhw8fru+Lw+HY2dn5+vqGhIQkJCQ0OmXHjh0AwGKxmvhQtW4kYQll7dq1FhYWzRzw4MGDpKSk5OTk3NxcGu2HhIQ0+ktDtbW1jo6O9vb2DW8u+DduoKIiAuDWrTR6JCTi2bNnfn5+2traVJrQ0tLy9fV99epVw2MSEhL8/f2tG8z/1NLS8vT0DAkJKS4uHjp0KAD06dOnurqaXgzjx48HgM2bN79582by5Mnbt2+Pj4//2NVcvRUrVgCAsrJyNDWMICdIwhLKgQMHrKysmjnA29tbVVW1S5cutLuYOXNmv379li5d2uRXU1NT27dvv3v3bup/X7165WxpWdy9O86cSbtHgraqqqqwsLDBgwfX5yA7O7vg4OCKiopmznr06JG/v7+trW39WdRwkoGBQVZWFu1I1NXVASAlJUWkEwUCwbRp0wCgXbt2iYmJ9HpveW09YaWk4Pz5uHo1ijfEeOPGDUdHx2YO8PPzAwBXV1faXQwZMgQAxo4d+7ED9u3bZ2BgwOPx3r5927lzZwDwGjcOeTzaPRL07N69W/X9mmRNTc358+c/ffpUpBZev34dGBjo4uLCZrNVVVVnzJhBO5jTp08DgL29PY1zeTze2LFjqWeIb968oR1DS2rrCWvhQiwpQUT098eMDNo/3kFBQX379m3m9+f27dsB4Msvv6TXPiLOmDEDAMaMGdPMMWPHjl2/fn3fvn0BoHfv3mVlZbS7I+gpKirS1tZWVla2sbEJDg4W85/g1KlTDAZDWVm50V2k8Ly9vQFg3bp19E6vqKhwc3MDAC6Xm5+fT6+RltTWE9asWXV/2bYNnz7Fr75CLy8UZZjpxYsXnp6eTCaTxWJZWlpeuHChycPOnz/PYDAmTpzY5FcFAkFYWJi2traSktKKFSuaHK04deoUi8UaPXp0M8EkJye3b98eADp06JCdnS38u2jk7Nmz169fp33654wa+vnoQ1vReXl5AYC7u7swsx8aqa2t1dXVBYBntCZDUAoKCmxsbADA1taWdiMtpq0nrLAw3L4dExNx8mSMiKgbpdbWxu3bP3m1lZ+fv2DBAqposrKysqamJvWseuLEiZmZmY0OfvDggYqKypIlSz5s59KlS/XPjyjdunW7evVqo8Py8vKMjIxGjRrVZDBlZWUBAQHq6upMJpPJZCorK/v7+9MYpr13716/fv3YbDabzfb09ExvZqYG8YG3b99SA0Z36me6iS0/P5/6JXTw4EFRz7148SIA2NjY0O791q1b/v7+QUFBDAZDW1ubdjstRsIJKyMjY9asWX5+fjExMQ2f3cpSbCweO4a5udilC5qYYM+eCIAA2KtXfkxMk2fU1NQEBwdTv7uYTKanp2dqampNTU1gYKCamhoAqKqq+vv7V1VV1Z+SkZGhqam5d+/ehu0kJSV5enpSSapDhw7BwcGRkZFdu3alXvHw8Gg0cNCzZ08PD49GwfB4vODgYAMDAypdjhgxghrtohLftWvXhPw2pKamTpw4kZqeo6KiQiViTU3NLVu2fPKJEkGZN28eAHz11VeSbXb//v1du9r36XNf1HuyWbNmAcDKlStpd+3j4wMA/fr1A4A5c+bQbqfFSDhhcbnc+hlrKioqLi4uvr6+YWFheXl5ku1IZK9fY/fudanKwQE7dODr6XXQ0PDy8srJyWl4YHh4ODWkDQCDBg168OBBw69mZGRQ1/AAYGVlFRkZSb1eVVWlpaV19/3M8vz8fF9fXzabXZ/d6se/mkl8X3755YgRIxp2FxUV1b17d6o7BweHGzduUK9funSpmcTXSGlpqb+/P7XVnYKCgouLy6RJk9LT0+vfSJcuXS5evEjzG/vZeP0aBw48pays+eG0JjEJBILBg3kAOHWqCGfx+XxDQ0MAaPQRFakF6hehubk5AERFRdFrpyVJMmEdO3aMunsaO3astbV1w7m2DAaDy+VOmzZt7969SUlJEuxUBLW1uHVr3a4kSkpbPTyon2EtLa1t27bV1tbGxMRQA5AAYG1tHfbxaceXL1/mcrn1+SI1NRUR1dTUMjIyqqurAwMDqftHJpPp5eXV5GBTk4lvwYIF7u7u1AGJiYkjRoygDjAxMQkJCWk0xvFh4vvwDrG2tjY4OFhfX5/6J3BwcKA+oABA/dRdunSpfn6Qh4dHWlqaeN/itszbGwFw1qxKaTT+4gUqKSGDgZcuCXvKzZs3AcDMzIx2p9evXwcAauGhjo6OXFxoSyxhlZeXU+981/slwnl5eeHh4cuWLXNzc1NWVm44iKOjo+Pk5NTwlqrl5Oejr29Rz55MBsPAwKBHjx71IVEZVldXNzAw8JP/eFS+oEY0VFRU/P39DQ0Njx492qlTJ6rBwYMHP/7UZk2NEt/Bgwd79eqVmZnp4+NDlXzQ1tYOCAiorPzoD8nHrvgQMSoqqlu3btSXuFyulZUV9Xc7O7uGN5LCJD4iIQFZLFRQwORkaXWxenXdIquP/2v/X3V19XfffQcAS5Ysefv27fPnz2n0uGDBgvr7wSlTptBooeVJLGFRE5Hs7Oz4fP6HX62trU1ISAgODvby8qLymqampgyXX967datnz57UD7CNjU39yM7PP/9cWloqfDtpaWnjxo2j2qFGhQCgV69ely9fFrKF6urq3377jZrXo6qqqqOjQ/1dQUFhwYIFQj5pbpT4zp07N2DAAOp/O3bs2KdPH+rv1Dhak/9ADe8QGyU+AhFHj0YAnD9fil1UVyOXi0ZG+ORJ0wekpGQfOnRowYIFzs7O1IxTbW3tpUuXWllZmZqaivr8RCAQmJqaUjcTABAeHi6B9yB9kklYL168UFRUZDKZd4UrDzBz5kwAWLFihUR6p4fH4wUFBdUvqtDV1aX9yOzKlSumpqZGRkba2trBwcE80Wd7ZWZmUvlCS0uLujoTdaCkqqpq3bp1VGE26r86Ojr9+/dvchztYyIiIiwtLalviKOjI40H7W1SXBwyGKiqiv8d7ZS8pCQ8cQKp1LFvH5aU4M2bGBiInp6op4dubv/frJDJZBobGwOAkpISNcrJ5XLfvXsnfF+xsbEAYGBgwGAw1NTUmrmKb1Ukk7CGDx8OAMJP2A0ODgaA6dOnS6R3ceTm5lLzMGeKt8Zl1apVAODn5ydOI19//TUAzBfj9/ibN2/MzMyYTKaHh4eenh4AsNnsOXPmvH37VsgWqDtE6ob0wIEDtCORC66urh4eHgsXLgwKCjp//vyLF2mN7oazsrCkBPl8DAxsoSWbQUE4bhwWFuKCBWhmVveUiPrj5JQ4atSodevWXbp0qbi4GBEXLlwIAOrq6tT9vpOTk/ATWZctWwYAVMG1b775RprvSZIkUHH0xIkTERER2tra69atE/IUahg4NzdX/N7FpKenN2nSpNu3b1NXIrQhIgBQo/i0UQ996gebaDA1NXV2dk5NTf3222/t7Oxu3bq1efPmhovXPik0NLSwsLBHjx7379+n5ge1VWVlZdHR0Q1f6ddv9q1bO0xMoHPnuj8FBVBdDVu2wOvXEBjYQoEtXAgbNlDxgJERODmBkxM4O0PHjl0BTjc8ctOmTVlZWWFhYYqKisbGxjExMRMmTDh16pQwH+ZTp04BQHFxMQBQC3TkgrgJq7KycsmSJQDw22+/Cf/5bj0JCwB4PB4AiJmw+Hy++I1IJJL6Rn755RcmU+RNRg4fPnzlyhXqLkPM/NvKKSkpPXz4MLkBdXV7AEhNhdRUuHwZAODHH6FjR7hxo0UDMzICIyO4eBHOnPnEkUwm88CBA0VFRRcvXjQ1NdXV1T179uzUqVNDQ0Obr4CckJDw/PlzHR2dxMRERUXF4S22VYHYxE1Ya9euTU1N7d27N7UUTkj6+qZ9+wbp6ZmJ2btESDZNtJ5GaGQreJ95BQKB+JG0cmw2u0ePHvWPiSk1NfDmDSQnQ3IyvHkDqqrg7Q3LlsH7BypS16ULKCrC7NnCluNXUFA4fvz4gAED7t+/37Vr18rKyoMHD5qamjZ/u/P48WNFRUVra+vbt2+PGDGCetgtF8Ta5uvVq1ebNm1iMpnbt28XaecFfX2j27fnRUZ6iNO7pLTCXCPDRqjTP4eE1SQFBbC0hC++gLlzYeNGAAAmE2bPBiH3WhOfkhKYmMDXX8PChcKeoq6uHhkZaWVl9ezZM0tLSwUFhd9++23Lli3NnDJp0qS0tLSSkhKQq/tBEDNhTZ8+vbq6eurUqc7OziKdqKICampQVQUlJfR7f/4c/v4bAGD3bkhKot9Oa0gTraeRzzxhNfLLL1BRAeHhIOIHnL5Xr0AgAFGveNq3bx8REWFgYPDw4cPevXszGIwlS5bExcU1OiwrK+uff/5ZsGCBq6urqamp3N0Pgji3hGlpaTdu3GAymT///DON0/X1oawMcnPpb20rEEBmJrx8CVlZIBDQbARaR5poPY2QhNVIdTX4+0P79vDLLy3RXXIyAMD7tWEiMDc3v3jxYr9+/e7evdunT58vv/zS3t4+Ly8vNjY2JiYmJiYmNja2iNqtEgAA2Gy2oaHhmjVrqKfJ8oL+J9LQ0LBdu3b5+flz5swJDw8X9cOtrw/JyZCbC+/n/dCRng4PHkB6Ov0W4P2ojZibCbaGXCORRqjTJfI9aRvMzEBfH3Jz4fVreL+KQYpoJywAsLW1PX78+IgRI+7cuZOTk7N///5kqrn3TExMnN6zs7OTx+1U6f9scDic2NjYPn36REREzJ49+2/q9kxoBgagpwfl5bT7BwDo3RvGj4d378RqpDWkidbTSMOERa6wKI6OcOYMxMS09oQFAIMGDQoNDf3uu+/S0tL4fL6qqmrPnj3t7Ozs7Ozc3Nw6tcAbkDKxxrA6dep09uxZVVXV3bt3BwQECH8ijwc2NpCbC5qakJZGs3c9PbCwAADo0QPEuaqVYJpoA5dp5JbwQ05OAAAxMS3RF5M5p2/fPzt3rqDdwvjx469du7Z48eJHjx4VFxdHR0dv3bp18uTJbSBbgfjTGuzt7Y8ePTpmzJgVK1YYGxvXr0drnkAAUVHQtSvweMDhgKkpna4rK2HOHLh5E+7cARMTOi1QWkOaaNQIItLeSZwkLIlzdq6xt79SWJgBMF2qHRUVFcXE7FRTU9PXnytOO3379qXWb7Q9Yl1hUTw8PP78809EnD59+mVqvt3HIUJUFLx6BQMGwJ07UFwMAFBTQ7NrLy8Q5cKuCTU1NfHx8QCQmJgoTjvUE2K+kJNnPqI+1/j6+k6ePJnexNr6Rg4dOnTr1i16p5NbwoYcHKru3x9x9Oi86upqqXb06tUrADA3N6f966rtk9QaH6pUhaam5pOPLDYvLcXgYOzWDQFw+nRctgzT07FbN9yzB42Nsant+D4qPR29vTEiAjdtwgMH8Msv8cYNXL4cRd0QIDw83MLCAgCoByUDBw4UdfsTRHz37p2fnx+Hw9HT09PT02tyY0FhXLp0SU9PT1lZecKECVTBBk1NTWEK3TRUUlJCrYk9ePCgpqYmg8H4sEJh8w4ePLhx40Zqc3Pae0+1PVQxjNjYWKn2Qm2JKvGKpm2JxBIWn8+nZqCZmZk1Kln34sULP78CqnAeAJqa4ubNdXsVHzmC48bVvT54MH6ylH5JCf70E6qoIAD274+bNiEiurvj4MEIgCYmwu71HRMTQy37BABzc/PZs2fr6OgAgIKCwvLly4VcQVpZWblhwwaqVh+LxaIqfgDAF198IVJ9ooSEhPq5MNRFjbGxsb29PfWKtbW1MKUg+Xx+SEgIVZ9PTU2Nw+E4OTlRa2tESnxpaWleXl4MBoPJZH5Yuv6zNXXqVAAICgqSai+//vorAPj4+Ei1F7kmyYqjFRUV1J2znZ1dWVmZQCCIiory9PRksVgDBqwHQDs7DAnBRj84fD4GB2O7dgiAHA7++mtxkxWpamtr9+wp1tdHAGQwcPz4/5RSi49HZ+e6xDdgADZTmiUtLc3Hx4datqKjo+Pi4sJisXbv3v3u3TtfX19q1NzIyKj5CyVqFxyqsCwADB48ODw83NraOiQkhKoEz+FwfH19S6gdxj4uLy+vvpKympqav7//rVu3nKgxXoCePXvWD5Q2Xw703Llz9cGcAT4AACAASURBVPWwHB0dR44cSd1TdOjQQfjEV1hYuGTJEirtKioqkh+bhv766y8A+O6776TXRXJysrGxMbVtPZfL9ff3p3G93+ZJuKZ7Xl4eVVDJzMysvrKSiorK4sW/NF99s6AAfX2RxUIHh1VUvmhYjIkqbe7qOgUAHR3xfWXz/xAIMCQE27enclaYr68vVYKjXqPS5s7OztQ8FA6H8z/27jssimv9A/i7haUjHQFBAVEERKUJIhgb/IwlNiwx1hiSGMUSDUnUkKjJxdwoGCtEoyj2jgV7owgCdhCVYgVBOuzSdvf8/jhmL7HgFmB38P08ee7jhZkz78Ly3ZkzZ85ZtmwZ3SY9PV0yar9///5vnZQqOTnZx8eHbtOtW7djx44RQs6dO9ehQwdCSOPgs7S0fFfwCQSCsLAwPT09elYVFBQkuXCj50qS4PPz85NM7/fmdKAZGRmSmZStra0lP7fU1FRPT0/6dRcXF/pn8K7go4tu0OtiFosVGBiYl5f37t/Vh+jatWva2tq6urop71i4REEpKSl07gBLS8vGT/Y5OjouWbIkPT29JQ7KRM2/zFd2draenh6Px6OnKqGhodIv0Hj9epXk/KJ///4ZGRm3bt2SLBLTuXPnAweqm55UrqSELFxYoaamQX/3e/bsIW9Mbe7t7U07euBtU+WJxeLo6Gj67nntROnRo0f0cgn+mUlZMldfeHh449m109LS3hV89OysU6dOkgLe2uvXOPjat2/v6upKt+/RowedWvq9Mym/Fny9e/emE1Xr6emFh4dL5h09e/YsXZYOALy9vZOSkqT8ZX1QhEIhnfZHXV1948aNzdv4uXPnaEgNGjQoPz9fW1vbycnJz8+v8fQnHTt2DA4OPnv2LCNmXm85LbIu4alTp7766qvDhw/LMfemSCTavHkz/VXRNfjoH+Qff/wh/VzjaWlpkuBzdXWVrILj4uLyrqnNX1NaWtr4CnHVqlUhISH0cklLSyskJOS107fDEyde1tYmjdKU5sVrwXfhwgVJ9Li6ul64cOG9L0QSfD179rS1tf3mm2/4fD5do5C2HBQU1MT8fDT46I+xffv29NzQ39+fEJKamtqvXz/aeJcuXZpYdAMRQhoaGug84AAwadKk5lp2OyYmhk6uPXny5Pr6+jNnzkhG83E4nB49evTt27fx0zPm5uZjx45NSEholqMzjooupFpWVhYcHGxubm5iYhIUFFQoy1rNlORESUdHh8VidezYUbKaqbW19c6dO6WZ/zc1NZVOP0LPqlgs1owZM97eFT1mDNHSIm/MUVtcXPzFF1/QvJBM+m5lZbV9+/a3zq3+JpFItGnTJsk9gYCAADrPHwCMGTPm4cOH0jTSOPhcXFy2b9/euCMvLCwMF56Q0uHDh+ltlm7dumVmZirY2po1a+hvITg4WPJ+KCkpiY6OHjZsmOQ2DgDY2tr269ePnpjTSY3fO+F1m6SigUU9efLk2bNnirSQnJxMA2LHjh3wT8e2TL/pK1euwD8379zc3N65nbs7UVcn77g5uGrVKsk7r0uXLjKtc0FJzvjoha2Hh4esa82LRKKNGzfS4KNr5GhoaISEhJSXl8tazAcuKyuLXkTr6ekdOHBAvkbEYnFoaChNn3etxlJRUbFz586xY8fSTkzqu+++o12fqampCrwIplLpwFLcnTt3AMDZ2VksFoeFhUk/tbnEpUuX6FkJAAwcOPCd2+npEQ6HxMe/9ZsHDhwAAPouHzdunKw1SNBLEn9/f7mXh3j58qWnp6eWllaPHj3ocopIDlVVVePGjaNxExwcLOsi50KhcObMmfSDcMuWLe/dvqamJjY2NigoyMTE5M6dO1OmTAGADRs2yFs+gzXDSHdVJhn2zWKxQkJC5JiknLZAz9ubelSQEBCJ4PHjJhqR9DrJWoMEvVfQtWtXuUdCGxsbDxkyRCAQjBo1iq63huSgo6Ozd+/eyMhILpf7559/Dh48+MWLF1LuKxAIPvnkk82bN2tra8fGxs6YMeO9u2hoaAwfPjwyMvL58+fOzs60fzaldR5uVDFt/NkLxR/xaxxY72ynru7VI5HFxU00QlNG8WJU4RFrBABBQUHdunUbP3785cuX3d3d165d6+vrW1lZWVdXJxAI+Hx+fX19RUWFUCisqKior6/n8/l8Pv/gwYOZmZkmJiYnTpzw8PCQ6Yj00w4Dq81ii8U2+vrqCpzUSJU16upw5AhUVMDgwfDyJQiFYG4O9+5B5850MvDmDSxVeE4bUb6+vunp6ePHj4+Pjx8zZgwh5L272NjYGBoaxsfH28s7FZyLi4umpub9+/fLysokC2t+INr4u9a1vj63vBwUOCUZKhIRAGCziba2qFHf57+sWgU2NtChAwQHw/jxUFEBo0bBrl2wYAEYGABAgJra4z598o2M2vn6sv65xycH1VmbB0mYm5tfuHBhxIgRFy9e1NLS0tfX5/F42traWlpa6urqenp6XC5XX19fTU1NR0enpKRk8+bN9vb2U6dOraqqysjIkOOIampqvXr1SkpKSk1N9ff3b/ZXpMra+rtWKAQARQLrVQssFovP575rMoaHD+HbbwEA9uyBujo4eBDu3YPERFiwgH6/fVUVJCVZ9+0LCQng4iJ3Ld+LRN8DEMWyJlhPL8jXV01fX5FGUGNcLvfkyZPSbFlfX79jx46cnJz8/HyBQFBcXExH9srKy8srKSkpJSXlQwusNt7p/ipuFPkLpy3QJbPe1Q4hr2aV5/OBx4MxY+DHH+Gfx3f+1wilSDENDQDAUqwPy7qoqEt8vE1trSKNIPnweLyePXuKxWI7Ozvyz3rxcvhgu7EwsKRrgd6Ve1c7n38OCxfC0qXg5QU8HvB4AABaWiBZGVCaRqRBT/EUvJpT/GeCFECzRl9fHxRIHNpIcnKyNL1mbUlbf9cq/hcuTdZ4esI/Txr/zw8/vN4IpXgxGFhMRrOmtrYWFAisjh07mpubFxQU5OXlSWYN+RC09TOs7t1h9epXi1JKFsOUaVXMzp0hKAj69IHAwLekkpTU1P7Xj6Z4hxoGFpPRwMrNzQWAlJQUsbxL1NEhEfRZjg9Hmw6s2lr46SdwdYUzZyAlBVavfvX1JhfFfZ23N5iaQrt2YG0N0s1Y/xbBwXDkCPj7Q1wcNLmG+HuMGgV//AH/938AAAUFAAACwat5pqXn5gZjxsA/E86gVmZnZ2dqalpcXGxubl5eXv7w4UNZW/j555/j4uLo9EEHDx5UcGJuZmnTgZWaCv7+0K8f/PQT7N8PZWWwdi2sXQsyXfZfvAjdusGSJTB2LOzcKWclV6/Cw4ewZAncuAE3bsjZyP37sGsX2NvDf/8LAgH89hsAQFoanD4tQyOlpfD8OfToAffuQUUFbNwIAHDuHLyxSjBqOfTkyNraGmS8KhSJRF9++eUvv/wyceLEhIQEU1PTQ4cOmZqaTpkyZf/+/XwFV81jgjYdWJqaUF0NAFBVBVpa0K4dTJsG06aBTM+1FBcDHTllYfGugezvl5oKAQEAAAEB8kfDvn3w/fcwYgSMGgWXLsGDB7B9u2xpBQB//gmzZsHSpVBeDjk5UFAAQiGUlb36QaFWQa8K6WQM0gdWXV3dxIkTo6Ki1NXVbW1tT506VVVVZWNjU1paumPHjnHjxllYWMy9OfdA+QG+uM0mV5sOLDc3yMqCVavgl19g5kxgs0FXFxpN5yiVvn1h3z4oKIDNm0HuMS92dkBX5cnIeLWYohy4XDqsAerrQU0NLC1hwAD4Z3YtaRUVvboYtLKCoiK4ehVWrYLYWDlLQnKhgVVWVgZSB1Z5ebm/v//+/fv19fXt7e1v3LhhaGh4/vz53NzcnJyciIgIHx8fdjv2JrIpMDfQ+Lbx8JzhUcVRRcKi/Ib8HaU77tbc3V66vWVfVetQ8sPXrUAymYxk/inpJqL6n+xssmULuXlT/hrEYvLHH2TZMhIeLn8jT56QmTPJX3+RL74g9fVk9mxCCLl8mezdK0Mju3eTHTtIVRWZPp08fkxCQwkh5MABcvGi/IUhGZWVlbHZbA0NDT09vQEDBrx3ZrSCgoKePXsCgKmpKZ3mv1OnTllZWa9tlvcy748Xf/TJ6sNOZ0M6QDqsfLFyYu7E7Nrs2PLY+U/nt9gLaj0fQGC1JUIhkSy9xecTQkhDA5F17r24OLJ6NcnNJTU1hM5Qnp1NFJt3DMmKri+3ZMkSOuF1E7Kzs+nGtra2FhYWAODs7Nz0PHHP65+vL1o/8MHAQ2WH/i7+m34RAwshJKfBgwfTh+G1tLSGDRsWHR392qTbVGpqKp0TydHRkT7n3K9fP+nnXMyqyfq14Ff677YRWCzygY2URUgV1NbWBgUFZWRkXL9+nX5FU1PT399/9OjRw4cPp9lUU1NjZ2dXUFDg7u6ekZFRU1MzcuTIXbt20cVEpLTixYoG0qDP0a8WVS81X9oiL6YVYWAhpExPnjw5fPjw8ePHL126JJnvzMvLKzAwMDAwMDMzc/ny5UlJSUKhcPr06VFRUR/4NBsYWAiphIKCgiNHjhw6dEiSXGw228TEpLCwEAB+/vlnOgf8Bw4DCyHVUlZWduzYsePHj588ebKuro7NZoeHh8+aNUvZdakEDCyEVFRVVVVUVJSfn5+sMym3YRhYCCHGaNMj3RFCbQsGFkKIMTCwEEKMgYGFEGIMDCyEEGNgYCGEGAMDCyHEGBhYCCHGwMBCCDEGBhZCiDEwsBBCjIGBhRBiDAwshBBjYGAhhBgDAwshxBgYWAghxsDAQggxBgYWQogxMLAQQoyBgYUQYgwMLIQQY2BgIYQYAwMLIcQYGFgIIcbAwEIIMQYGFkKIMTCwEEKMgYGFEGIMDCyEEGNgYCGEGAMDCyHEGBhYCCHGwMBCCDEGBhZCiDEwsBBCjIGBhRBiDAwshBBjYGAhhBgDAwshxBgYWAghxsDAQggxBgYWQogxMLAQQoyBgYUQYgwMLIQQY2BgIYQYAwMLIcQYGFgIIcbAwEIIMQYGFkKIMTCwEEKMgYGFEGIMDCyEEGNgYCGEGAMDCyHEGBhYCCHGwMBCCDEGBhZCiDEwsBBCjIGBhRBiDAwshBBjYGAhhBgDAwshxBgYWAghxsDAQggxBgYWQogxMLAQQoyBgYUQYgwMLIQQY2BgIYQYAwMLIcQYGFgIIcbAwEIIMQYGFkKIMTCwEEKMgYGFEGIMDCyEEGNgYCGEGAMDCyHEGBhYCCHGwMBCCDEGBhZCiDEwsBBCjIGBhRBiDAwshBBjYGAhhBgDAwshxBgYWAghxsDAQggxBgYWQogxMLAQQoyBgYUQYgwMLIQQY2BgIYQYAwMLIcQYGFgIIcbAwEIIMQYGFkKIMTCwEEKMgYGFEGIMDCyEEGNgYCGEGAMDCyHEGBhYCCHGwMBCCDEGBhZCiDEwsBBCjIGBhRBiDAwshBBjYGAhhBgDAwshxBgYWAghxsDAQggxBgYWQogxMLAQQoyBgYUQYgwMLIQQY2BgIYQYAwMLIcQYGFgIIcbAwEIIMQYGFkKIMTCwEEKMgYGFEGIMDCyElC8vLy8kJCQuLk7Zhag6DCyElC82Nvb333+PiIhQdiGqjkUIUXYNCH3oysvLLS0ta2pq7t+/b29vr+xyVBeeYSGkfPr6+uPHjyeE/PXXX8quRaXhGRZCKuHatWu9e/c2MjJ69uyZhoaGsstRUXiGhZBK8PT0XDdu3D0bG/VDh5Rdi+rCwEJIVXwzcKBJWhpr0yZlF6K68JIQIZVRXQ0dOkBFBdy+Dd27K7saVYRnWAipDB0d+OwzAICoKGWXoqLwDEtpnj9/Xlxc7OzszOFwlF0LUhl370L37mBgAC9eAI+n7GpUDp5hKc2OHTt69uy5YMECZReCVImzM2zcCPv3w/nzwOcruxqVg4GlNImJiQDQu3dvZReCVIyZGdy+DcbGMGsWiETKrka1cJVdwAeKEJKcnAwAPj4+yq4FqZgzZ2DjRgAAV1d4+BAcHJRdkArBMyzlyMrKKi4utrCw6Nixo7JrQSpGXf3VxWBpKejpKbsa1YJnWMqRnp7H5Wr06dNH2YUgFVNfD7Nmwfffg6kpqKuDhYWyC1ItGFjKcenSxzxezcCBZcouBKmShw9hwACIiIC1a5uxVbFYfO/evZSUlG3btnl4eCxfvlxLS6sZ229NGFjKkZAAAgG4uRkouxCkMvh8GD0anj2DAwdgzBgFG3vx4kVqamp6enp6enpSUlJpaSn9+tWrV58+fbp3714Wi6VwxUqA47CUoKQETExAQwPKy3GoDfrH1KmwfTt07QrXrsnRdVVTU3P9+vVr166lpKQkJyc/fvy48XctLS2tra2trKxOnTpVWVn5zTffrFu3rvlKb0UEtbrYWAJA+vVTdh2oZZSWli5YsKB79+6ffvrptWvXxGLxe3cpi4wkAERXl9y7J8cRf/rpJ96/P/p0dXXd3NwGDBjg4eFhZGREv7hhw4YLFy6oq6sDwMqVK+U4kNJhYClBSAgBID/+qOw6UHNLS0sLCgrS1tYGAMk1l5WVVVBQUGxsbENDw1v3Sk5O1tPTi/LxIfv2yXHQqqoqLpfLZrPt7Ow8PT09PDw6duz42hWfubn5yJEjjx8/TgjZs2cPm81msVhbtmxR6NUqAwZWaztyhNTUkBMnyNmzyi4FNZOqqqrIyMhevXrRdGCz2QEBAd98882cOXM6dOggSQ1TU9OgoKBTp07V19dL9i0sLKTbfPvtt/Idfc+ePQDg6+u7a9cuybHU1NTc3NyCg4Ojo6Pv3r372i4bNmwAAA6Hc/jwYflftjK05cB61weafBITE0NCQiIiIqQ5w2/CRx+RnTtJejqJjm6u0pDS3Lt3LyQkxMDg1c0TfX394ODg7OzsxtvcvXs3NDTUodH4T319/cDAwOjo6IqKCn9/fwDw9vauq6uTr4Zx48YBwOrVqx8/fjxlypT169enp6e/983/448/AoCmpmZCQoJ8x1WKNhtY9fX1Q4YMCQkJaZbW9u3bp6enR0+zu3fvHh0d3fhDUkq1taSwkCxYQObOJefPY2AxWG1t7b59+wYNGiTJIDc3t8jISIFA0MRet27dCg0N7d5o3hjandS+ffv8/Hy5K9HV1QWA3NxcmXYUi8Wff/45ABgZGWVmZsp39NbXNgNLKBQGBgYCgJmZ2YsXLxRpqqysbMKECfTt1alTJ3Nzc/rvjh07rlmzprq6WppGCgpIWBjp0IFMmEAWLCDPnpGhQzGwmGrz5s20lwoA2rVrN2fOnIyMDJlayMvLi4iI8PHx4XK52traX3zxhdzFHD16FADc3d3l2FcoFI4ePRoALC0tHz9+LHcNrakNBpZYLA4KCgIAPT299PR0RZpKTEy0tbWl91wiIyMJIXV1ddHR0Y6OjpL3a3BwcBMfj4mJdRMmEDU1AkAASO/eZNkyQghZu5YcPEiOHlWkOqQE5eXlBgYGmpqaTk5OkZGRUn5ivcvhw4dZLJampuZrV5HSmzp1KgD8+uuv8u0uEAh8fX0BwNHRsbi4WL5GWlMbDKyQkBB6cX758mW5G6mvrw8NDWWz2QDQu3fvBw8eNP6uWCyOjY2VPLesrq4+efLk+/fvSzaoq6vbt2+ft7f3Rx/9CEA4HDJs2Ou97F9+SQCIvO80pBy068fX17e5Gpw8eTIA9O/fX46+0YaGBmNjYwC4J9dgCKq0tNTJyYn2dcjdSKtpa4G1Zs0aeouE3sGVT2ZmJr3jw+VyQ0JCmuiuio+PDwwMpLnGZrOHDRt2/PjxH3/80cTEhGZZ166OS5aInz17y77HjxMOh7BYZPt2uStFraqoqIh2GF29erW52iwuLqbvlpiYGFn3PXPmDAA4OTnJffTExMTQ0NC1a9eyWCwDAwO522k1bSqwtm3bxmKxWCzWtm3b5GtBLBZHRkbSJ61sbGykvIFy9+7dqVOn0pF7kkF6bm5u27Ztq62tbWLHTZsIAFFTI+fOyVcvalWzZ88GgFGjRjVvs9u2bevWzd3b+7qs12RfffUVACxdulTuQ9POEz8/PwCYNWuW3O20GhUNrKIiQs+QLl8mUt6OO3z4MJfLBYDw8HD5DpqXlzd06FAaN5MnT66qqpJp9ydPngwZMoT2xycmJkq51/z5BIAEBNySteMWtbK8PDJgwGFNzXZvDmtSkFgsHjRICECmT5dhL5FIRG8B3bhxQ77jikSi9u3bAwDtqD3LhJGBKhpYt24RFxfy6BH58UdSWvr+7c+fP0/vEK9YsUK+I/L5fHq2b2JiclTezvDTp0/TPi8fH5/p0r37RCIyb94VeguyoKBAvuOiVjB1KgEgX31V0xKNP3hANDQIiyXDuXZ8fDx928h90MuXL9PPVwAwNDRs3nGLLUR1A2v9ejJrFvnxR/LLL0RTkzg4EH9/8sUXZPlysmvXoStXrjx69Ij+iFNSUnR0dABg9uzZch8xNjaWzWZramoqMgzi5s2bANC5c2cA6NGjh5R71dTU0ImxXF1dZT2tQ63j7l3C4RAej+TktNQhli0jAMTentRIEYl1dXWfffYZACxcuLCoqKjxDR/pzZ07V3I9OG3aNDlaaH2qO72MtjYMGAD/+Q+4uUFNDWRlQVYWAACLRTQ0JtXU1AAAl8s1NzevqKiorq6eOnXqn3/+Kffh3NzcxGJxu3btzMzM5G6E7lteXg4AhYWFUu6loaERGxvbp0+f69evDxs27IcffuBwOFpaWvScEQA4HI5eo8f3dXV1xWKxInUiWS1eDCIRzJoFtrYtdYiQENizB8rLITsbnJ3fskFe3ourVy/Q+Rhu3LhRV1dnYGDAYrH69u1bW1ubmJjY+DGg9yKEHD58GACKiooAgA7IYgBlJ+bb3bxJjh0jhJBp00hAANHUJDY2xNWV+PiQQYPWeXt7d+/evX379vT2XPv27R0cHBQ8oW1oaGCz2RwORyQSyd2IUChk/0PWph4+fKitrS3le47D4YwfP17uOpFM0tIIi0W0tYliY5DfLyuLHDxIYmMJIWTrVlJZSeLjSUQECQwkpqbE1/d/ixWy2WxLS0sA0NDQcHFxAQBHR8eSkhLpj3Xt2jX6t8NisXR0dGqkOa9TAap4hlVVBYMHv/pv61bo0wdqaiAvD/LyAAD09ZeWl7+aqFNXV3f79u2jRo0yMjKiPe5y43K5BgYGJSUlJSUlkkEJsuJwOEZGRi9fvjQwMCgrK5OpKT6fX1tbm5+f7+npKRQKa2trxWIxfRhIJBIJBALJ8/d8Pr+8vHz//v1LlixxfutnMZKOr6+vvr5+586d7ezs7OzsOnd27tjRqvE0LQUFoKMDvXpBeDiwWNDSJ7Vdu8LZs3D5Mvj6ws2b8Msv8OjR/75rY9N3xIgRvXv37t27t4eHh56e3vz58yMiIvLy8rp06ZKZmfnxxx+fP39eMgq/aYcOHQKAzp07v3jxYujQoRoaGi3zmpqZKgZWVBS8fAnPnwO9JEpKgupqePwYHj2CZ8/Ejx59+eTJk8ePHz969Khdu3ZDhgxRU1PLysri8/lS/qrexczMrKSkpLCwUO7Aoo1IAkv6pgghc+fOFYlE8+bNs7OzmzNnThMbL168uKKiYt26dYsWLYqLi5O71A9cdXV1QkJC46/4+X2dmLjBygrs7F79V1oKdXUQHg55eRAR0UqFzZsHK1fSesDCAnr3ht69wcsLOnbsBnC08ZarVq3Kz8/ft2+furq6paVlSkrKhAkTJLfLm0avBysqKoBB14MqGFgNDUB7or777n9f1NEBJydwcgIANsB/JF8nhLBYLCcnp5s3b96+fdvb21uRQ5uZmWVmZhYWFipy2mJmZnb37l16w1H6pmJiYi5fvmxmZhYaGnrx4kX6VG1VVZVQKKQbNDQ0VFdX038bGxsvWLBg165dp06dOn36dEBAgNzVfsg0NDRu3ryZ04iurjsAPHoEjx7B+fMAAN99Bx07wpUrrVqYhQVYWMCZM3Ds2Hu2ZLPZO3bsKC8vP3PmjLW1tbGx8fHjx6dPn759+/amZ0C+e/fu/fv3DQ0NMzMz1dXV6XAcZlD2Nenrtm4lAMTZmUj/oMKMGTMAYO3atQoemj7kvHPnTkUa+fTTTwHAy8tL+qYqKystLCwAYLssY95XrlwJAI6Ojoy4G80UdXXkwQMSF0fWrSOLFpFffiGlpSQoiHzzTSsVcOYMef6cNDQQ6UcTVlZWurq6AkC3bt3oRcaP75sccufOnerq6vTe9IgRIxQtuhWp1rqEhJBjxx6zWLBoEUg/R76v79SPPkp4+lTR01p63036u3tNNKKmpiZ9Uz/99FN+fr6Pjw+9US0levGYmZkZHR0tX6noTTwe2NvD//0ffPMN/P47AACbDV9/Dbm5rVSAhgZYWcGYMTBvnrS76Orqnjp1qkuXLvfu3bO3t+fxeL/99lt4eHgTu3z66adPnjyprKwERl0PgqotpHrixIlDhzr5+Hw1caIMezk4+F265HP6tKIruDVjYFHSNJWRkbF+/XoOh7Nu3TqZFjLh8XjLly8HgMWLF1dVVclRKnqvn34CgQBiY8HLq5WOmJ0NYjHo6sq2l4mJSVxcXPv27W/evOnq6spisRYuXJiWlvbaZvn5+fv37587d27fvn2tra2Zdz0IKnZJ2LdvX5D92RqBgHC5hMuVasRdE7Zs2QIKj6DbunUrAAQEBHz//fenTp167/b9+/cHgDlz5shxLLFYTM/qQ0ND5dgdSSMvjwAQE5NWOtzixQSA/PSTPPvevn1bX18fALy9vZcvX04IKSoqOn78+NKlS/39/em3JLhcrqWl5d9//93ML6CFqVBgJScnA4ChoaEco72dnQkAuXZNoQKOHz8OAEOGDFGkkYiICAAwMjIKDQ09c+ZMZWVlExvv3LkTAExNTcvKyuQ7XFJSEp1Q6cmTJ/K1gN7LzIwAEBln9JTThAkEQP7JHc+dO0fHG9vY2NjZ2b121c/P5gAAIABJREFUdmJlZTV27Nj//ve/V65c4fP5zVp4K1GhwPrkk08AYOnSpVlZWbLO9zplCgEgmzYpVEBqaioAuLq6yre7UChcvny5mppa49EVHA7H0dFx8uTJkZGRrz00W1lZScf+bd26VZGyx4wZAwBSPrqI5DB8OAEgu3e3xrE8PAgAUWSa9b1796qpqXE4HADQ1tb28fGhS1HI+jelmlQlsEQikbW1NZvN3rZtm5WVlYWFhUzPxG/dSoYPfzVEWG7p6ekg7zyljx49os9ksVisoKCg3bt3z58/38vLi/a+S1hYWIwdOzY8PDw5OXn+/PkA4OHhocjYekJITk6Ouro6m81WcHpV9C4rVhAAMm9eaxyrd++v+/RZW1Cg0OlPYmLiokWLbt26JRQKm6swFaEqgUUIcXNzo58J9B8GBgbST9Kydi2JiiKEvJqAWA5xcXHm5uYcDof2fPv4+MTGxko5CeS+fftoB0H79u3j4uIaf0sgEFy5cuU///nP8OHDJVNlUTwej6aMIksAiMVisVg8b948AOjWrZvc7aAmnDtX5+4eN3XqXy19oLKyMgDQ0dFRcGWmNkyFAksoFNJlPHg8Xu/evWl4SdNvTQhZtox88w3Jzydz58p8XIFAEBwcTEPEz8/vq6++kjxp7OrqumfPniY+psrKyujAKwAYO3bsex/mysnJiY6ODg4O7tmzp7GxsYaGxtdff81msw8cOCBz3YQQQmJiYvz8/I4ePUofq8Q3ekuoqKhgs9nq6upNT8eoONop4eLi0qJHYTQVCixCiFgsXrhwIe36oTOm83i8fU0uh1tXR86dI8uWkdxcMncumTuXbNtGjh2TdtzptWvXunTpAgAaGhphYWH06qyysjIiIoJ2MNH+y4iIiDc7Kc+dO0efVdbT06NLVMiE9tnRl2lrayvHH4NkxCkd4u/h4SFrC0hKdNmRawre1nkfuiRqs89o2paoVmBRYWFhtDOI9gpxOJwoer33hthYYmdHOBwyezYpKyPR0WTYMGJkRABI584kIqKpgQ4NDQ1hYWG0j8nZ2fnWrVuvbUAXyOnWrRuNLRMTk9DQULqySE1NTUhICD2p8fLykm/Jk+zsbHpVSO/myDFR6oIFC2jx9EZh2+hVVU3Tp0+H5niaomm//PILAAQFBbXoURhNFQOLELJhwwYaB/QEhMVirVy5svEGSUnE2/vV2llOTmTPHlJfT8Ricv48CQ8n1tavvtWhA4mMzH1zbEFeXh5d3YjFYgUHBzdxdiMSiQ4cOODp6UljS0dHZ9iwYfb29gCgpqb222+/KdKvSS9F6fQgBgYGMq2zlJGRoaamxmazaTHL5O69Q1LYtGkTAHz22Wctd4icnBxLS0t6zu7o6BgaGoqzZr9JRQOLELJr1y56+tO7d28aXidOnCCE5OTkTJo0xdi4CICYmZFNm8ibz9LV15N9+4ibG2Gzia3tUD09veDg4OfPn9PvRkdH04eTraysLly4IGU98fHxdEww7ZXncrlpaWkKvsbS0lJDQ0PaWQYACxYskH7fAQMGAAAdamtnZ8eU+YwY6tq1a9ra2rq6uikpKS3RfkpKCp3Yw9LSUrfROHdHR8clS5bg/V8J1Q0sQsiJEyfoAjbu7u6ff/55aWnpwoUL6bi4gQPnLF5MmhyVScRicvp0Cb2upL1UEydOlCwvHhgYKNOEZ4QQsVhMl8aha/M0Sxfsf//7X9pNxmazeTzeawsgvsvu3bvpSVm7du0A4Bid7RC1GKFQSPs61dXVN27c2LyNnzt3jobUoEGD8vPztbW1nZyc/Pz8Gs9N1LFjx+Dg4LNnz37gz7qrdGARQuLj4+mIAWtrawMDAwBgs9lTpkx5+vSp9I2kp6dPnjyZDqWj0w3L0UdO0TN2+sCgTDW8S11dHZ0Dnj5kM3bs2PfuUlVVRW8I0L724cOHK14Geq+Ghga6Ri8ATJo0ScE1nyViYmLolcTkyZPr6+vPnDlD36j0vdqjR4++ffuamppKksvc3Hzs2LFSLkDX9qh6YBFC7ty5Y2xsTOck8/b2TkpKkq+drKyszz77LCAg4M6dO3IXQ8eIde3aFQAUvySk6L0hY2NjejoZHx/f9PaLFi0CAAcHBxaLpa6uLuVJGWoWhw8fpme13bp1U2QAHbVmzRra3REcHCwZP1xSUhIdHT1s2DDJpP70PnK/fv06depET/B1dHQEAoHCr4Z5GBBYhJCLFy9+99130XI/YdV8Pv74YwCgsUX71BQnFovpvQV6H6B3795NDKd68OABHddOr1DwsefWl5WVRdd219PTk3sAnVgsDg0NfesNJYmKioqdO3eOHTu28cNe3333HR0nmJqaqsCLYCpmBJbq+PbLL4fa2i7+v/+L8Pa+tWdPczV79epVOjTBwsJiwYIFTfSOnThxwsjIiAactbU1Qx9hZbqqqqpx48ZJ7jLXS7nY7z+EQuHMmTPprZstW7a8d/uamprY2NigoCATE5M7d+5MmTIFADZs2CBv+QyGgSWjkBACQPz8CAD5z3+aseHAwEAA6Nmz575/nDhx4uw/Ll68mPaP7du30z5auRd8Rc0iMjKSdj/169dP+kVw+Xw+XWBcW1v75MmTMh2RJuP69esBYOrUqbIW3Aao3Jzuqo7Oz0cIAIBiU/295tdff42Njb1z5w796G4ah8Pp27fviBEjmrEAJKugoKBu3bqNHz/+8uXL7u7ua9eu9fX1raysrKurEwgEfD6/vr6+oqJCKBRWVFTU19fz+Xw+n3/w4MHMzEwTE5MTJ054eHjIdETJQB8ASElJaZFXpdowsGTUvj0AQEMDQDMHlr29/eHDh5cuXWr7z1qd1dXVDfRA/16EoqqqSkdHp+k5cFHr8PX1TU9PHz9+fHx8/JgxYwj9JGuSjY2NoaFhfHw8HfErBxcXF01Nzfv375eVldFb5x8OljQ/YvQ/Fy7AwIHQowfcugUDBrxaXAV92IRC4YgRIy5evKilpaWvr8/j8bS1tena3Xp6elwuV19fX01NTUdHp6SkZPPmzfb29nSiyoyMDPmO6OPjk5SUdPr0aX9//+Z9LSoOz7BkRC8J6RzqzXqGhZiLy+WePHlSmi3r6+t37NiRk5OTn58vEAiKi4uNjY3lOKKXl1dSUlJKSsqHFliqtQgFA1hZwW+/QXAwbNoEO3cquxrEMDwer2fPnmKx2M7OjvyzXrwcPthuLAwsGenpQceOUF8Purqwa5eyq0HMQ7OGPr8hd+LQRpKTkz+0Lh0MLNldvgyLFsGnn0JdHdTWKrsaxDA0a2pra0GBwOrYsaO5uXlJSUleXl5zFqfyMLBkJ/lMEwqBjT9AJBsaWLm5uQCQkpIiFovla4cOiaBrTX048O9NdiNHwg8/wJo1YGkJPJ6yq0EMY2dnZ2pqWlxcbG5uXl5e/vDhQ1lb+Pnnn+Pi4ugcbQcPHhSJRC1QporCu4Sy+/hj6N8fBAL496ISCEnJw8PjxIkT1tbWBQUFKSkp9Fl6aYhEolmzZkVFRbVr187b29vU1PTQoUOmpqZDhw4dPnz4xx9/3PipwzYJz7DkoqmJaYXkRq8K6WQM0ndj1dXVTZw4MSoqSl1d3dbW9tSpU1VVVTY2NqWlpTt27Bg3bpyFhcXcm3MPlB/gi/ktWL1SYWAh1NpoYNFFvaQMrPLycn9///379+vr69vb29+4ccPQ0PD8+fO5ubk5OTkRERE+Pj7sduxNZFNgbqDxbePhOcOjiqOKhEX5Dfk7Snfcrbm7vXR7y76qVoEj3RFqbeXl5UZGRjwej8fjubu7nz17lt3k3ZsXL14MGTLk5s2bpqam2traeXl5nTp1OnXq1GvXko+KHx0UHTxUfiiZnywGMQCstFx5U3BzucXyzNrMi1UXV3dY3bIvrOXhGRZCrU1fX58u7BYcHHzy5Mmm0yonJ8fX1/fmzZu2trZcLjcvL8/Z2TkhIeHNnq9Oxp2+Nfs2sWvi0+5P11utH6g70F7dfrDeYDt1u+HthrfkC2o9GFgIKYGNjQ2LxVqxYoWhoeHw4cO3b99eWVn55mZpaWne3t7Z2dmOjo5lZWX5+fn9+vVLSEiQLJr5VhZqFrNMZp2zP+eo4VjQUNBiL0IJ8JIQISWora0NCgrKyMi4fv06/Yqmpqa/v//o0aOHDx9O52Coqamxs7MrKChwd3fPyMioqakZOXLkrl27NDU1pT/QihcrGkiDPke/WlS91Hxpi7yYVoSBhZAyPXny5PDhw8ePH7906ZJQKAQADofj5eUVGBgYGBiYmZm5fPnypKQkoVA4ffr0qKgourjBBwsDCyGVUFBQcOTIkUOHDkmSi81mm5iYFBYWAsDPP/9M54D/wGFgIaRaysrKjh07dvz48ZMnT9bV1bHZ7PDw8FmzZim7LpWAgYWQiqqqqoqKivLz85N1JuU2DAMLIcQYOKwBIcQYGFgIIcbAwEIIMQYGFkKIMTCwEEKMgYGFEGIMDCyEEGNgYCGEGAMDCyHEGBhYCCHGwMBCCDEGBhZCiDEwsBBCjIGBhRBiDAwshBBjYGAhhBgDAwshxBgYWAghxsDAQggxBgYWQogxMLAQQoyBgYUQYgwMLIQQY2BgIYQYAwMLIcQYGFgIIcbAwEIIMQYGFkKIMTCwEEKMgYGFEGIMDCyEEGNgYCGEGAMDCyHEGBhYCCHGwMBCCDEGBhZCiDEwsBBCjIGBhRBiDAwshBBjYGAhhBgDAwshxBgYWAghxsDAQggxBgYWQogxMLAQQoyBgYUQYgwMLIQQY2BgIYQYAwMLIcQYGFgIIcbAwEIIMQYGFkKIMTCwEEKMgYGFEGIMDCyEEGNgYCGEGAMDCyHEGBhYCCHGwMBCCDEGBhZCiDEwsBBCjIGBhRBiDAwshBBjYGAhhBgDAwshxBgYWAghxsDAQggxBgYWQogxMLAQQoyBgYUQYgwMLIQQY2BgIYQYAwMLIcQYGFgIIcbAwEIIMQYGFkKIMTCwEEKMgYGFEGIMDCyEEGNgYCGEGAMDCyHEGBhYCCHGwMBCCDEGBhZCiDEwsBBCjIGBhRBiDAwshBBjYGAhhBgDAwshxBgYWAghxsDAQggxBgYWQogxMLAQQoyBgYUQYgwMLIQQY2BgIYQYAwMLIcQYGFgIIcbAwEIIMQYGFkKIMTCwEEKMgYGFEGIMDCyEEGNgYCGEGAMDCyHEGBhYCCHGwMBCCDEGBhZCiDEwsBBCjIGBhRBiDAwshBBjYGAhhBgDAwshxBgYWAghxsDAQggxBgYWQogxMLAQQoyBgYUQYgwMLIQQY2BgISSPGzduxMfHK7uKDw4GFkIyO378uKur64IFC5RdyAeHRQhRdg0IMUxtba2FhUVZWdmtW7dcXFyaocW6OlBXb4Z22roP+gxLLBYfOXJE2VUg5tHQ0JgwYQIAbN++XdG2Ghpg9mz4808ICoKXL5uhuDbtgw6sqVOnjho1avXq1couBDHP9OnTAWDHjh0NDQ0KNXT+PHz0ESxaBPPmQUxM8xTXdn3QgTVixAg2m71w4cKdO3cquxbEMB4eHi4uLkVFRXFxcQo1VFsL2toAANraUFPTLLW1YR90YAUGBoaFhRFCZs6cmZCQoOxyEMNMmTIFALZu3Srn/nfvwrNn0L8/7N0LCQmwejWMHt2c9bVF2OkOwcHBa9euNTIySkxM7Nq1q7LLQYxRVFTUoUMHQsjTp0/bt28v687g6Ql1dXD4MHTrBjdvgoMDmJm1TKVtxwd9hkVFRESMGjWqpKRkyJAhhYWFyi4HMYapqemQIUOEQuHu3btl27OhAcaNg8ePwdgY/P3h4EHo1w/TShoYWMBms3fu3Ont7Z2Xlzds2DA+ny/VboRAVBT89hvs2NHCBSLVNW3aNAD4+++/Zdttzhy4fBnMzODFC6iqgvv3W6K2NgkvCV8pLi7u06fPw4cPhw4deuTIES6X+69vC4Vw/z6kp7/6j8uF776DigqYOBH+/BO8vMDTU0mFI2USCoUdOnQoLCxMT093dXWVZpe0bdvcg4KAy4VOneDePfD3h5MngcNp6VLbCIL+kZ2dbWpqCgBBQUH19fXXr1//66+/vv76a09PT76zMwH433+amiQsjDx8SAghV6+Sv/9Wdu1IaebNmwcAs2fPlmbjCxcuqKmpze/Vq9bPjwCQrl1JWVlLV9iW4BnWv1y7dq1///4CgYDL5QqFQsnXs/r27frgAXTsCFpaIBBAdjasWAG6ujB5MoSHQ79+IN2nK2p7bt++3aNHDw6HM336dGdnZ0dHRwcHBysrqze3fPTokaen58uXL/38/IQPH55u315n927A+zyywMB63YEDB8aPHy8Wi9u3b29jY8PlcsvLy38wMpp46dK/touJgdpaePECOneG8eOVUytSDS4uLllZWY1HkOrp6dnb29va2jo6Ojo5OTk6Onbo0MHX1/fOnTu9evW6desWAMTGxg4dOlR5VTMSBtZbWFlZPX/+vPFPZrqT09/V1eDmBm5u4OoKbm5gYqLECpFKqa+v37lzZ3V1dWZm5r179zIyMoqLi1/bRk1NraGhQVdXFwCqqqr++OOPb7/9VhnFMhsG1uuKi4vNzc1FIpGpqamHh4ebm5ubm5unp6cZ3nVGUisrK8vNzc3IyMjMzKT/m5eXRwhhs9lisXjy5MnN8BDiBwkD63WbNm36+uuvP/744xMnTii7FtR2lJeXL1y4cMuWLUZGRs+ePdPQ0FB2RYyE47Bet3fvXgCYOHGinPsXFMDTp81ZEGoT9PX1V61apampWVZW9hJnZZAXBta/1BQWPszK0tDQGDFihDz7b9wIe/fC8ePw++/NXRpivHbt2o0YMUIsFu9ojsHGFRUVv//++/nz50tLSxVvjSm479/kQ6K5f//jly8zZ87U09OTZ/8bNyAqCgDgyy+btzDUNkyfPn3v3r37d+788YcfgMWSu52qqqquXbsWFRXRLh0DAwN6O1JyX9LGxoalQPsqCwPr3/bu5YhE3fv3V7Qd7BlEbzNo0KCUESPcExIgMRH69pWvEbFYPGnSpMLCQm1t7a5duz548KCsrCwxMTExMVGyjaGhoaOjY7du3WxtbTt16kSnG2wDMLAaefYMkpJASwvkHh3j5QUrVwKPB87OzVqZDAoLC/l8vpmZmTadZQmpEg6H4+nsDLGxsG2b3IG1ePHiY8eO6evr9+3bd/PmzWZmZvn5+ZmZmZL7knfu3CksLExISJBMmnT//v3Q0NDmex3Ko7Qx9ipo9WoCQMaNk3P3/fvJ11+TDRvIiROkqqpZK5PBqFGjAODgwYPKKgC9x4MHhMUiOjryvUkOHDjAYrG4XG737t0BYNw73q75+fnnzp1bu3YtnXLe19dXsaJVBXa6N5KVBSwWBAbKufuJE7BxI+zcCUOHgtyTuimsrq4OANRxRQOVZW8PffpAdTUcOiTrrjdu3JgyZQohxMvL686dOxYWFuHh4W/d0tzcfODAgaamppaWltra2gkJCTk5OQqXrnwYWAAA0NAAmzaBtTWcOQPDhsnZyO3bAABlZQAAzbKSilxoYOEwH5U2fToAwPHjMu1UWFj4ySefCASC3r17JyQkaGhoHDlyxMLCoold1q9fHxcX16NHD0JI2xiqioEFAACrVoGnJ4SEQEyMnPduRCK4dw9YLHj8GACU2IeFZ1gMMG4cHDkCAQFw8CCIxdLs0dDQMG7cuKdPnzo7O9+4cYPFYv39998eHh5N70VXyqiurgaA6OhosXTHUmUYWAAA8PgxuLoClwvdu8OTJ/K0cP8+1NRAhw7A54OVFRgZNXeJ0sLAYgBdXYiNhY8+gvbt4ZdfpNnjm2++uXLlioWFRUFBQX19/ffffy/N2ObAwEBdXd3bt29bW1s/fvz44sWLCpeuZBhYAACgrw8vXgAAPHoE5uZyNFD44EFd586Enp8r73oQAExMort1S1NXd1JiDeg96utBWxvs7MDHBwoLISQEAgJg/nyIioKEBHhjIOiaNWv++usvTU1NLS2tkpKSgICA5cuXS3McbW3tsWPHAkCnTp1AkfUyVAYOawAAgEWLIDwcOBwYPBh0dCA/H5rsGnjTn6mpv2VnD+zQwdTBYYaf36AWqlMK2dndHjzAVYRVG48HAgEAgEgEhMClS3DtGpw5Q795tHfvLx89oqOonJycBALBDz/8wGKxevTokZyc7ODgsHfvXo7UM5ROnz5969atDx48YLPZhw4dKi8v19fXb6GX1RqUfZtS9ezaRQwMyNKlMu00bNgwAPD09ASA3bt3t1Bp0ujYkQCQvDwlloCkcOgQ+fFHsnAhuX2b5OaSo0dJWBiZOpW4u6/092/8F8pms9lsNj1RMjAwePDggayHomtB9erVCwCioqJa4tW0Gpyt4Q3du8Pdu6ChAVlZ0LGjlDt17NjxyZMnVlZWT58+zcjIcHR0bNEam2BuDi9eQEEByLruFFIdjx8/zsrKysjIuHfv3sGDB8vKyk6dOnX//n0HBwf/f8eZNH799dclS5Z4eXklJyd7e3snJSW1RM2tRNmJqXpKSkifPkRLi/TqRcRiafYoKytjsViamposFktdXb2+vr6la2yCvj4BIKWlSiwBNSfaXTVx4kS5W3j27BmHw9HQ0GjXrh0AZGZmNmN5rQw73d9gaAinToGNDdy7dy8o6L2b5+bm/vrrr4SQ2tpaQkjXrl3V1NRaocy34vNhzhwICVHkuVqkWqZNm8bhcA4fPlxGh/jJztLScuDAgbW1tc7OzgAQHR3drAW2LmUnpqqqrb1pb29vYHD9+vU3v1lSUrJnz54ZM2ZYWlpKfpJsNhsA2rVrd/nyZTkOKBQKo6Kifv/9d4FAIHfV06aRmBhCCJk3T+42kMoZPHgwAGzcuFHuFnbv3u3g4PDTTz8BgJ6e3siRI3/44YcdO3akpaXx+fxmLLWlYWC9k1AonDBhgrW1NT11EgqFaWlpYWFhgwYNanwOZWJiEhgYGBkZmZCQ4OvrS5MrODhYpgvDs2fPuri48Hg8LpfbtWvX8+fPy1fzt9+S+fNJaSkGVpuya9cuAPD09JS7BZFIRAhZsGABALx2h9HT0/nOHZuHDz9++nThy5dbqquThcKyJ0/m5Ocvq6192Hwvonlgp/t7zJkz5/bt22w2++bNm+Xl5fSL6urqPj4+AQEBAQEBLi4ukomHhELhsmXLfvvtN5FINH36ltDQGe/ttU9KSvruu+/oxCDt27cXi8VFRUUsFmvGjBkrV640knoA6u3bcP063L0L334Lf/4JtbUwejS4uYGWlpwvHKmO2tpaCwuLsrKy27dv02ee5bBjx44pU6aoqalt2rRJW1ubrpeRmZnp7m4yZ86lxltaWa3m86936rSFxeI1Q/XNS9mJqerS09PZbDaNJFtb26CgoH379lVUVDSxy6VLlwYP/ozNFunrk3373rlZZiaZMKFCV1cPAExNTdeuXVtfX19fXx8WFkafBDQwMIiIiKCfjU148oQEBREOh2hokC++IISQtWvJtGlER4d06EAOHJDnVSNV89VXXwHAokWL5Ns9LS1NU1MTACIjI1/7lljcUFOTVVZ2sKDg19zcTzMze1VXX62svJCXN4XPT1W48GbGsDMssVh85MgRPT29ioqKmpoagUBQVlYmEAgEAkFlZWV1dbVAIKiurn7+/LmGhsbq1as/+ugjBY+4YMGC8PBwJyenY8eO2djYSLlXRQV89RXs2QMAMHkybNgAOjr/++7z5/Dzz7BtGwiF4O8f7uVVvnDhQroAFJWTk/PNN9+cPn0aAPr27btx40bntz2cWFoq/u039vr1UFsL6urw9dfw+efg7AxCIVy+DIsWwY0bAACjR8OaNdChg9w/A6R8KSkpXl5eZmZmT58+lfWuTkFBgYeHx/Pnz+fMmfPnn3++d3uxWNDQUFhTc7uhocDE5Ct5S24Zyk5M2XTr1k3Kp+Q4HI6Dg4NQKFTkcHw+39DQEABSU+X5qNm4kWhqEgAyaBC5coUQQpKTyZIlREuLABA1NTJrFnnx4p27x8bGdujQAQC4XG5wcHBVo+mT+Hx+WFiYrW1vXV0xi0UCA0l29uu7NzSQ8HCiq0sAiLl5RUTE2oaGBjleBVIR9GLw2LFjMu1VU1NDxzP7+vrW1dVJs4tIVF1cvK24eGtl5bmGhmK5im0pLR5YQqHw1KlTzdIUXXeLy+UOGDBg1KhRkyZNCgoKWrRoUWho6MqVKyMjI2NiYg4ePHj27NmjR4+am5sDwKpVqxQ54saNGwHAx8dH7hYyM4m7O9m2jbi4kIICEhJCPv+cAJBhw4g0I5bLy8uDg4NpL6mlpeW+ffuEQuHmzZsldye/+urSjRtNtZCfTyZPJv36BQOAi4tLYmKi3K8FKdfvv/8OAKNHjyaEREZG7tq168aNGzU1NU3vNWPGDADo1KnTy5cvZTrco0cz09KgsDBC/opbQMsGlkgk6tu3L4vFkvu2l4RYLKaTaYwePfrSpUtNbHnnzp2uXbvSBxG0tLSy3zz3kBr9TFPwURuxmFy/Tv78k8ydS0JCSF4eSUmRrYVr1665ubnRhNL6pxfd3d393LlzUrYQFxdna2sLAGw2OygoqKSkROaXgZTtxYsXampqPB6vqKio8d0Yc3PzQYMGBQcHR0ZGxsfHV1ZWSnZZuXIlAOjo6Ny+fVvWw5WWHkhLg4yM7s36IhTV4mdYv/76KwDY2NhUV1cr0s6BAwcAwMzMTF1dncPh5L37Ybni4mJTU1MA8Pb2BoD+/fuLpRuw/poLFy7Qd4OUJ9JNuH6d7NhBtm4lffqQ930ivp1IJIqMjFRXVzcxMenYsWNkZOR7O+NfIxAIlixZwuPxAOD777+XpwikbPS5HBsbG19fX09PTxsbm7f2Z9nb24tEotOnT3M4HBaLta+JWz/vJhbX3bxpkpYGfH6T5/Ctq8UDq6GhgZ7shISEyN2ISCSiU1P7+PgAwOQQZ3XBAAAgAElEQVTJk5vePiYmBgAMDAyMjY0BYNu2bXIclE6O/ssvv8hV8r9kZJAjR4hYTIYPJ7W18rfz8OHDY8eOKfLoz7179yZMmND0XU6kstavX//aKCoul2tlZdWjRw8fHx8vL6+uXbtqaWk5OTllZWXRWRlWrFgh9+GePAlOS4MnT4Kb8SUoqDU63VNTUzkcDpfLzWu6u+Xd6MKTlpaWXC5XTU1Nmqu84cOHA4CXlxcAGBoavmiic/ttHj9+zOVyeTxeQUGBfDW/5tgxMmwYUWCsMkKEEHLx4sXNmzf/8MMPI0eOtLe353JfnyGKxWJZW1vTj+rAwED5Li8oPv/GjRsmBw58rPhFRnNppbuEa5YsKfD0JL16EdlvVAmFQjo/Br3ECwoKkmavx48f04ECtOdrwoQJMh00JCQEACZNmiRrte+yYQMBIF9+2VztIUQIIfX19Tk5ObGxsWFhYZMnT3Zzc6PjrTp06GBoaKhgPwwhxNPTDQAOqMxwvtYa1sDnEzs7AkDCwmTdNSoqit7mYLPZPB6vid6r16xZs4Z2e+no6ADAkSNHpNyxtraW9oIlJyfLWu27bN9OAEjzBSBCb9fQ0JCRkUHPsNLS0hRsjf4RDR06tFlqU1wrjsM6f56wWERdndy7J/1OdXV1dLhm7969ASA4WIbLaZFIRPu8+vbtCwAWFhbl5eXS7LhlyxYAcHV1lf5Y73XoEAEgn3zSjE0i9E7z588HgNmzZyvYTnFxsbq6OpfLff78ebMUpqDWHTg6ZQoBIP36STnPFCGEDszt3LkznXBK1p/avXv31NXV2Ww2HSku5e+Pbrx9+3aZjtW0M2cIABk4sBmbROid7ty5Q3tvaxW5y0MIIWTMmDEAMG3atOzsbFnvTTe71p3TffVqSEqCwEAgRJoZm2pqauhAknbt2hFCgoODm16F7U0ODg4hISHLli0TCARqamrr1q07fPiwsbEx/S3W1tYCgEgkYrFYPB6PEKKmpiYWi3Nycng8XqDcK6q+jb5+pY9Pibk5H0BpK4ChD4ezs7O7u3taWtqxY3Fjx45UpCnahb9t27Zt27bxeLzOnTs7OTnZ2to6Ojo6OTk5OTm15iKYrf4soVAIe/ZAVhbU1sLIkdC3LwBAeTkIBCAQlFVV3a6srKmpqaqqqqysPHbs2NGjRx0cHLKysnR0dHJzc01MTGQ9YF1d3ejRo+fNm/f555/T57A4HA4hhMVisVgsDQ0NXV1dc3Pzzp07Ozs7u7q62tnZ+fn55efn7969e8KECc31uu/cuePi4uLs7Ew/+pDMamuB/mHU1ICmJgBAeTm0a4dzFb7L1q2J69Z1MzMzOHlS/h9RQkLCwIED6+vru3fv/vLlyxd0calG1NTU7O3t6ZIZmpqas2fPbvxUbPNTwlndzJmEECIWk5kzyccfEwDJf0c8PV8rz8jIaPHixStWrPjjjz8UOSadIobD4UyZMmXbtm2pqalFRUXv2njz5s0AYGNjo/jptERubi4AdOrUqbka/ODMn0/ozfXZs0ldHfniC7JuHZkxg6hG34oKKikh6uqEzSZPnsjZwuPHj+ndp4ULF+7ZswcAeDyera2tt7d3v379vL29bW1tG48LU1NTs7KyatHLxlZf5kskerUEFYsFXC7weAAA7dqBlhZoappbWfmqq2tpaenp6eno6Dx48CAxMTEmJubu3bs6jac7kN3ixYvFYvG33377xx9/vHfjadOmhYeHZ2RkREVFzZkzR5HjStD66Rq8SE6XLgGXC9XVcOECBATAmDHw8CHExACHA1ZW4OAADg6v3lEIwNAQRoyA/fth5074/nuZd6+pqRkzZkxRUdHgwYPDwsJiYmLMzc0LCgpyc3Pppy9FI8zQ0NDa2vro0aNPnz69evUqvdnVIlouC99p9mySnExiY8l//kOaHJAmFArd3d0BYO7cuYocMDU1lcViaWtrFxYWSrnL0aNHAcDWtkNdXfMMChcIBACgoaHRLK19iObPJ1eukKQkMn06OXaMxMYSQsijRyQ0lLDZr07SuVxib38uOJjO/5uens6s+X+b3cmTBIB06SL9Xa5XxGIx7Q/p0qVLWVmZ5Ovl5eVpaWnR0dEhISGBgYGOjo50ZnAAWL9+/ffffw8AM+klVMtQRmDV15Njx0iTDzBL3Lp1S01Njc1mKzLNwKBBgwBg8eLFMu21adPU69ctnz+XbYHCd8nLy+NyuVwu97PPPouNjVXuyjqM1PiSsLqaTJtG4uLIrFkkLY388AMZOZLY2xMOhwD8+M+D4gDAZrN79ep1/PhxZVevHEIhsbQkbDaR9dnnZcuWAYCuru7du3eb3rKqqio1NTU6Ovrhw4f3799nsVg6OjqNp0JqXgyYD4vGtrOzs3zPB8THxwNAu3btZJ2ioLo6OS2Ndf26dn29ok/npKWltf/3MoGmpqazZs26dOmS0u8TM8bz56/OE2inFZ9PUlNfX86stpbcunXqwIGffvopMDDQycmJPstlZmamhIJVw759r2adTUqSdpcjR47Q1VtlnXuLENKnTx9o7iFBjTEgsGprax0cHABg2bJlcuzer18/AFi+fLkc+2Znj0pLg8ePv5ZjX4nTp0/r6ekBwMCBAyMjI/38/OhML5SxsXFQUFB8fLwiz3yhd6mqqjIzMwOAq1evKrsW5YiPJ25u5OVLadclyczMpMsX/v7773Ic7q+//gKA/v37y7GvNBgQWISQS5cu0TVKMzIyZNoxLi6OhkLjSYKkV1OTlZ7OTU/n1tTIufbkli1b6AQgU6dOra+vnz59Os0pOzu7fv36derUSZJcHTp0CA4OxuRqdt999x1I/Qhq2xMfTyIjybffknnzyKpVxMODTJ1KwsJIbCzJziZC4b/ebCUlJZ07dwaAzz77TL7DVVRUaGlpsVisnJyc5ij/dcwILELIzJkzAcDLy0umayg6OawiQyIePfrizp3OVVUJsu4oFotDQ0NpGIWEhNAYio+P//LLL+lzXlSXLl38/Pwar29oZGQkay6jJtCOFT09PcU74Pl8fnh4+Oeffx4bG6sKw76lER9PDh4kkZGkTx8ycWLjQURETa1eV1e3Z8+eEydOXLFixd69e+kFnaurqyI/q8mTJwPAzz//3IyvQoIxi1BUVFQ4OTk9f/58w4YNX3/99blz53Jzc8vKyuhSFBUVFZIVKCoqKgQCQUxMTF5e3ujRo83NzbOzs7XkXe5KJKpgsdQKCpax2drGxjPU1Czfvw9AfX39559/HhMTw+Vy161b9+WXXzb+rlAoPH/+/N69e48cOSJZztfZ2dnCwiItLa2iosLd3T05OVm+gtGbvL29k5OTY2JiJk2apEg7s2bN2rt3b2lpKf2/Sh/2/V537kBdHZSUwODBMGIEbN8OGRlw7x7cuwcZGVBV9TA5uUvj7Q0MDDgczs2bN42MjOR+IRcuXBg4cGCnTp1ycnIk9xCbTUukYAuhk47q6ek9efLkk08+afp1nT17tkePHgCwbt06BY9bU3P/2bPv6L+rqq4IhWVNb19ZWRkQEAAAOjo6J06caGJLoVB49uzZyZMn006u9u3bX716FQAcHBwUrBk1FhkZCQADFXuSk84awuPxAgICBg8ebGVl9ea7jsfjOTk5BQYGjhs37tmzZ81Vv3ySkoi6Opk0iTSxEktFRUVKSsrff/+9aNEiOg13z549hwwZ0rlzZ7m7JsRiMe2lvXDhgpylvxtjzrCo0aNHHz582NHR0c3NLTc3lz5kQwhhsVh1dXUikUgkEtXW1tbW1lZUVJSXl5ubm+fl5fEUHUxIiou3VFdfMTGZlZXlDQA8nrWmpoumZnc+31Mo7NKlSxfJPGrPnz8fOnTorVu3zM3Njx8/7urqKs0Bamtr4+LiKioqPv30Uz09vYaGhvLy8pZ9xOFDUllZaW5uXlNTk5OTI/1abY0lJSUNGPD/7N13XFfV/wfw12ewEQEFFXEhDlBzIG5xpqlo6TfNhmnubdusDEe/HOUoV/a1cqWpudCcqKkppuAExIEDB6AM2fPzOb8/rvG1IX4G8uHg6/nw8X0Q3nPum6/w4tx7zzm3c25u7ooVK4YNG1bY7ZUrV65duxYZGRkVFRUZGRkdHa3X6wFYW1s3btz4jz/+UFlo5VBcHPz9cecOJk3CwoUGNcnIyKhSpUpmZqanp+etW7cOHTpk8lvypk2bNn369EGDBq1evdq0Hh6r2CPwqbpz546dnZ2B40wrK6tZs2aZf1KdLluny37wYOfdu19cvOh/+rR9WBiUP++/3xGAjY1Ns2bNhgwZ8t577ynTFxo2bBhr6oII5RfdEeW9YFRMlItB0x40x8bmVq1aC8B7771X9JGZmZnh4eGrV69WhsxFvy3l6cnOFi1aPNwdxKgdMwcPHgwgICAAwJtvvmlyAdevX1er1XZ2do9OOi0WkgWWEGLfvn1+fn6DBw8eM2bM5MmTP//88/nz5y9fvvznn38ODg4OCQkJCwuLioq6du1aYmLxvFItP/9efPzc+PivdLpsIYReX5CdfSk5edOdO1Nnzhzr5eX16G9RBweHgIAAc/6dRo4cCWDBggXFUjwp9u/fD6BWrVrGXulkZoqmTcVzzz14+eUxhr/mcurUqQAGDx5sdKHF4YMPggFRu7Yw9u1Iv/32G4DKlSur1WoHBwcT9v7PyckZNGhQdHS0j48PgA8//NDYHoomX2CVQmlpaceOHfv222+V3W+mTp06aNAgk4dIyg0Xk58r07/S6/XKxaBRox69Xgwc+HB1i1G/g65du6asBjNtPs3f5OXlXTR420tlR6YuXUZfuGD0ifR6fe3atQEo939XrFhhbA/KxB0fHx9HR0etVrt06VKjiygSA6s4TZw4sXBEbfLrdsLCwgD4+voWb21kwqhn5kwBiHLlxJMWqPwLZcby999/b3TLvwoLCytXrpxarS5fvryfn9+gQYNmz569cePGiIiIf86r2LNnj/Jqr02bNpl2OmVRjvL+hHbt2hnVdv78+QDs7OyUyVxdu3Yt9iVoDKzitHLlSvz5qp4+ffqY1klubq61tbVarX56C7KeTcqox8bGZt26dTdu3Hji8bGxwsZGaDSiyCe9j7V27eYOHT7s1++KKY3/9ODBA+Xa6l/fP+jo6Ni8efPBgwfPnj07ODh4+/bt5r/a69atWxqNxs7OTtlfxPCR3f79+7VarUqlUr7/69evb+CO5EZhYBUnZXM+5YG3p6enyf0ob3L8/XejZ6tS0by9vQv3KXJ0dPT39x82bEThtG9lvHLnjti7VwghDhwQR44Ik2fFZGSIcuUEIKKjTexBp9MFBgYqw+3U1NTk5OSjR48uX7588uTJgYGBjy7wetSAAQPMXCzRpUsX/PkO0I8//tiQJteuXVOmQyuXF66urleumJXUj8PAKk4FBQUODg7KvGoAJr/TUJnW//XXXxdveRQXFzdixIhOnTop+9IB8PZuUDjz29ZWNGki5swRzZqJu3fFO+8YvSvL37z1lgCEkbuE/I+yqKhChQqPexFnUlKSEmFvv/12t27dnJ2d+/TpY/6EfuU9xA0aNABQtWrVJz5qSEtLUw5u0aKFSqXSaDS7du0ys4bHYWAVM+XiX3lPtcn/bMuWLTPzuTI9UWJi4pEjR1av3j9pknj+eVGt2sPYmj1bfPedmDixGALryBEBiKpVi5q6+TgbN25UqVRWVlZPY/pl0bKyspRLS2UQt2fPniIO1ul0ykuLa9Wqpawneaq/aBlYxWz8+PEA2rdvD1O3iIiLizt58qTyK67Yy6MipKaKP/4Qe/eKjRvFqlXCz8/cwBJC1KsngIfXmIY7ffq08sO/zELvClfm1rzwwguzZs0q+kJB2f3JxcVFuRPytGdyFPdKn2eeMu0zPz8fQHh4uFFtdTrd+PHjmzVrpjwVioqKun///lOpkv6NkxNatECVKnBxwaBBqFsXeXnm9jllCmbPRuvWSEgwtLf4+Pg+ffpkZWW99dZbo0ePNrcCkwwZMgTAgQMH7t69u23btsOHDycmJv7zsMjIyLlz51pZWVWvXv3WrVutW7dWJuU8RU81Dp9B58+fB1C9enUA1apVM7xhRkaGMrS2tbVVnrPY2dmZtmchmS8kRDz3nJg82dx+7twRXl4iMVHMny8MeDIpcnNzleF5u3btLPuv7+3t/bdHky4uLoXzKoKDg2NiYvR6/ebNm5Ub7R4eHiXwslXJ1hKWfjqdzsnJKTs7u1y5cmlpaQkJCYX3d4uQlJTUp0+f48ePu7i4eHp6XrhwwdXVdcmSJcX4njEyyvHjaNsWHh6IjcUj74Ux2t27WLQI+fmoWhXVquHAAfj6wscHvr7413dsjhgxYsWKFTVq1Dh58qQh3zlPT1ZW1qpVqzIyMi5evKgsk0xLS/vbMeXLl7e3t4+Li7Ozszt69KjfI5tTPyUl/tacsk6j0Tz33HMnTpyoWbPm+fPnz549261bt6KbXL16tWfPnleuXPH09NRqtRcuXKhVq9auXbuUfVbJItq0Qf36iI7Gvn3o0cOsripWhKMjDh5EXBy+/fZ/n3d2RocO77q5pdevX79Bgwb169ffvHnzihUr7OzsNm/ebNm0AmBvbz9mzJhHP5OSklK4zDsqKioiIiI+Pj41NVWtVn/xxRclkFYALwmfgnHjxgEYOHDgzZs3n3hwaGio8nZYHx+fChUqAPD394+Pjy+BOqlos2YJQAwYYHoPWVnizh3x1VdCpxMtWog9e8SCBWLkSNGunXB1FVqtsLb+y8vrzJykXvISEhJWrFhRkvtNMrCK30cffaTsJ+Hr6xsUFFTEXrGbN2+2s7MD0KJFC+WD7t27F8vqMzLf7dtCoxHly2cnJpoysyk9XTRqJCZMEMq8qOxs8beFNAkJBQcPHlyyZMnYsWM7d+5cuXLlatWqvfrqq8VRe5nFwCp+eXl57du3d3BwUH5tqtXq9u3bL168+G+Ph+fPn6/kWrt27ZQPhg8fnm/UbiD0lI0Zs9TZ2WXRokXGNtTpxIsvCkD4+grDV1jx5W9PxMB6WrKzs4ODgwcNGlS4FkStVrdt23bhwoXKFd+KFStUKpWyAEKlUgUFBVm6ZPq7DRs2APDz8zO24SefCEC4uoqns0Dl2cXAeurS09PXrVv30ksvFW6SrdVqu3fv/s033yjPg21sbH766SdLl0n/Ijc3V1kid/bsWcNbbdt2T6USWq3Yv//plfaMYmCVnMzMzI0bNwYGBhZu2axWq11dXQ8fPmzp0uixlEco77zzjoHHnzlzxsHBsWPHfV9/zde1FT/Ow7KAlJSUrVu3zpkzx9HR8auvvurUqZOlK6LHCg8Pb968uVar7dixo6+vr6+vr4+Pj6+v76PvaiuUlJTUokWLa9euDR48WNlriIoXA4voCbp163bgwAHl7RKFXFxcCt/upfyvp6dn9+7df/vtt9atWx86dMjGxsZSBZdhDCyiJ9DpdBEREbdu3YqKioqOjn7ctG9ra+u8vDxPT89Tp04p7yKhYsfAIjLFv077rlWr1saNG5s3b27p6sosBhZR8bh06VKNGjVK1Zufyx4GFhFJg/thEZE0GFhEJA0GFhFJg4FFRNJgYBGRNBhYRCQNBhYRSYOBRUTSYGARkTQYWEQkDQYWEUmDgUVE0mBgEZE0GFhEJA0GFhFJg4FFRNJgYBGRNBhYRCQNBhYRSYOBRUTSYGARkTQYWEQkDQYWEUmDgUVE0mBgEZE0GFhEJA0GFhFJg4FFRNJgYBGRNBhYRCQNBhYRSYOBRUTSYGARkTQYWEQkDQYWEUmDgUVE0mBgEZE0GFhEJA0GFhFJg4FFRNJgYBGRNBhYRCQNBhYRSYOBRUTSYGARkTQYWEQkDQYWEUmDgUVE0mBgEZE0GFhEJA0GFhFJg4FFRNJgYBGRNBhYRCQNBhYRSYOBRUTSYGARkTQYWEQkDQYWEUmDgUVE0mBgEZE0GFhEJA0GFhFJg4FFRNJgYBGRNBhYRCQNBhYRSYOBRUTSYGARkTQYWEQkDQYWEUmDgUVE0mBgEZE0GFhEJA0GFhFJg4FFRNJgYBGRNBhYRCQNBhYRSYOBRUTSYGARkTQYWEQkDQYWEUmDgUVE0mBgEZE0GFhEJA0GFhFJg4FFRNJgYBGRNBhYRCQNBhYRSYOBRUTSYGARkTQYWEQkDQYWEUmDgUVE0mBgEZE0GFhEJA0GFhFJg4FFRNJgYBGRNBhYRCQNBhYRSYOBRUTSYGARkTQYWEQkDQYWEUmDgUVE0mBgEZE0GFhEJA0GFhFJg4FFRNJgYBGRNBhYRCQNBhYRSYOBRUTSYGARkTQYWEQkDQYWEUmDgUVE0mBgEZE0GFhEJA0GFhFJg4FFRNJgYBGRNLSWLoCo7Jg1a1ZsbGynTp06duzo7u5u6XLKIJUQwtI1EJUC27fj9Gnk5GD0aNSqZWzr7OzsCRMm/PDDD46Ojunp6SqVqkGDBp06deratU+7dl1dXZ9Gxc8iBhYRUFCAceOwfDmysvDhh1i8GMnJMDhmIiMj+/fvf/HiRUdHR39/fysrq2PHjmVmZgJo33740aP/9fJC164P/4SEoG1beHhgxw707v00v6iyiPewLCNHnwPgfPZ5SxdCAIC0NFSsCAD29igowO+/w8MDo0YhPv6JTdeuXduyZcuLFy/Wr18/NDT04MGDe/fuTU5OPnr06IwZM7y9X7W1xbVr+O47DBgAd3fs34+vvgKAAwee8hdVFnGEVdLuF9z/8M6H9W3rV7OqFp4VPs9znqUrIgDAm29i0SJcuYLdu3HlCtauhRAoVw4TJ+K99+Di8s8WOTk5kydP/uabbwAMGjRo2bJlDg4O/zysoADnziEkBCEhSEpC587w84OzM/buxcKFxVD4vn37srKyKlWqZG1tDcDFxQWAtbW1Uoyjo6OVlVUxnKaUEFSyvk74+nTmaeXjd2+9a9li6H/i4sSXX4qVK8XevQIQtWuLZs0EIIC8unVnTJ+empr66OGXL19u3LgxAFtb24ULFxp4koIC8d57QggxZoyYMKEYqn799dcN+TFXqVTlypWbUCyntCgGVkmbGz83Ojta+ZiBVRoFB4vq1ZWoEvXrixYt1gcEAHB1dQ0KClJia8uWLc7OzgDq1q179uxZo7r/9lshhLh4UcyeLXJzzar02rVrdnZ2AHx8fHx9fX18fOrXr+/p6VmtWrVKlSo5Ozs7OztrtQ9nAqjVarVafeHCBbNOaWkMrJJ2KefSiJsjDqQdOJR2iIFVSuXkiEWLhIeHAPKrVvVv3Pi5555Tfuzd3Nw6duyofNy3b9+UlBQTur97V3z+uXBxET/8YFaZvXv3BvDGG2+sW7eu6BHWyJEjhw0bBqBXr15mndLSGFgl6nLO5a/iv4rJiTmSfiS5IPlG7g1LV0SPl5Ul5s1b+cILys98kyZNCmPLxsZmyZIlpvW6YYOwthatWwtANGwo9HoTq9uyZQsAJyenu3fv7tu3r2PHjn5+fn5+fj4+Pl5eXl5eXhUqVHBxcSlXrhyACRMm3L9/v3z58gBCQkJMPGUpwMAqUSNvjkQ4xseOt3QhZKj09PQvvvjC9c8pDlZWVnZ2dqGhoSZ3ePu2sLYWGo0ygBO7d5vSSWZmZs2aNQEYlZuff/45AH9/f73JMWlppTewPvlECCEiI8W6dQ8/s2OHmDJFCCFmzLBYVeZIyE+wO2OnDldHZUdZuhYyTnp6+uzZs5UbRiNHjjSzt0GDBCACAgQgunY1pYcPP/wQgJ+fX0FBgeGtsrKyqlWrBuDnn3825aylQOmdhxUf//BPZubDz2RkID4eYWFISrJoZaZadG9Rtj77RecXfWx9LF0LGcfR0XHy5MmffPIJAHt7ezN7e+89ADhzBuXK6W7cyD1//rpRzSMjIxcsWKBWq5csWaLRaAxvaGdn99lnnwGYMmVKbm6uUSctJUpvYN25g19/xdGjf/nkyJFYvhx6vYVqMkNmQeayxGUA3nN/z9K1kImUJ242NjZm9tO4MYYNu1G9+tA2bYbExNh/9VWQ4W2FEBMmTMjPzx8zZkzLli2NPfVbb73VoEGD69evL1++3Ni2pUHpDazatTFsGF56CQCuXcPJkwCg0WDoUBw8aNnSTPHjtz9WnVf1tbzX2jq2tXQtZCJlVKLMzzTTyy9HR0b+eO5ciFar+fnnn2/dumVgw9WrVx86dKhSpUozZ8404bwajWbWrFkAZs6cmZqaakIPFmbpa9LHCgsTQoiUFBETI2JjxQ8/iBs3RFKSEEIcPiymTRMXL1q2QCMUFBTUrl0bwNatWy1dC5lu7tzdrVvPX7BgT7H0psw7bd26NYAPP/zQkCbJycnKJhBr1qwx59SdO3cG8Ilyn1gqpTewHnX7tnj0LuGMGQIQzZqZO++uxPz8888A6tatq9PpLF0Lme6DDwQg5s4tnt5++OEHAHXq1AHg4OCwdevW/fv3Hzp0KCwsLCwsLCoqKiYmJiYmJikpKTk5OT09XQgxevRoAAEBAWY+5vvjjz9UKpWdnV1sbGzxfDElRY7A+uUXsXGjyMp6+J/p6aJOHQEIw34tWZ5yr2H58uWWLoTMMmmSAITB63CeICcnp1GjRkFBQd7e3p6enoZcDzk4OFhZWUVFRYWHh5t59pdffhlAv379iuVrKTGyLn4+dQpt20Knw7596NLFAgXExOCDD7B5MxYtwuDBABAXh3v3cOcOEhJEfPyUuLi4hISEu3fvxsfHZ2ZmWllZxcXFKc/FSVJjxuDbb7FsGUaPLrY+Y2JifHx8dDpd27ZtbWxs8vPzMzIyAGRmZubl5QFISUkBoHzewcFBp9P95z//+emnn7Zs2dK3b18Tzrh3795ff/21X79+Xbp0UavV+fn5xfbFlABLJ6bppk8XKpW+T5/FScqdrZJ18aJ44w2xcqWYNk1MmPBw5VnhH2fnvyzud3BwUKvVR44cKagbEfoAACAASURBVPk6qRgNHSoA8f33xdnnm2++CWDo0KGGHNyvXz8A7dq1A1C3bt28vDxjT5edne3t7Q1AWWBUq1Yt40u2JIkDq6BAvPba+wD+85//GHJ8WJhQLtiPHy+Gs1+8KJYvF5MmiUmTxMyZwtFR1K0r2rcXAwaIiRPFvHnf/vjjj7/++uvZs2djY2Nfe+01AJ6ensnJycVwbrKQ118XgDDvfvdfXLp0SavVWllZxcTEGHi8lZWVRqPx8vICsGzZMmPPGBQUBMDb21ur1Wq12jNnzhhftSVJHFhCiNjYWGX3n++f9FsvP18EBYkRI4QQ4u23i+HUSmDFxYmqVUURKZSXl9eyZUutVtugQQMAL7/8cjGcm0rKvn0iPV0IIbZsEefPiz17hBBi+/Zi6/+VV14BMHr0aMObjBkzBkCLFi0AuLu7p6WlGd72ypUrtra2yvbNAN59V76193IHlhBizZo1yjVXeHj4xYsXDx8+vH79+oULF86ZEz14sHjhBdGokahUSajV4tNPxbp1YuPG4gmsJUuEcoX3xx9PeFj50UcfKcMrR0dHmP1AmkrSjBkiPl4IIcaPF5s2iS5dRGJi8Xz/CCEiIiLUarWNjY1Rj+oSEhKU9cyNGjUCMH36dMPb9uzZE0Dbtm0BVKlS5cGDB8ZXbWHSB5YQYuDAgf+8N9ex48FHbyqp1eLdd0Vqqhg/Xpi9FExcvizUauHoKIYMEadPP+Hg/Px85SmhMuPG0dHx8uXL5lZAJWLGDDFlivj8cxEYKDZtEtu2iffeK7bAUm6ZT5w40diGymVdgwYNVCqVo6NjXFycIa02bNgAwMXFRVnIvWnTJuNLtryyEFiLFy8GYGVlVaNGjUaNGrVo0aJ9+/aBgYvatBHNmglvb1Gxojh2TCxcKNLTxfXrYtgwcf++WWccNUoAom1bAYgWLZ58/JUrV5Tfiq1atQLQpk2b/Px8syqgEvG3EdaxY2LZMtGpk7h9W1y/blbP4eHhykyo27dvG9s2PT29cuXKAPz9/QGMHTv2iU3S0tKqVq2qfO8B6Natm0lVW570gaXX6319fQH89NNPytMTRaNGox4dYW3Z8r8mK1eKcuVEcLCJZ0xIEHZ2QqV6uC3lL78Y1Oq7774D4OTk5OHhAWDatGkmnp5K0IYNQrlsWr5chIaK6Gih04kPPhAtWogKFcThw6b3rFydffDBB6Y1X7p0KYCaNWsq986jop6w/8c777wDwMfHR6VS2djYREdHm3Zei5M+sIKDg5U7RHl5eRMnTmzfvv2AAQMmTpw4b94PK1eKXbvEuXMiLk48OsP8q68EINzcxN27ppxx6lQBCH9/AQgvL2H49h4DBgxQbj1oNBqtVnvcgKeV9+6JBQuEEOLXX8WtW2LnTiGECA0Vhj1ToqciNVV07y4AYWNj4hPDkydPKldzCQkJptVQUFDg4+NTeEOq6Ic558+fV54t1q1b19jbXqWN9IHVvn17AAuUH2vD6PWiZ08BiG7djN7vMTMzs127j/z9E3r0OFa+vN6oXSeTk5OV3YiUmmvVqvW39xoUys4WN2+K48dFaKho1UocPSo+/1ycOye++EIIIdauFWbsH0fFID9fjB8vAKFSiU8+EcYulOnatSvMXsq3efNmABUrVnRzcwsKCiqihq+//lqj0Sjfdd7e3tnZ2eac17JknemuOHUq/913116+HHT1aqRyk8hAd++icWMkJmLRotzx443YLWTx4sUTJkzw8fG5ePFijRoNo6LO2dsbsePF4cOHO3furFar69atGxUV1aNHj1dffVWZEH/v3j2drs7580FxcUhJeXj8jBlwdcWZM6hWDX374oMPEBCAc+fw7rto1crw09JT8d13GD8ebdvOqlAhfPXq1U/cJ6ugoCAqKmr9+vWzZ892cnK6fv26q3mvhG7Xrt2xY8c6dOgwbtw4W1tbZR1FuXLltFqtSqVSXpNhY2Njb2+/a9euUaNGZWZm/vrrr8rVqKwsnZhmefllAYhPPzXlBva2baJ1682VK3sY/taTwk0XlJudpt2Heu+99wCMHDnS2tq6UqVKj/5bVKnir9xxs7YWnp6iRQsxb55YskSEhwtv77+PsPLzBVdSW9zBg4lK6Pj5+f3z9nlBQUFERMSqVasmTpzYtm3bwkSrWrVq7dq1c3JyzDz7nj17DH/noEqlevHFF808o8VJPMK6dg1160KrxfXrqFLFlB5GjRr13Xff+fr6hoWFGbLKb+PGja+88kq1atXu3LljY2Nz8+ZNNzc3Y0+am5u7b9+++vXr169fX6PR9O3bt2rVqh4eHpUqVfLwqFa5csdKlR6+hBjA/fuIikKHDliyBC++iHPn0KsXTpyAmxsuXUJ0NN5919jzUzG7cuVK7969L1265OHhsWXLFicnp7CwsPDw8LCwsLNnz2YWbpgLAPD29vbx8Tl+/HhSUtIbb7yxevVqlUplztlXrly5aNEiJf6ys7MBpKWl6XQ6vV6vbHeVm5ublZWVm5tbrVq19evXN23a1JzTWZ6lE9N0Y8YIQAwbZnoPmZmZ9evXBzBp0qS//VVOTk5sbGxoaOj27duXLVsWFBQ0atQoZUDUv39/lUpl1Ozkfxo5ciTM2x08PV2sWGFOCVRsEhMTO3ToAEC5CntUrVq1+vfvP3v27JCQEOWdYAcPHmzatKmTkxOAKcpLCshgso6wkpJQowayshARAV9f0/s5ceJE27ZthRABAQHVqlWLi4uLj4+Pj49P+rd94zUajVqt/u9//9usWTNnZ2flDroJ7t27V7NmzZycnMjISOVZjwm++AKtW6NTJ9NaUzHLy8urWbNmenq6ra1tq1atlDdutWzZUtlvr5Ber/fz8zt79myzZs0iIiLy8vIWLVo0fvx4S5UtH0sn5hMoK7ke/aCgQGRlicxMMX++MGDG3BMo06P+uZO/lZVV1apV/f39AwMDhw8f/tlnny1evHjs2LEAypcvf928WYNTp04F8NJLL5lbPZUasbGxykTQH374Ib3wm/Xf3L59W9n9qnXr1iqVSqPRbHl0liAVqbQH1rhxQgih04nCBQwREaJpU5GbK6ZOFY+ZFWAovV6vDHBq1aoFIDAwcO/evRcuXChidowyl6pdu3ZGvV7pUZmZolWr1NatFxw9+ruphVOpM3fuXPy5+qpLly5FH3z+/HnlnaYBAQEA7OzsDJmUR6L0B9bgwWL3brFr118C64MPxJw5xRBY27ZtA+Dp6anRaGxsbO4aMJG0cC7VzJkzTTvpokWGLughiSgPjpX/Xbx48ROPP3jwoPIyC2V6VMWKFS9dulQCdcqu9L41R6HRwM0Nf3sWV78+srJw44a5nX/55ZcAatasqdPp3njjjSoGPGt0cXFZs2aNWq2ePn36iRMnjD2jToeFCwHgo4+ML5dKq5s3ky9ejHZwcLhw4YJarTZkI9BOnTr9+OOPKpXq+PHjLVq0SExM7NGjR0JCQglUKzdLJ+YTPHpJGBUlNmwQZ8+K778X6emiZk2zRli60NDzAQE9fH3t7e1VKlVkZKThbZW5VF5eXkbtRiSE2LBBAKJOHU6hKlPmzhV2dlndu88A0LFjR8MbTp8+HYCdnZ2yQZW/v39GRsbTq7MMKO2BVbhzRny8yMoSBw+KCxeEkhL375v3Y9+3rwB0HTrcat16npGTI3JycpT5LG+99ZZRDTt2FIAwfp9IKtWaN1eWlxY0bRqycuVvRrVVnuS4uroqd+KbNGnylIosG2Sa1nDtGsLCMGBAMfWlzDp1csL9+zh8GAEBRnVw8eLF5s2bZ2VlrV+/fuDAgTk5OfHx8coKmzt37uTlNYqKCoiPR3w84uIwYgQCAtCxI27fxtKl+Owz8GUUZcb166hdGw4OyMuDToe7d/HXmQxPUFBQ0KdPn8OHDy9YsGDMmDF6vT4tLc2odWbPFksnphGiosT+/SIxsTj6enRHK39/0/pYsmQJAGdn55s3b86ZM+fR/1cDAiY8urnNsGHihRfEypXi0iVh1HppKv1mzRKAaN1aAKJrV1N6SE9PDw8P37lzJ4C6desWd4FlitYyMWkSHx+YOsvyr+7dw+rVUKlw+zYAfPihad2MHTt27969wcHBb7zxxtChQ6tUqeLq6mpvb29tbe3g4N+mDfLykJ6OBw+QkIAGDXDuHOrWLY76qTRRHr3k5gJA//6m9ODo6NisWbMhQ4YAGDRoUPGVVgbJdElYbJKTMXcuTpzA4cOoVQtXruAfE0cNdP/+/QYNGqSkpBQUFDz6+Xr1zly61KTwP/380LEjPvgA48ahc2eMHWtW+VRK/PEHhECrVliwAPHx2LwZoaF/f6JtoLy8vMqVK6ekpFy8eFFZLkb/SqYRVvHQ6bBlCxwdMXMmTp5E5compxUANze3Bg0ahIaGqlSqKlWqVK1a1d3d3cPDw9vb0dERVaqgUiV4eMDdHTNnolIldOkCa+ti/GLIks6cwe7d2LABN29i4UL89a6Acfbu3ZuSktKkSROmVdGevcBauhRNm2LoUIweja++gpOTOZ1du3bt6NGjWq325s2bRU/jmjkTAMaMMedsVOqMGIH584uhn40bNwLob9ol5bOktE8cLX6RkWjXDmo1/P1x+bKZnX355Zc6nW7QoEGGTDqlsqdePej1D++Fmiw3N3fHjh1gYBng2QusqlUREwMAV66gRg1zekpKSlqzZo1KpVJ2+Kdnjacn7O3x7ruoXh2//orjx03sZ/fu3ampqX5+fnXq1CnWAsugZ++S8J13MG8eNBq0bGniDdI/rV6dWb16X2/vVF9zNrghaQUGPvygb1907ozy5XHsGOrVM7qfTZs2gcMrwzyTTwmLQ1YWatRAYiJ+/z2zbVsHS5dDlqTToX9/bN2KWrVw/DgqVzaibU5OTqVKldLS0q5evapswE1FePZGWMXkxx+RmAh/fzCtSKPBTz+ha1ccP47AQPz2GxwdH3twZmbm2bNnlT2Ux44de/fu3bS0NH9/f6aVIRhYpijcdGHyZEuXQqWDnR22bUObNsjOzhw+/KO1axdotQ9/uPLz8y9fvhz+p1OnTuXl5Sl/5evre/bsWfB60GC8JDTFxo145RV4eeHyZXNmcVFZExNT0KVL45s3o0aMGPHdd9/t2LFj6tSpkZGRj84rtrKyql27dqVKldRqdWpq6pUrVzIyMs6dO9eoUSMLVi4LBlZR8vNhZQWdDioV1GoAyMmBlRViYvB//4f27TF8uKVLpFImLCysY8eOmZmZM2bMaN68ec+ePTUaTY0aNdzd3dVqdWJi4vXr1/Pz8wuPV6vVer2+U6dOe/bsseas4idhYD1WSgrmz8fMmdi6FeXLo3NnAPjiC+TmYvp0vPMOFiywdIlUKgUHB/fr10+v1zds2LCgoODatWu5ylJDAIBGo6lXr56fn1/z5s39/Pzc3d27dOly69atV155Zd26dWr1szfTyBi8h1WUW7fw+++4ePEvr1nOy0NkpOVqolKvT58+y5YtmzJlSkREhDIgqFKlit+f2rVr5+Li8ujxu3btat++/YYNG2rWrDl79mwLVS0HBlZRhIBOB73+L5+cMAHTp3NDKyrKiBEj3Nzcfv311zfeeKPwLYSP07Bhwy1btvTo0WPOnDkeHh4TJ04ssTqlw0vCx/rbJaFye+HIEYwahdOnMW8e9uyxdIlUhqxfv/71119XqVSbNm3q16+fpcsppRhYj6XTIT4eVaviwQNoNBAC69fjxRdRsSK0Wly/jlq1LF0ilS2ff/751KlT7ezsQkJC2rRpY+lySiMGlqGOH4dej3btLF0HlWnjx49fsmRJhQoVjh07Vs+EZT5lHR9JGCopCffuWboIKuu+/vrrl156KSkpqWfPnnzr1z9xhEVUumRnZ3fp0iU0NLR58+a//fabgwPXfv0PR1hEpYudnd22bdu8vLyU9zBZupzShSMsotLo6tWrtra2yssKqRADi4ikwUtCIpIGA4uIpMHAIiJpMLCISBoMLCKSBgOLiKTBwCIiaTCwiEgaDCwikgYDi4ikwcAiImkwsIhIGgwsIpIGA4uIpMHAIiJpMLCISBoMLCKSBgOLiKTBwCIiaTCwiEgaDCwikgYDi4ikwcAiImkwsIhIGgwsIpIGA4uIpMHAIiJpMLCISBoMLCKSBgOLiKTBwCIiaTCwiEgaDCwikgYDi4ikwcAiImkwsIhIGgwsIpIGA4uIpMHAIiJpMLCISBoMLCKSBgOLiKTBwCIiaTCwiEgaDCwikgYDi4ikwcAiImkwsIhIGgwsIpIGA4uIpMHAIiJpMLCISBoMLCKSBgOLiKTBwCIiaTCwiEgaDCwikgYDi4ikwcAiImkwsIhIGgwsIpIGA4uIpMHAIiJpMLCISBoMLCKSBgOLiKTBwCIiaTCwiEgaDCwikgYDi4ikwcAiImkwsIhIGgwsIpIGA4uIpMHAIiJpMLCISBoMLCKSBgOLiKTBwCIiaTCwiEgaDCwikgYDi4ikwcAiImkwsIhIGgwsIpIGA4uIpMHAIiJpMLCISBoMLCKSBgOLiKTBwCIiaTCwiEgaDCwikgYDi4ikwcAiImkwsIhIGgwsIpIGA4uIpMHAIiJpMLCISBoMLCKSBgOLiKTBwCIiaTCwiEgaDCwikgYDi4ikwcAiImkwsIhIGgwsIpIGA4uIpMHAIiJpMLCISBoMLCKSBgOLiKTBwCIiaTCwiEgaDCwikgYDi4ikwcAiImkwsIhIGgwsIpIGA4uIpMHAIiJpMLCISBoMLCKSBgOLiKTBwCIiaTCwiEgaDCwikobW0gUQkamiovD993ByQtWqGD7c0tWUBAYWkbQWL8bChbC2xoQJyM6GnZ2lC3rqeElIJC29HtbWAODigvR0S1dTEhhYRNJq0ABbtuDKFdy6BXd3S1dTElRCCEvXQETGO34cFy9CpYKtLXr3Rrlyli6oJPAeFpGc1q7FsmUICMC5c9DpMGiQpQsqCbwkJJJTaCgAJCUhNRWVK1u6mhLCS0IiCWVmwtkZKhXUauTnIzkZ5ctbuqaSwBEWkYROnkRBAby9kZsLX99nJK3AwCKSUeqZM0KlQoUKANC6taXLKTkMLCL5vHn4cEVn50nlys3s2PF2hw6WLqfk8B4WkXwqV66ckJBQpUqVuLi4qKgoHx8fS1dUQhhYRJKJiYnx9vauWLFiYmKis7NzUlKSWv2sXCo9K18nUZkRGhoKwMvLC0DLli2fnbQCA8sI164hOtrSRdCzLjU1dc2aNQAuXrwIoFWrVpauqERxprthFi2ClRXs7bFhA4KCLF0NPXPu3cvctu2nrVu3Hjx4MC8vD0BWVpZKpbJWFj8/MxhYhomIwPLlADB6tKVLoWfIjRvYvh07d+LMGfu0tHfz8zM1Gk3Hjh1ffPHF48ePb9q0afr06V5eXgMHDrR0pSVEksC6exerVkGlwrBhiI5G3bqoVAmbN+M//ymhAgofTfAZBT1NPj7YtQu3biEkBNu34/z5h5+3tVUNGTK3dWu73r17V6xYEcCkSZOqVas2f/78119/PSXlwZgxz8SvUkkCKygICxciLw8ff4yGDVGxIipVwm+/lVxgde6Mzz6DnR2aNAGAxYvxyitwcyuhs9Mzo1MnfPklBg6EnR3On4eDAzp1Qv/+eOklODmNffRIlUo1b9686tWrv//++2vWuN68idmzLVV1yZEksLRaODjAweHhAGf5cri5legt8IEDkZ2NggJYWWHSJHzzDTZuREgInrE7CPS02dmhfXts24a2bbFvHzp2hJVVUcdPmjTJ3f2FQYPqhYYiPR2LFqFsPzOU5IvLz0dBAfLyHgbWqFH45BPUr1+iNdjZIT8fHTti3TpUqYKjRzFyZIkWQM+Gl17CjRtQqfD8809IK8Wrr9bbuhV2dli6FC+/jJycp1+i5WimTZtm6RoMUKcOlizBkSMYPx5CoHp1ODkhLg7NmpVoGTY2CA7G2bNwd0duLsLCUL78M7WSi5628HDodHj9ddSrB1tbQ1vVq4d27bB1K86eha0t2raFWo2sLOh00GigUiEry6DsK/3kmen+6qs4exbBwahTx5JlpKejdWtERqJFC5w6ldK0adgXXzzfvXvRjfLzER2NRo1w+zZcXJCQAC8vPHgAvR6uriVTN0kgJQUVKsDWFno9nnsOJ04Yd3139izmz4eHB5yd8dFHeOcduLlhyBB4eGDCBCxa9NTqLkGSXBICuHkT0dFITLRwGeXKYds2uLri5MkTvXt7XrjQ/5VXlCl8RUhPR2Agbt/Gjh24fh2LFwPAyZM4dqwkSiZZhIZCiId7xgBG341q0gSrV0OjQU4OLl9++MmjRxESguTkYi7VUuQJLBcXAEhJsXQdgLc3Nm3a0qlTmx07mvj7p6am9urVK/EfSXrnDvbvx/z5GD4c+/fj1Vf/9xDnzBl8/TW2bSvpwqmUO3EC+PM73ZwZ7G+/jQULHn7s6Ihy5aDRmF1c6SDJU0IAzs4A8OCBpesAAHTunHL9ujh06PTp076+vlFRUb17954+ffrly5cjIiJu3847fvyHR6PV3h7u7mjSBBs2oH17NGqE4cNx8KDl6qdSSQms7GzAvMCys0NgIFasgJsbmjaFhwfWri2eCi2OgWWiYcOGnT59eunSpXfv3tVqtSdOnOj+550slUrt6Ph9hQqqRo3g64tGjdCwIX77DQMH4vvvHzZ3cICNzcORP8krPT19165d3377bWxs7MCBA//v//7P5K70en1Ozm+Ojv5OThvr1m3esuVzgMqEfurVw5o1eOEFLFgAB4eH47WPPza5rlJGSOLcV1/t7NDhyKJFli7kf/Lz87t06QJAo9HY29u3adNm5MiRX3/9dUhISHx87uNaLV8uqlUTsbElWSkVs8TExFWrVgUGBtrY2Cg/R2q1Wq1WLzLj+zMiIgKAp6cnAHd3d5P7CQwUgFi3zuQOSjVpRlh79foPDx/+oEWL9paupJBWq/3mm28aNmyo0WhiY2MrKPvVFkmnw8aNuHULffviyBHY25dAmVRsrl+/vm3btq1btx4/flyn0wHQaDQBAQF9+/Y9c+bMmjVrJkyYcPv27dkmTTlXNo3x9PS8fft2mzZtTKtQCPzxB1B2t02WJrCcnZ0BpJSGm+6P2LlzpxCiT58+hqQVAI0GGzeiVSuEh+PNN7FpE1SmjPqpRF24cGHXrl07duw4fvy4EAKAra1tp06dAgMDBwwYUKVKlZMnT06dOrVVq1ZhYWFz5sxJSEj473//q9Ua98N14sQJAEorkzeNiYnB/ftwd0fNmqZ1UNpJE1guLi4AHph5D0unw7ffIiUFvr7o18/8qtauXQtg8ODBhjdxdcX27WjdGps3Y+HCK++8Y/C0sjNnoNOheXMT6iTTZGRktGnT5sKFC8p/li9fvmfPni+99FKPHj3KPfKm5YyMDJVKFRoa6ufnFxUVtXLlygcPHqxfv97W8Kmff46w7t+/D6C1qQMk5V2Fpo7PZGDpa1JD7d+/H0DDhg3N6mXtWrFnjxBCTJsmLl82s6QzZ267uLi6u7vn5eUZ23b3btGp02yNRvPLL7/8+xEPHojjx8V334lJk8ShQ+Lzz8WGDWLzZvHpp2aWTYb7+eef1Wq1VqsdOXLk7t27c3Mfe2syLCzM3d0dgI+Pj6urK4BOnTqlpqY+8RS5ubl79+4dPny4jY2NVqsNCQlZuHBhRkaGaQVPm3apbt3sOXN0pjUv/aQJrFOnTgFQq9UBAQEXLlwwpYvsbDFlikhOFkKInTvF9u1mljRhgrCxyZkx47xpzefNmwfAzs7u5MmTGRkZp06d+uGHH95///2v33pLVK8ugP/9+fRTMWrUw2ajR5tZNhlu5syZAPr27fvf//735s2bRR8cExNTu3ZtAF5eXpUrVwbg5+eXkJDwrwdnZWUFBwcPGjRIudeBRy4GExMTTS64WbNmAA4fPmxyD6WcNIF1/fr1ihUrqlQqAFWrVh05cqQRv4ViY8XIkcLbW6xaJXbtEkKIoCBx9ao59eTmiooVBSDOnjW9k5EjRwKwsbFRPXIrq6GbmwCEvb2oX1+0aSMCAsSoUWL48IdtRowwp2wySq9evQC0bNkSwI8//vjE4+/evdu4cWPlW7RGjRpKeF195DstKSlp1apV/fv3d3R0LPwX9/X1nTx58oYNG7y9vZUxWqxJT5EzMzO1Wq1WqzV5gFb6SRNYQojc3NylS5d26NBB2cCsdu3ay5Yte0KbuDgxfrywthaAsLIShw6JJUvEzJli61aRkCBeeUXcu2daMVu2CECYeYWam5vbvn17ZeRYt27d1q1bd+jQoXnz5vk+PkKl+t8Iq04dsWmTmDJFTJ0q1qwx65RkML1er3ynValSBUB0dLQhrVJSUtq1awfA2dm5bt26SvM9e/YsX748MDDQ6s8lyGq12s/PLygo6NFu4+LimjRpAsDDw+P8eaNH7r/99psyrDO2oURkCqxCFy9eHDp0aP369e3s7Fq2bBkWFvbPY5KTk6d98omucmUBCLVaDBokYmL+csTLLz+MnPh4E2p48UUBiPnzTfsK/mfDhg3/vLGY0rixsLERTZqI118Xs2aJnTuFEKKgQOTnm3s+Mtjly5cBKHemnJ2d9Xq9gQ0zMzOVoZm9vf1zzz0HoPDuu7W19QsvvLB8+fL4x3zXFeadq6ur8lDScLNmzQIwbtw4o1rJRcrAUuTk5Cxfvrx9+/ZOTk4DBgx48OCB8vmMjIzZs2crTxUPdOwounYVZ878S/uEBNGokQBEvXri9m2jTl1QIPz9hVZrWtb9xdChQ5Xftw0aNBgwYMCMGTN++eWX5MuXRUGBuV2TeVatWgWgRYsWAHr06GFU24KCgqFDh1pbWwcHB5crV87W1jYwMHDdunWF36VFyMnJ6devHwAHB4fdu3cbcrqIiIigoKAKFSpoNJopU6YYVapcJA6sQuHh4b17drD6PgAAIABJREFU965UqdK8efPmzp1bqVIl5bdZ165dT/7xR1Et790TjRsLIK5Vq1u3bhl4um++EXFxIitLrFhhbuVZWVnly5cHYOJjBHqaxowZA0C5Zp8+fbqxzfV6/enTp2/evKkMlwwfoAkhCgoKhg0bpozI1q9f/6/H5Ofnh4SEjBs3TpkcX3jn3sbGZvPmzcZWK4uyEFiKtLS0MWPGKG89atmyZUhIiEHNkpLude7cwNu7Ro0aMX+7ZvyHW7dEbKwYNUq884548EAEBZlbszKNq3Xr1uZ2RE9B06ZNATRo0ADAvn37TOtEueTv2bOnsQ31ev2HH34IQKVSzX/k1oPyeHHkyJGFv5gBVKtWbeTIkdu3b+/bty8AjUbz7bffmlZwKVd2AksIsXfvXuUep1GtHjx4oEwsrl69+pUrV/7xt+Lnn8Ubb4jWrUX16qJfP/Hee2LVKvHLL8UQWM8//zyAsvq9JbWMjAytVmtlZWVra6tSqVJSUkzr5+233wYwY8YM05ovXLhQeYI8adKkjRs3Dho06NEJq15eXhMnTjx69KgyfJsyZQqADh06KH87efJk005ampWpwMrOztZoNFZWVkVM8PtX6enpHTt2BFC5cuXTp0/n5uaGhIQMGzasSZPetrb59vbC0VE4OIhy5YSPj3jvPaHXizffNDewbt++rdFobG1tk5WpYVSaHDp0CED9+vWVQZbJ/Si/C/fv329yD99//71Wq7V/ZN2pr69vUFBQVFTU34786aeflKeQbdu2VWZ1jR8/XqcrU5NIy1RgCSHq1KkDICIiwtiGGRkZjRs3trKyqlKlSu3atWvXrt2pU6fAwH7du98ZN0588YVYu1bs2yfOnhWbNgkhRGSk2L5dLF8uMjNNLFV5pjNgwAAT29PTpPzrKDewhhdOgjNSTk6OjY2NWq025F57EV5++WWVSlW3bt2lS5feuXOniCNDQkKUIZi/v7/yaPK1114zYSVGqSXNWkIDNWjQ4MqVKxEREcqtB8M5ODjUq1fv3LlzPj4+Bw4cKOLIxo0BwNcXq1Zh7lyEhGDDBlPWMK9evRpGrkOkEqMsRc7Pz4cZS5GV0XrDhg2VRysmu3//vhCiZcuW2dnZRb+bvkuXLgcOHOjZs+epU6eee+6569evr1u3LiEhYevWrY9eS0rM0olZzD799FMAU6dONbbh5cuXNRqNtbX1jRs3DGwSHS2cnQVgyrXhH3/8AaBSpUr5nFpVKikRs2rVqtWrVxv+BPlv5s+fD2CEeYsTCgoKHB0dVSqVMlPHkGKioqKqVasGoHbt2src1xYtWiipJzt59nQ3jDKwUvZCM8r06dN1Ot2wYcOUFRWGqFcPGzdCq8WMGfj5Z4OaPHjwICoqCoAyx+eNN94wdhMSKhnVq1cH8OmnnzZv3vzReQNGUTZgMHmApjh//nxGRkb16tVTUlI8PDwMKcbHx+fo0aP16tWLiYmxs7OrXr36yZMnlUW45lRSKlg6MYvZ+fPnAdStW9eoVleuXFEeCV2/ft3YMy5cKADx/PPH/znhPjc3NyIiYuPGjUFBQYGBgV5eXiqVqkaNGrm5ucrvvXPnzhl7OioZ8fHxyg0sFxeXY8eOmdaJMsz5591xoyxZsgSAsqVf//79DW94//59f39/AG5ubsq93Xr16plTSWlQ1gIrLy/P2tpao9FkZWUZ3mrQoEEARhXuiGCkjz/eCcDT0/Pu3bt6vf6jjz4KDAysVauW6h93tuzt7X19fUeNGgWgSZMmpp2OSkZOTs5//vMfAA4ODruUNfOGtdq1a9dvv/12584dAM7OzmY+p1O+Odu2bQtg3rx5RrXNyMh44YUXGjRoEBwcDKB8+fLmVFIalLXAEkL4+voCOH36tIHHX716VRleXbt2zbQz5uXlderUCYCfn19mZmbhRaWVlVXt2rWVJc2tW7euXbu2+s9XzVWrVs3Pz6+MPXIuewoKCoYPHw7A2tp6XZHbpGdmZirbxSg3v55//vlNmzYB6N69u5k1KIMjZSMHY1cXCiFyc3Pj4+NXrFgB4JVXXjGzGIsrg4E1YMAAAGsM3tVgyJAhMPvOaGJiovIt1ahRoxdffLFFixbVq1dX/+NNmLa2tk2bNn3ppZeURzZle9lX2aDX6ydPngxApVL9c4Bz7969FStW9OrV69HNRevXr9+lS5fq1avb2NgEBgaac/bExESVSmVvb688EcrOzjatHyV2FyxYYE4xpUEZDKzp06cD+Oijjww5OCYmRhlePXFdzhNduHDB0dGxcP8QAFqt1svLKzAwcPLkyatWrYqIiCj4c0nzkSNHrK2tVSrV2rVrzTwvlYCFCxcqv36U6eN6vX7hwoUBAQGaP99QqtFoGjVq1L59e2UvGoXyTp2ZM2eafN4dO3YAUPbYatmypcn9NGzYEEBoaKjJPZQSZTCwfvnlFwANGza8cePGE6+5lM0Shg4dWiyn/vXXXzt16vThhx9u2LAhIiKi6Al7yijd1ta2DHwbPQtWr16t/DYaMmRIfn5+8+bNlUhq1qxZQECAm5tbYU65u7sPGjQoODh4xYoVylPgcePGmXb5/8knnwAICAgA8Pbbb5tWeWpqqkajsbGxycnJMa2H0qMMBtaxY8cK5wpYW1t7eXl17dp14sSJy5cv379/f0xMTOG6+Rs3bih36C+bvb+7acaOHQugcuXKpu0wSSVsx44ddnZ2ALp16zZhwoT27ds/unHo31b2KX755RdlnDVs0rA8vdEzzjt37qzcGwXw888/m1b2vn37UFbW2JfBwBJCzJo1q2HDhh4eHvg35cuXb968+auvvlqrVi3lF6al6ix8FWvTpk3L8La2ZcmRI0ecnZ0fvTuprOyLjIx8XJNDhw5Vql7puVPPdbncJa0gzfBz6XQ6JycnAMpbLZ64qfzjKDdJ3nnnHdOalyplLbAOHTr06Ng7JydHmQk1e/bskSNHdu3a9dFbDCqVytra2oS9aItRcnKy8hioX79+Rm2ZRJayc+fOhg0bent7L1q0yMBJ8KdTTrufc0c4WkW3Ssw39B0Tv//+u7W1tbW19aVLl3bs2GFywT169ACwYcMGk3soPcpUYOn1+u++++6JhyUmJoaGhq5cufLll18+ceJECRRWtOjoaOXVKdOmTbN0LfS0xOTEeEd4Ixw+kT6xuQbdAcjLy1OW4zRq1KjoNc9F0Ov1ylt+y8ZthzISWFk6XYbMewrv3btXq9WqVKrHbS9JZcCdvDuNohohHPMS5uXp827n3dYL/fGMoqZW3blzp1GjRgBq1qx56dIlE04aHR0NwMPDw9SqS5cyspZwR1LS1OvXLV2F6bp16zZ37lwhxNChQ5U3MFLZ42Hlcbju4YWeC191eXX4zeF70vasS173S8ovRTXx8Dh8+HCbNm1u3LgREBBw+vRpA8916dKl2bNnR0ZGKusZTX6VdGkj/cpbnRAalaq/m1unP19IKal33nnn0qVLISEhj27VRmWMi8ZlkvukxfcXv+3+dlP7pgBOZz0hg1xcXPbt29e/f//du3d36NBh8+bN3bp1e9zBkZGRmzZt2rlzZ3h4OICMjIy7d+/C7AXYpYesgSUAIUSKTjfq0qV5tWvXsLV1e2TGpqS++eabzMxM5bYFlWEC4p/rTIvg4OCg7OP+448/9u7de82aNcpyDkVBQcGRI0e2bt26ffv2W7duKZ90dXX19fX9/fffjx49amVlVbNmzeL9EixFJYSwdA2m+OLmzco2Ng5qtaNGczM3d+xjZjAQlUJ38u98fOfjXuV7OagdDqYfnOc5z5BWQogPPvhg3rx5Go1myZIlo0aNiouLmzJlys6dO5OSkpRjqlSp4u3tnZqaGhkZqdPpAKjV6o4dO+7bt69wUr7UZA2sObGx3V1dnbXamo+s4SKSRZY+60beDS9rrwx9RkVtRcMbzpkz56OPPgIwefLkzz77zM3NLSsry9PTs0aNGmlpacrm4ABsbGzat28fGBg4YMCAR6fyyE7iwOrs4uKq1da2s7N0LUQlauXKlSNGjCgoKBgwYEB2dva5c+diY2OVv3JycurZs2ffvn179OhRRvZE/itZ72GpVSr/svjvQfREQ4YMcXR0fP311w8ePJiYmAigQoUKPXv27N+/f7du3ZSVQGWVrCOsO7m5Vcv0PwxR0bp27XrgwIHnn3/+s88+a9OmzT/3MiqTZA0somdczZo1b968acILoqTGwCKST1xcnIeHh5OTU0pKyjMytlI8Q18qUZlR+D6eZyqtwMAiktGDyEhHa+uWLVtaupCSJutTQqJn2dD9+4eq1Rnt2lm6kJLGe1hEssnPh7MzsrORmAhXV0tXU6J4SUgkm3PnkJWFevWetbQCA4tIPqGhAFBWNmAwCgOLSDZhYcAzGli8h0Uklbg47NkDtRo9euDGDbRoAQCnTsHf39KVlQSOsIjkkZ6Ojz9G165ITkZYGFavfvj5wg/KOo6wiORx9Chu3cJrryEvD++/j6Qk+PoCwJ07WLrU0sWVBM7DIpJHxYpQtvyPi4ObG/R6fPIJAEyYYNm6SgwvCYnk4eODvDx8/jm++QZjxvxvWsMzM7+Bl4REJA2OsIhIGgwsIpIGA4uIpMHAIiJpMLCISBoMLCKSBgOLiKTBwCIiaTCwiEgaDCwikgYDi4ikwcAiImkwsIhIGgwsIpIGA4uIpMHAIiJpMLCISBoMLCKSBgOLiKTBwCIiaTCwiEgaDCwikgYDi4ikwcAiImkwsIhIGgwsIpIGA4uIpMHAIiJpMLCISBoMLCKSBgOLiKTBwCIiaTCwiEgaDCwikgYDi4ikwcAiImkwsIhIGgwsIpIGA4uIpMHAIiJpMLCISBoMLCKSBgOLiKTBwCIiaTCwiEgaDCwikgYDi4ikwcAiImkwsIhIGgwsIpIGA4uIpMHAIiJpMLCISBoMLCKSBgOLiKTBwCIiaTCwiEgaDCwikgYDi4ikwcAiImkwsIhIGgwsIpIGA4uIpMHAIiJpMLCISBoMLCKSBgOLiKTBwCIiaTCwiEgaDCwikgYDi4ikwcAiImkwsIhIGgwsIpIGA4uIpMHAIiJpMLCISBoMLCKSBgOLiKTBwCIiaTCwiEgaDCwikgYDi4ikwcAiImkwsIhIGgwsIpIGA4uIpMHAIiJpMLCISBoMLCKSBgOLiKTBwCIiaTCwiEgaDCwikgYDi4ikwcAiImkwsIhIGgwsIpIGA4uIpMHAIiJpMLCISBoMLCKSBgOLiKTBwCIiaTCwiEgaDCwikgYDi4ikwcAiImkwsIhIGgwsIpIGA4uIpMHAIiJpMLCISBoMLCKSBgOLiKTBwCIiaTCwiEgaDCwikgYDi4ikwcAiImkwsIhIGgwsIpIGA4uIpMHAIiJpMLCISBoMLCKSBgOLiKTBwCIiaTCwiEgaDCwikgYDi4ikwcAiImkwsIhIGgwsIpIGA4uIpMHAIiJpMLCISBoMLCKSBgOLiKTBwCIiaTCwiEgaDCwikgYDi4ikwcAiImkwsIhIGgwsIpIGA4vIMiKyI35K/ikhP2FN8hpL1yINBhaRBYRlha1KXtXSoWVETsTZrLOWLkcaDCwiCziQfmB0xdHeNt5dynWxdC0yYWARWUAFTYW4/LjC//zlwS/ROdEWrEcWKiGEpWsgeuZk6DM+vvOxq9a1sV3j5feX703f+4LTC7u9d1u6rtKOgUVkYckFyXWi6iQXJO+svbNX+V6GNFmbkJCj11ewsupbseLTLq9U4SUhkYW5al0/rfwpgLdvv50rcg1pEpeXN7xKlWctrcDAIioNJrhNaGDb4Gru1SX3lxR9ZLZefy0nJ62g4L9xccdSU0umvNKDgUVkeVqV9kvPLwFsubHl3r17/3qMAEJSUgZERr579aqDVjuiSpW25cuXbJmWx8BCckFybF5snsgLzQw1s6tsffbV3KsFouBIxpFiqY2eHT2ceowKH3Ws5bGpU6f+828jMzOHRUd/dO1aXF6ek1Zbx9a25CssDZ71m+7BqcHHM47XtKnpY+tzKP3QtCrTTO7qVt6tqXFTny/3vFqlDssMm+c5r/jKpGfC1atXGzZsmJ+f/8cffzRv3lz5ZFxc3Ir9+4MbNBBARSurcVWr9qpQ4ZkdaDyzX/hD2x9sn1V11uiKo5vaNQWwKmlVUkGSaV1tfrD5Xfd3X3d9/VWXV4u1RpJJvsi/V/Dv13RP5O3tPW7cOL1e//bbbwsh8vPzv/766/r1638+YoTbvXsD3d03N2jQ+xlOKzCwAAg8HGPezr/91s23vCO95yTMyRN5hvdwPPP4uFvjVFDphO7p1EilXXhW+MRbE6fcnXI04+iaJNPXBgYFBVWuXPnYsWMffPCBj4/P22+/nZaW1qtXr8W+vu9Xq+ag0RRjzTLSTJs2zdI1WJKN2ubb+9/eyLuhhjo6J9pZ6xyZExmSHrL5wWZvG29vG++im9/Ovz3m1ph3b797KutUP5d+G1M2pupSb+bfvJl3s7tT95L5Eqg0mHp36uJqi7s5dbNWW0dkRzhrnd20bib0Y2Njk5GRcfjw4dDQ0JSUlIYNG65bt27KlCkuzs7FXrOUxDMvrSDtVt4tvdCnFqQKIYIfBNeJqINwIBzDzg67dOnSv7bKys2acXeGwxkHhMPujN3Uu1MzdBm5+tzrudfz9fkPCh6U7BdBFjb85nDlg9t5tz+6/ZHNaZtOlzudyzpnVCeJiYljx47VarUAVCpVr1698vPzn0KxEmNg/Ys8fd7ChIXOZ52fe/M5KyuriRMnPnjwlwAKDg728vJq/EdjhCPwauC13GuWKpVKic/jPt/2YFtkduSZrDPDbgxzPeeKcGhPa8fFjkvMT3xi8/z8/OXLl7u5uQHQarV9+vRR/T97dx5Xc/b/Afx9b+ttX1AoQkgpKWVrMIQx9iXLWEZfhBkay5BhRrMwYjDMZm4Ysg1Zp2Fosk0NBmVJEUJKe2nfu/f9++OY+2tC7v3cW/d+6v18fB/z8K3P+dz3pV73fM7nfM4RCEQi0dOnTxugeB6hwHqtzKLM2bNnC4VCALCystq+fbtEIrlx40a/fv1Y53Tk4pEXiy6qu0yiEaQoPV1wen/u/vTK9Htl93KrchckL9C+oQ0xYHHbQvxUXEdf6ezZs87OzuyHauDAgbGxsYjo4+MDAFOnTm3AN8EDFFhvEBMT4+XlxX6YLC0tWX61aNFCLBZXV1eruzqi0RLKEt5NfBdiwHOZZ+fOnU+dOlXrgIcPH7JgAgB7e/vQ0FDZt5KTkw0MDAQCQWRkZMNWrdEosOQSFhZmZ2fXokWLV14hElKHU2mn7O1f3L0ZNWrUw4cPEbG4uDgwMFBPTw8ADA0NAwMDy8vLazVcHRg4JihoblycRB1la6amPnFUfsXFxceOHevSpYuHh4e6ayE8U1FRsXXr1rVr1xYWFurq6rq6uj59+jQzM1MoFPr6+q5du9bKyuoVraTS8fHxGZWVgXZ2Iy0tG75sDUSBRUgDyc3N/fLLL3/88Uc9Pb3S0lJPT8+tW7f26tWrjiannz//7MkTCx2d405ONAkLKLAIaWD//PPPzp07ra2tv/zyS4FAUPfBCDDn/v1bxcUzra0XtG7dMBVqMgosQjRafEmJb0KCk6Hhzs6dhW8KuEaPAosQTRdTVJRXXZ1UXq4lEPhaW6u7HHWiwCKEBzanpCyysaEeFj38TAg/7MjIOJXLcSmRRkNb3QUQQuQy29qaeljUwyKEBzobGLzxlmJTQGNYhBDeoB4WIYQ3KLAIIbxBgUUI4Q0KLEIIb1BgEUJ4gwKLEMIbFFiEEN6gwCKE8AYFFiGENyiwCCG8QYFFCOENCixCCG9QYBFCeIMCixDCGxRYhBDeoMAihPAGBRYhhDcosAghvEGBRQjhDQosQghvUGARQniDAosQwhsUWIQQ3qDAIoTwBgUWIYQ3KLAIIbxBgUUI4Q0KLEIIb1BgEUJ4gwKLEMIbFFiEEN6gwCKE8AYFFiGENyiwCCG8QYFFCOENCixCCG9QYBFCeIMCixDCGxRYhBDeoMAihPAGBRYhhDcosAghvEGBRQjhDQosQghvUGARQniDAosQwhsUWIQQ3qDAIoTwBgUWIYQ3KLAIIbxBgUUI4Q0KLEIIb1BgEUJ4gwKLEMIbFFiEEN6gwCKE8AYFFiGENyiwCCG8QYFFCOENCixCCG9QYBFCeIMCixDCGxRYhBDeoMAihPAGBRYhhDcosAghvEGBRQjhDQosQghvUGARQniDAosQwhsUWIQQ3qDAIoTwBgUWIYQ3KLAIIbxBgUUI4Q0KLEIIb1BgEUJ4gwKLEMIbFFiEEN6gwCKE8AYFFiGENyiwCCG8QYFFCOENCixCCG9QYBFCeIMCixDCGxRYhBDeoMAihPAGBRYhhDcosAghvEGBRQjhDQosQghvUGARQniDAosQwhsUWIQQ3qDAIoTwBgUWIYQ3KLAIIbxBgUUI4Q0KLEIIb1BgEUJ4gwKLEMIbFFiEEN6gwCKE8AYFFiGENyiwCCG8QYFFCOENCixCCG9QYBFCeIMCixDCGxRYhBDeoMAihPAGBRYhhDcosAghvEGBRQjhDQosQghvUGARQniDAosQwhsUWIQQ3qDAIoTwBgUWIYQ3KLAIIbxBgUUI4Q0KLEIIb1BgvfDs2bNp06YNGTIkJCRE3bUQQl5NW90FqJlUKj1//nxwcPDx48erq6uFQuGFCxcyMjICAgLUXRohpDYBIqq7BvVITU3duXPnzp07k5OTAUBXV9fDw8PY2Dg8PBwRp06dGhwcbGBgoO4yCSH/r8kFlqxLdeLEiaqqKgCwtbVt2bJlfHx8aWnpw4cP4+Li3n///YKCgm7duh07dqx9+/bqLpkQ8kITCqyMjIyQkBCxWPzkyRMA0NXVdXZ2LiwsfPjwIQAIBIL+/ft/++23rq6u9+/fHzdu3N27d01MTEJCQsaMGaPu2gkhAACATcOXX36ppaXF3rKtrW3//v1NTU3Z/zUzM/Pz84uNja15fGFh4fjx4wFAIBAEBARIJBJ1VU4IkWkqPSwjI6OysjIXF5eioqJHjx6xL/br18/Pz2/8+PH6+vovN0HEDRs2rFq1SiKRvPvuu/v27TM3N2/Yqgkh/9EkAisvL8/CwsLExOTOnTvt27c3MjKaNGnShx9+6OLi8sa2Fy9enDx5cmZmpr29/dGjR+VpQgipJ01iHtaDBw8AwN7evk2bNqdPn87IyBCLxXJGz4ABA65everu7p6YmOjp6fnjjz/Wc7GEkNdqEoGVmJgIAB07dgSAwYMHv/ICsA5t27a9dOnS0KFDKysrv//++3opkRAihyYRWOw+oL29Pbfmp0+f7tmzp5mZGSJ26tRJpaURQhTQJGa61+xhcRAfH3/79m02ibRr166qrIwQoogm0cNigcW5h8WaSyQSUCL1CCHKaxKBxS4JOWcNa15UVARKpB4hRHmNP7Dy8vKeP39uYmLSokULbmdggZWRkQHUwyJErRp/YMnmNHBrXl5enpqaqqurm5eXZ2RkZGVlpdLqCCEKaPyBpeSI+6NHj6RSacuWLQHA3t5eIBCosjhCiCIaf2DJ5jQ8f/48NzeXW3MLCwug60FC1K3xB9a5c+cAABGnTZvm6up69epVhZqzDhqba0oj7oSoV+MPLDs7O21t7e+//z4pKenZs2cDBgz45Zdf5G9OcxrIK928eTMqKkrdVTQ5jT+wgoKCvL29i4qKEhISevXqVV5ePmvWrBkzZpSVlcnTnC3tQHMaSE0nT550c3NbsmSJugtpetS6uE0DkUqlQUFBbD0sV1dXkUgEAG5ubk+ePHlj28rKyhs3brDFs9LT0+u/WMIDZWVlbK2h27dvq+aM5eWqOU9j1/h7WPDvInwREREtWrS4detWs2bNbGxsbty44eHhERERUUfDmJiYBQsW9OvXr6qqSiQSBQYGVlZWNljZRGPp6+tPnjwZAPbs2aPsuaqqYMEC+O478POD7GwVFNe4qTsxG1RycrKnpycA6Ovrd+/eHQC0tLQCAwOlUmnNwwoKCn766SdXV1f2VyQQCJydnXV1dQHAy8srLS1NXfUTzXHt2jUAaNGiRWVlpVInOn0aDx9GRIyPx82bVVJbI9a0AgsRy8vLZ8+ezZLIzc2Nzavat28f+250dLSfn5+RkRE7gK2eHBcXh4gxMTF2dnYA0Lx583Pnzqn1TRCNwJZU++2335Q6y/Hj+McfiIhJSbh2rUoKa8SaXGAxISEhbCTL0dFxxIgReXl5YrHYzc1N1vF0d3cXi8WlpaU1W2VnZw8ePBgAtLW1g4KC1FU80RAbN24EgDFjxnBsf+cOpqRgfj6+/z5GRaG/P967p9ICG6EmGliIeOXKFRsbG3Z5KNt/sFmzZkuXLk1ISHhdq+rq6sDAQNYvmzJlSnFxcUPWTDRKZmamjo6OtrY2l7sxmZnYti1aW+OVK5ifjxcvYkZGPdTY2DTdwELE7OxsT09Plj6sS1VSUiJPw99++43dN3RwcLhHn4pN2KhRowBgs6JjT5WV2L8/AmDXrmhsjDt31k91jVCTDixELCsrO3Xq1JkzZxRteP/+fScnJwAwMTE5duxYfdRGNN+xY8cAoGvXroo1mzsXAdDKCps1QwBcvrx+qmuEmnpgKaOwsHDcuHEAIBQKp06dqu5yiBpUVVWxBTxiYmLkbHJ91y7U0UGRCLt0QQAcMgSrq+u1yMakSczDqifGxsZHjhzZsmULAOzfvz88PFzdFZGGpq2tPWXKFADYtWuXPMdfuHChj5/fkq5dKzw84N496NwZDh2Cf7f4JW9Uv/sSFhaCiQkAQFERGBsDAEgkUFkJIhGUlYG+PqhtsZbnzyE4GKqrYepUaNdOyZN17NgxMTExNDTUx8dHJdURHomNje3WrZuWlpavr2/Xrl0dHR0dHBxsbW1fPjIpKcnT0zM7O7tfv37VDx+GW1sb/fordO7pVZbRAAAgAElEQVTc8DXzWL323xYsQEQsL8elS1985eZN7NEDKytxxQr875yBhrVgAebkYFkZzpyp/MmaN28OADShtMlydnbW0dGp+WtlYmLi7u7u4+MTGBgYGhoaFxeXn5/v7OwMAN27dxcKhUKh8OTJk+ounH/qd9ecwkI4dQqqq//zxUGDYOvWen1ZOVRXg6UlAIBIBIjK9PQKCgqys7ONjIysra1VVh7hlejo6P379xcXF9+9e/fevXvx8fE5OTkxMTExMTGyY3R0dKqqqoyNjRMTE6VS6caNG4cPH67GmnmqfgNLRwdat4aqqv980ckJHj6E5GQAgMpK0NWt1xJeQyCAkhLQ14fyciWvS2ULBNJipE2Wrq6ur69vza/k5eU9fvw4Pj7+7t277L9PnjwBgJKSEqlUOn369KVLl6qpWH6r38ASicDVFSoq4NAhiIuDe/egQwcAgGXLoGtX+P57OHgQjh5VfhBJcatWwYYNgAhLloBUCkLuNx+U3KWVNErm5ubu7u7u7u6yr+Tn53/88cc7d+60tLQMDg5WY228Vr93CVevBgDQ1YUVK8DeHszMwNwcxo4FY2O4cgV27YKbN8HTE+pcMeEV4uPjhw0b9v7776elpXGs7PRpuHABoqPB0xP27eN4EgBQes140kSYmZlt2rRJJBLl5eVl06oMXNVvYDVvDgAgEECzZpCcDE+fgq0tsCeLW7WCq1dh7FjIyYGhQ2HFCpBK33C2ioqKw4cPDx482NnZ+cyZMwcOHOjXr9+dO3e4VJaWBlFRkJcHZWXAOfUAQOldWknTYWpqOmrUKKlUunfvXuXPVlBQsGHDhnPnzj1//lz5s/FGgw3vx8VhRATm5v7nixIJfvEFCoXYqlX11KkLCgoKXtn27t27ixYtYjtBAICJicmYMWNYRhgaGv76668KV7N9u6R58+y338708Lj/xRec3tALvXv3BoDIyEhlTkKaiDNnzgCAq6Mj/ndFI0UVFhZaWVnJhk3Nzc379u3r5+cXFBQUFhbGtnpSVc0aRSNmuv/xB/bq5Q8AnTp1Ymu5MOXl5aGhod7e3rJ/GPbEX1FRESKWlZXJForx8/NTaFmiU6dOAQC7rzd+/Hhliqc5DUR+1dXVV0eNklhYYFQU55NIJJKRI0eyT2s3NzfZakg1WVhYeHl5zZkzZ926dVw+0TWVRgQWIj59+tTDwwMAjIyMDh48+ODBg4CAAJYFAGBsbOzn5/fKpx/EYrGiS+tFR0ePHz9eIBCwHGzTpg3nsvPz81nNjfUDjajeypUIgLNmcT7BihUrAMDMzGzEiBEZGRmImJqaGhERIRaL/f39vb29X97u9/PPP1fdG1AnTQksRCwtLWVPOciiRNalKiwsrKNhdHR027ZtAaBVq1aXLl163WE5OTmbN292cHBgZ9bS0mrRogV7oWnTpsm5TkMt169fBwBXV1cObUkT9eABCgRoZIRFRRxaHzlyRCAQaGtrs2moEydOfOVhaWlpZ8+e/f7779kqg2+99ZZyRWsKDQosRDx58iQAsEnDFhYWERERcjbMzs729vaG1yytx9YRlS161bJly4CAgMePH2ONhWJcXFwSExMVLZgt6T1hwgRFG5ImrW9fBMCQEEXb3bhxg/0Ye3l5sU/o1NTUOo4/dOjQsGHDDA0NBQIBhx9vDaRZgfXRRx8BAFt2fdWqVQq1ra6uDggIYD2mqVOnlpSU5Ofni8Vi9gkDAEKh0NvbOzQ0tNZoF1soRkdHp0+fv+RfJyYlJSUoKKhZs2atWrVycHDIrXU3gZA67NiBAOjjo1CjjIwM9ohiz549AUBfX//atWt1N+nXrx8A9OnTBwBWr16tRMWaQrMCK3rSpI+7d3fp3BkALly4wOEMhw4dYmOQLVu2ZNs1sz+vWrUqKSnpda0KCgo++ugUAAqFGBiIEslrz19ZiYcPHxk8eLDw37mm7OXat29/8+ZNDgUjIhYVIVuysqIC2ZVpYSEtOdKYFRbiiRO4YwceOVLXT1sNlZWVLH26du2qq6srEAgOHDjwxlZsDQn2md22bVuJfK+lyTQpsJ49e3FtLxJl9O1bUVHB7TQJCQmtW7e2s7N7XZfqlaRS3LIFdXQQAIcNw+fPax+QkoJBQWhriy4uHwKAnp6ej49PRETEs2fPevXqxT7xduzYoXC5p0/jJ5/gtm24ciX+8w/u3YuIuG4dpqQofCrCI//7HyYm4t9/o3wdnzlz5rBrQEtLSwD45JNP5GlVXFxsbGzM7iwBwNmzZ5UrWv00KbB27UIAdHNDAHz3XWXONGnSJAD45ptvFG0YEfFiDUhfX7x1CxHxzz/x6FEcMgSFQgRAAJww4dF3332Xl5cna1VeXu7v7y+bYKFY1Pr5vfjD0qV4/jwuWYK//YYzZlBgNWYVFbhw4Ys/z52Ly5fjkCG4aBGKxRgVVXuyIiJbc00kErG5h0OHDq2WuwPOHnJkvbNGsMxk/T5LqBhDQ+jR48VjfYMHK3OmpKQkAGBTOhXi7Q0xMfDFF+DqCqtXw5EjcOoUHD8OycmgpwejRoGfHwwa1F4gWFizlZ6e3tatW3v06DFv3rzg4OCYmJijR4+yG5evFRMDwcGgp1f7682bQ7t28O8UWdI46epCaSkAgEQCiHDxIly7Bn/+yb75W8+ec5OSHB0du3Tp4uTkVFpa+sknnwgEgm7duv3zzz8ODg6HDh3SknvNP19f3127dj148EAoFB47diw/P9/MzKye3lYDqN8F/BRz4QJcvgxt2oCeHvTqBW3acD6TpaXl8+fPMzMzW7Rowe0MP/8MzZvDkyeQmgpdukBZGcyYAebmb2h18+bN8ePHP3nypFmzZgcPHhw0aFDtIwoL4cABEIvh1i0AAEND2L0b4uOhQweIi4OxY+HhQ5g2DYKCYNo0sLHhVjzhgePHIToaKithxgwwMoI7d+DePbh3D+LjN1hYBPwbXgDARkvHjRt35MgRc3Pzq1evKvrgqoODw/3797t3737z5s3g4GB2dclX6u7i/SshAT/9FBHx559R7tkMr8QerTIxMVHmJNu24f37+NlnOGmSYg1zcnKGDh0K/06wkE0oZVMrfnr77RcXlmZm6OeHd+6wNvjwISJiefmLuTl5eTTo3pQlJSWdOXNm06ZNs2fPNjc3B4AzZ85s3bo1PDycw9nWrFkDAGyktXfv3iqvtiFpTGAdOIAXLyIiPn2q5P630dFpvXp9M3z4EmVOcuQIPn2KhYU4e7bCbaVSaVBQEPtgHD58+LfffivbotVQV7dyxAg8cADLy5UpjzQdX331FQBMmTKF8xmePXumpaWlr6/PphzevXtXheU1MI0JrKtXcds2RMTTp/HQIWXOtG8fAijcM6pl//4X+1oquuOczPHjx01MTGRjDWzX+zusS0WI3FJSUljcPH/51rXchgwZAgB9+/YFgICAABWW18A0ZtccT0+QSGDNGrh1C8aPV+ZMDx8CACi5PlVqKpSXAwA8fszxDGPGjNm9e7dEIjE3N9+/f39GRoZYLO7atatSZZGmx8bGZuDAgeXl5YcOHeJ8El9fXwcHBzaoum3btrFjx65cuXLfvn0xMTGlbPifJzTpLuGHH6rkNImJAADKr0/1ww9gZvbibNxUVlYCwMCBA9977z1lqyFNmK+vb0RExK5du+bNm8ftDBMnTpw8eTJbl7mkpOTEiRMnTpxg3/L07LpzZ4m+fhd9fUd9/S4ikZO+fue0tNXa2s0tLKbo6WnWQm+aFFgqwnpYygfWggXQti0sXPjmI19fCa2eTFRg7Nix5ubm165du3PnDnvmWVFCoXDv3r2bN2/W0dH5+eefDQ0N2X4Zd+/e7dKlWUVFXEXFk4KCP9jBtrabq6vzbGw2CgRq2XChLo0wsAoLAZQOrH79XkxiGDmS+0lo9WSiEvr6+pMmTfr555/37t27YcMGDmeIiYmZO3cuAPzwww//+9//an4Lsbqi4lF5eXx5eUJZWXx5+T1Dw94ikevTp3NatFhoYNBDNe9BVdQ9iPYa6emYk8Oh3erVKJXipUuYkIAHDyIipqWhulYDZWOcF9ndT0KU8M8//wCAlZWVQgtVMmlpaa1btwaAhbLp9XWSSErKyx/n5Z3IytqmeKX1S2MG3Wv65hs4cgS2b4fduxVteu4c7N4NOTmQmgpRUQAAz59DfLzKS5QLuySkHhZRXs+ePZ2dnTMzM8PDwxVqWF5ePmbMmNTU1Lfeemvjxo3yNcLi4kiJJE9fv2N1dS6HauuPRgZWYiIsWAArVsDlywAAWVlvbCGVQng43LwJPXvCnTuQmwsAcO8erF0L6tpRqbCwMCsry8DAoGXLluqpgDQu06dPBwC2AENwcPCvv/5669atcnYz+/U+/PDDa9eu2dnZHTt2TFe+TUCFQkNLy/eLiy89eOD9/LlSe0qpnrq7eK8iex54zhx88ABFIvTzw/z8Vx6bkYFBQdi+PQLgxIm4ZAlmZGCPHnjuHH74ISJiXNyLCV4NLDo6GgBcXFzU8NqkMcrIyNDR0dHV1c3KymJrNjAtW7b09vb29/cXi8VRUVE1l+ddv349ABgZGcXGxir6cs+fH4mOhvh4Z5W+CWVp5KB7hw6wbRsUFUGfPrBmDVRVQXAwnj792/r1oydPZkv0SaXSc+fOhYZ2CQmxYTtLt2sHHh7QogVYWcGSJdCiBbBdLE1NVXDHkAMacSeqZWVl9fbbb//55589e/Z0dHSsqKjIzs5+9uxZenp6enr62bNnZUd27NgxISHh7NmzK1euFAgEv/zyC4d7i2ZmI7W1m5eV3SktvWVg4KrSt6IEdSfmayQnY2Ym/vorAqC1NTo7XxkwAAD69et34cKFoKCgDh06AMCAASu1tNDbG0NDNe7ZO/ZEBa9nFRNN8+OPP9Zap0FbW9vW1rZbt259+/bt1atX586dDQwMnJycEhIS2KoMa9as4fxyycn+0dGQnOyvwregJI3sYQGArS0AQLt24OoKt25JhMIAPT0LC4vIyMiBAwciIgC0bdt2+PDWBw6AZo4RUQ+LqNwHH3zg6Oj46NGjR48e3bt3Lz4+/smTJykpKSkpKbJjBAJBUVGRl5dXfn6+j4/PypUrOb+cpaVvbu6v164lWllVyjn+Vd80aXmZV5JI4Kefthw/vvjCBaFQKBAIEHHgwIF+fn5jx47V1tbUwAXw8vK6dOnSxYsX+/fvr+5aSKNVVVWVkpISHx9/9+5d9t+7d++WlZXZ2NiUlpYmJycbGhoqc/6ePXtcuxZz5MiR8co9MKcyau7hySc9PZ3dIgGA/fv3q7scubC13uXf+IcQlaiqqoqPj2/WrBkAREdHK3m2rVu3AsDw4cNVUpvyNHJaw0usra337NljYmICAIOVW4y0wbBZoxMmTPjtt9/UXQtpQrS1tR0dHdkH/G7FZzLWMnXqVD09vfDw8LS0NBUUpzR+BBYA5ObmFhYWmpqayraD1nBHjhyZNGlSQUHB2LFjV6xYIZFI1F0RaULY8zcHDhyoqKhQ5jyWlpYjRoyorq5etWrVo0ePpFKpigrkiDeBxbtZ40ZGRgcPHty0aZOWltb69ev/97+PcxWZM1xZWRkaGjp58mRlBk1Jk9W1a9cePXo8f/78999PK3mqNm3aNGvWbPfu3fb29iKRyMnJaeLEiStWrNizZ09MTMwbZ66qmLqvSeW1d+9eAJg8ebK6C1FYZGRk586OtraPbG3x6tU3H5+SkhIYGMhWoxeJRAAwffr00tLS+q9Us5WVvfiD7K8iLw//XYGavOyXX/52c8sdNkypv6KoqCh2f9DZ2dna2vrlANHR0XF0dJwwYcJnn3329ddf15y2Wh94E1irV68GgM8++0zdhXCRkiLp1QsBUF8ff/nl1cdUVuLhwzhz5veyLVpdXFyGDh3KMsvDwyM5Oblhq9Ywixcj2z9twQKsqMA5c/CHH/B//8M692pvynJzUU8PhULk/IPz9OlT9sH58ccfHzx4EAB0dXXbt2/fu3fv/v379+7du3379jXnheno6Nja2tbrdq28CSy2Bl5ISIi6C+GoogLnz3+xAQV7Zkjm2bMXW7QCYO/eybItWtl3b926xWbJWlpa/vnnn4q+7v79+7dt2/bs2TOVvAt1WrwYw8Px3DmcORNPn8YjRxARHzzA9etx40Y8dAhv30aum+82Vj4+CIDr1nFpW1pa2qNHDwAYPHhwdXX17t27X/lUrK6ubseOHXv27Onj48P6Yn///beq38f/401geXh4AMClS5fUXYhS9u1DAwNcuhTfeQelUvzyS5w58/+3aHVywh9+qK65RStTUFAwZswYANDS0goMDJTnE6ygoEAsFnfv3h0ABAKBjY0N75eTX7wYIyPx8mX09cXff8ewMETEpCQMDPz/v0FtbezY8ay//yeffLJ3796YmJiSkhJ1161Of/yBANipk8KXzlKpdPLkyQDQqVOnmj+Q+fn50dHRISEhAQEBPj4+jo6OsguCH3/8ccWKFQAwm8PGLXLjTWCxzY6ysrLUXYiyHj7EW7dw1izctQtXrsTAQNTTQx8fjIio66eq5k48I0eOfDnUZK5evTpr1izZdMFmzZqxRzSMjIxCQ0Pr5S01jJqXhMXFL/pZH3yA0dH4ySc4Zgx27IhaWgiwkj1ECgAAQqGwe/fuJ0+eVHf16lFdja1bo1CIij77/OWXXwKAsbFxXFxc3UcWFRVdv349JCTk4cOH9+/fFwgERkZGRWy3unrAj8DKyckBAFNTU3UXohq3b+Pu3fjRRzhvHqano/yboZw6dYoFd6dOnWr1mAoLC2VdKsbd3V0sFpeWlpaVlckWmfTz8+OwApxGSE19kehs0KqkBK9fr/13V16Ot2+fOXJk9erVPj4+Tk5O2traOjo6VlZWaihYM4SGvrh6vnxZ3iYnTpwQCoVCofD3339X9OX69OkDAHv27FG0oZz4EVhXrlwBgB49eqi7ENVggZWejtbWqOgly9OnT9nIgqzHxLZoZRPr4d/9xF7+YBSLxWyIoV+/funp6ap6LxquqKjIysoKAK5cuaLuWtQjKgrd3TE7Gxctkuv4u3fvsu0LN2zYwOHltm/fDgBvv/02h7by4EdgffvttwAwYcIE1Z42MjLy+++/V+055ZGfj9u2YXQ0XrnCZZGJkpKSqVOnssEpW/aUOIBAIBgwYMCvv/5a/votWq9fv96mTRsAaN269WX5P3B5bvny5axrqe5C1CMqCsViXLoUFy3CTZvQwwPffx+DgjAsDBMTsbr6P8MQubm5bM+UadOmcXu5goICAwMDgUDw6NEjVZRfm0YHlkQiiYiI8PHx0dLSsrOzs7Kyun37tqpOnpqaqq2traurm8F2TJXD1q2IiGVlKBYr9dKFhQiABgZKzSISi8UikcjMzMzU1FT+LVqzsrLY5nTa2tpBQUHcX54/2MCKiYmJ8gPwJSUl33777axZs8LCwhITE+v1/r2qREXh0aMoFmOfPjhlyoubE+x/OjqVxsbGrq6uU6ZMWbNmzaFDh9gFnZubmzJ/V+ypoM8//1yF70JGQwMrKQkDA9e0atWKdR/09fXZLVVDQ8MDBw6o6lVGjRoFAPL/3i5YgIhYXIzLlyv1ujExCIBKrkVaVFQkEAj09fUVnVNaVVUVEBDA/mKnTZvWFO6j9erVCwD27dun5Hnmz59vYWFR846+o6Ojj49PQEBASEhIdHR0mWx2q2aIjcXr1/HMGZRIcPhwzM3FyEgUi3HRIhw8GHv1elBrjoK5uXmzZs2ePXumzBs5d+4cANjZ2dVHoGtWYEkkGBGBPj6orY29en0DAG3atPH09DQ1NU1KSpo9e7Zs5LhCFTNuTp06BQDt27eX82923DhcswYDA5UNrEOHEADHjVPqJDdv3gSArl27cmt+4MABdifR0dGx0Y/viMViABg0aJAyJwkODmYhNXTo0MGDB8suxmtNSnJycvLx8Zk4caLa575dvox6ejh1al3DDgUFBVevXv3ll1+WLVvm7u4OAK6ursOGDbO3t5dy7f9LpdL27dsDwPnz5zmW/npqDqyoKDx1ChHxwAFcvRpbt37RWdXTw8GDd7IJk2yAhq0qExISwmZ+e3l5paWlKfnqEonEzs4O5F4ERlU9rDVrEACVXIs0NDQUAMaMGcP5DPfu3WvXrp2Wllb9DZFqCNnAyuPHj7md4dKlS3p6egCwY8eOmqeNjo4ODQ0NDAysNSlJV1fXw8OD8++88tLSXvw2ffSRvE2KioqMjIxkA6MXLlzg/OqBgYEAMH36dM5neB01B1ZwMI4ejc+f46JF2L07AmCbNujpiYaGOGDAJdZH9fPzi4+PlzWJiYlhKdOiRQvlI5wtZCzncP6xY4iIFRX4xx9Kvei8efkAGBys1Em+/vprAFi2bJkyJ9m2bRsAeHp6KlUKH7DbFF9++SWHtsnJFa1btwOApUuX1n1kSUlJTEyMbCkkdW1JWVaGnp4IgIMGYVWVAg3ff/99dh8ZAGbMmMG5gCdPngiFQpFIVMeEQW7UH1jnz+Py5bhoEW7fjvb2L3pYAgGOHVt26NChV176ZWdne3t7q2TkOD09XUdHR1tbO1WOR9KGD8dTpzArC5VYJhsR0cvLy8DA4K+/rilzEja1Sqzc+H9QUJA8v4eNQEREBAC0a9dO0V5PSQl2744uLvkTJsyvlvue7meffQYA77//vsKFqsKyZWEA2KED5uYq1vDixYsAYG1tLRQKDQ0NCwoKFH3p8vLy6dOnJyQkdOnSBQCWK3kx8hL1B9bdu/jDDzhsGBYWorExmpmhnx++aXotVldXBwQEsB103nvvveLiYs41sKdevv7667oPk0hw6VL84ANMSlI2sNjMICXHON566y3lhwnYsOA2teyD1rCkUmm7du0U7fVIpTh58ounWxTqKzx+/FggEBgaGqpk9YLKysp79+7JeTDb2mvQoHkcnsWSSqVsHKZbt261rn/l5OvrCwBdunQxMjLS1tb+6aefFC6iTmoOrL/+wqdPsboaN25ERLx6FV8/i+gVQkND2YRJJycnzpfcp0+fZp+9rxx6l90HmDgRly7FBw/wo49wzRrkPF28sLAQAAwMDJQc4GC3TZVcwoGtN3/27FllTsIXHHo9X32FAGhs/OZP0Jexv9udO3cq3PK/oqOjjY2NhUKhqampu7v79OnTg4KCQkND4+LiXv6JPXPmjJaWlkAgOHz4MLeXYw/l9O7dm40UK9R28+bNACASidhkLm9vb5U/VqHmwLp8GbW1cfRo7mdISEjo3LmzUCjkvGWp7FMlPDy85tfT03HtWmzX7sVVqkj0YtD9iy/wk0/Q3h63b+fycjExMaD0BqtsToNIJFLyznHr1q0BICkpSZmT8AXr9ejp6R04cECet5ycjHp6qKX14r6QovbtO9q///Jx4x5yafyv/Px8dm2lo6Pz8k1JIyOjHj16vP/++0FBQWFhYb/99pvyW3ulpKRoaWmJRCLWFZC/ZxcREaGtrS0QCNgkEgcHh/zXbH6sDDUH1p49CIBTpnBsnpycvHbt2i+++IJNgOBcxtq1awFg3LhxWGO26sCBK1lUtW6NAQGYnIwpKYiI5eUvbvMB4Lx5iq1oUlpa+sEHHwBA//79OVeLSs9pYEpKStgvsPxDM3xnb28ve4bJyMjIw8Nj1qw5smnfLPxTU5F9cp07h5GR+MMPHF+ruBiNjREAExI4nkEikYwYMYJNPSkoKHj+/HlUVJRYLA4ICBgxYgSbOvCyiRMnKtl5Z1OL2aYEK1eulKfJ48eP2bYXbMDewsLi4UOlkvp11BxYq1cjAK5ezbH50aNHAcDNzQ0AJk2axLkM2dD7J598Ivs5sLJqOX58NZt097K9e9HAAAHQ3R3l6aAkJCQEBASwf9RWrVoJhcLAwEDOP1jKz2lAxNu3b7NfBmVOwi/p6elz5sx5++232bp0AGBv7ySb+a2vj66uuH49urlhWhouXqzsgqa+vgiAq1ZxbM4eKrK0tExMTHzlAbm5uSzCFi1aNGTIEDMzs1GjRik/E3jfvn1smAUAWrdu/cbPs8LCQnawp6enQCDQ0tL6Q8n76K+n5sBizwpwXpWPjS+y6+1VXH8upFJpRESEjY2NbBKNnZ3dmjVr3jjPKyYG7ewQAIcPP/m6EbSysrK9e/d6eXnJPgA9PT1Hjx7NbhdMmDCB26CsSuY0HDlyBABGjRqlzEn4KycnJzIycs+eiI8+wsGDXyygCIBBQRgcjP7+KgisyMgXPXQOXdjQ0FCBQKCjo1Mf0y/rVlpayi4t2Yf3mTNn6jhYIpGMHDmSjQIbGBgAwFb2CFv9UHNgeXgggAILX9QyZ84cFgEAsGvXLkWbZ2Zmrl+/ng0QAoBQKDQwMDh16pT8A0M5Oejnd59NsNi4cWPNHtP9+/dlXSoAMDY29vPzi4mJYd+tuVDMG5ccqkUqlQ4fPlz5u3tNZ06DnAoK8OpVDA/H0FAMCUF3dxUsGd+5MwLgf0dH3+zGjRvsl19dN3D9/PwA4J133lm3bl3da3uwRfvMzc3ZdNP6nsmh5sDq2XOIl9fMrCxFbg3WMGDAADa8BwouzMqWZGGT5tk1WkBAAJuPevr0aYVqqLm03ujRozMzM0NDQ729vVkfCv5dl+rlJc0ePnzo4uICiiytl5eXJxaLu3btCgAtW7Z0c3NTZqGYpjOnQSGxsS8WU5wyRbF71q+0ezcGBWFhIWZkyDvcmZ6ebmNjAwC+vr7KvjxXly9fZiP9Cxcu3LZt28WLF7Ozs18+LC4uTigU6ujosGkQvXv3rmOxEJVQZ2BlZ2eDcsvysX9X1n2VZ9GFmr/wrEvl7e0dGhpaVVWF/15njR07lkMlJ06cYB+JsjX5a3WpXqmsrGzmzJkAIBAI/P3967gH/Ndff7333nvs6RAAsLKyYh00Gxubf/75h0PB2MTmNCjq7Fl0cVH28SlETNs6CqYAACAASURBVE3F9u0xJwc3b5ZrrLOiooLNsPPy8lLJA7Oc2dvb17o1aW5uLptXERYWxrYpPHr0KBtob9WqlTyzr5WkzsBSclm+0tJSoVDIfoeNjY3rPviVXapa97YzMjLY0Du3KZ3sypSZP3/+c7kXEpUtrde/f/9asZufny8Wi52dnV9O2KysrIEDBwKAnp7eli1bOBTMZnI1kTkNirp0CQGwVSsuw081pabiihW4dClu3oyHD+O8efjddxgR8dq9fli3t23btpmZmUq9sNJKSkp++umnDRs2+Pr6enp6soeNajE1NWU/RSKRKDo6ugGqUmdg7dmzBwCmcJ3UEBsbywbIAcDNza3ug9lkllpdqpdNmDABAL766isO9bA5TcbGxqD42vNRUVHsH97GxoatncASlvXaAMDa2jogIKDWs7vcFoqprq4OCwsbOHAge9qLF4s6qYWDAwIo+9xoaipu3Ig//4wTJ+KyZf9ZjsrMDEePXjx79uyNGzeePn36yZMnGzdubMhffkXJ5lX4+/t7e3vLtikUCoXffvttw9SgzsD68MMPAWDVqlV79+4dNWqUotPMFJrT8Msvv6xevfqN88L//PNPALC1tVV0ahKb08Q6StwuclNTU9nMFx0dnebNm8t+FIYNG3b8+PHXJSwi/vrrr2yhGFdX17pXI0hMTFyxYgV7MIi9UGBgIIdSm4h16xAAJ07kfobS0heBJZGgpyeeOYPffot+fujlhRYWqK2NurpGNTssSk5Sb3iZmZk7duyouTZBfVNDYFVUVMiGpW1sbLp06cImxXTp0kX+abWoojkNtUil0o4dOwKAohNJ2Jwm9rQa54vcqqqqpUuXamtra2lpsS6VnOvM3rt3j3UhLS0tX74JXV1dLVu4lf1iODg4BAUF5eTkcKuziXj2DLW00NS0LCeHy8ymoiJ0dsaFC18s219WVntCX2Zm9fnz53/88ccPPvhg4MCB1tbWtra2nC84mogGDawHDx4sW7ZM1n0wNDRk4+UtWrRgD8cYGxvLvxWVknMaXofd7B+t4ONCJ48dk3X3Jk+erEwB4eHhP/zwg6IPYRUUFIwbN46N3wcEBLALvZSUlKCgINlSc7W2aCVvNH/+T2Zm5hwW/pdIcPRoBEBHR5R/yyu+bmjUgBoisGp2qdhvTpcuXYKCgnJzc2suFMMWPHzj/TKZCxcurF27lt3yU+Fms9nZ2Xp6egoPvQcFSQ0NM7y9U3r3jt20SVXFKEQqlX755ZdsgoWTk9OAAQNkU2GdnJy+++47lS9O1OgdOnQIANzd3RVtuGoVAqCFBdbPAypNV/0G1sOHDwMCAmSPQejr67/8CV9zoRhPT8/X3S97GRuWFgqFurq6nFeSfCUfHx8A+OKLLxRoM3s2AryYCMt55r4qnD9/3tLSkl39ybpUalz6ktcqKirY1N9bt27J3+rEiSyBALW1kfqyKldfgXXy5Ek3NzdZl8rFxeXHH3+sY1j9xIkTbDc0e3t7FnCy+2W15OXlfffdd7K5VAKBwMfHR7XFnz17VuGh9/79EeDFvGZ176AVGRnp6+vr5+cn/9QK8jrs1tDixYvlPP7mzZuGhkYDBvy5dSt9SKhefQWWkZGRlpbWK7tUr5OQkODo6MhGstjkdT09vZp3TFiXSrYJu5WVlfzD0gqRDb2Hy/9IBVtA29QUAVDBOQ1Ek0VHR7MhC29vb39//59//vmvv/565bRvRMzJyWHP36lrrdFGr14CKysri10AXr9+XaFxxMLCQjYTiq2qY2xsHB8fX1BQIBaLXV1dZV0qNpeqXkcow8LCzp49K++VVEkJCgSoq4sAaGJSf1URtRg8eLBsNFDm5WnfFRUV7FmxBnhCpckSICKo2uXLl/v27du5c+f79+8PGDDgwoUL8rdFxO++++7jjz+urq729PTs2LHj8ePHS0tLAcDKymrmzJlz5syR7aajKfLy4KuvICMDbt4Ec3O4fFndBRFVkkgkcXFxKSkpd+/eTUhIiI+PT0hIYCvH1qSrq1tZWWljY3P9+nXZpEqiWtr1cdLExEQAYHP5ZWshyEkgEHz00Ueurq4+Pj4JCQnXrl0DAHd3d39//8mTJ7MheY0jEoGxMVhagpsbfPyxuqshKqalpdWtW7du3bqx5fSYvLy8+Pj4u3fvsv/GxcVlZGS0a9cuNDSU0qr+1GNgaWtrg+KBxfTv33/lypWLFy92cnI6ceIEt5M0nL174Z13oHdv2LYNrl8HDw91F0Tqnbm5uZeXV82Vzu7fv9+2bVt9fX01VtXo1b4yV4mHDx8CQEVFBXANLADIy8sDgHHjxml6WgHAs2fA1int0AGePVN3NUQ9OnfuTGlV3+oxsFjisNttHLBuGg/SCgC8vODwYZBI4NQp6l4RUn/q8ZIwLS1NIBBwHiBnqcePwBo8GKRS2LABZs4EGxt1V0NIo6X6u4TZ2dktWrQwMTEpLCxka3pxO4+FhUVeXl5WVpbs2UNCSBOn+ktC1jNiqztxvh7Mzc3Ny8szNTWltCKEyKg+sGrOaeAcWCz1ODcnhDRK9RVYysxpAH6NuBNCGorqB93v3LkDAG3bti0rK2PPBnJAPSxCyMtUH1gPHjwQCARpaWmXLl2SLUmuKOphEUJepvpLQn9/fz09vcjISC8vrydPnijUtry8PCIiAvg1p4EQ0lBUH1hz5869deuWo6PjzZs3XV1dT5w4IU+rBw8erFixok2bNkOHDk1MTGQ9LLokJITUVC+rNQBAUVGRr6/v0aNHBQLB8uXLv/7665cX6ACAioqKY8eOicXiyMhIVkmXLl3s7OzCw8P19PTYIg2EEPJC/a1cw/ZwZ2v1vvvuu7VWv3zw4EFAQIBsmpWenp6Li0urVq3Y/xUKhatXr66/2gghfFRfPSyZixcvTpo0KSsry97e/ujRoy4uLrGxsYsWLbp48SJ76c6dOzdv3jwmJqasrAwAWrVqNX369Pnz57dt27ZeCyOE8E69BxYApKSkTJgw4dq1a/r6+j/99NPgwYPt7Oy0tbW7du2am5ublJQEAEKhcODAgX5+fmPHjmVzuAghpJaGCCwAqKioWLhw4fbt2wGgf//+Eonk+vXrbP0ZGxub2bNnz5o1y4YeGyaE1KmBAovZs2fP3LlzKysrpVIpdakIIYpq0MACgH379u3du9fCwmLDhg2yHYkJIUQeDR1YhBDCWb2sOEoIIfWBAosQwhsUWIQQ3qDAIoTwBgUWIYQ3KLAIIbxBgUUI4Q0KLEIIb1BgEUJ4gwKLEMIbFFiEEN6gwCKE8AYFFiGENyiwCCG8QYFFCOENCixCCG9QYBFCeIMCixDCGxRYhBDeoMAihPAGBRYhhDcosAghvEGBRQjhDQosQghvUGARQniDAosQwhsUWIQQ3qDAIoTwBgUWIYQ3KLAIIbxBgUUI4Q0KLEIIb1BgEUJ4gwKLEMIbFFiEEN6gwCKE8AYFFiGENyiwCCG8QYFFCOENCixCCG9QYBFCeIMCixDCGxRYhBDeoMAihPAGBRYhhDcosAghvEGBRQjhDQosQghvUGARQniDAosQwhsUWIQQ3qDAIoTwBgUWIYQ3KLAIIbxBgUUI4Q0KLEIIb1BgEUJ4gwKLEMIbFFiEEN6gwCKE8AYFFiGENyiwCCG8QYFFCOENCixCCG9QYBFCeIMCixDCGxRYhBDeoMAihPAGBRYhhDcosAghvEGBRQjhDQosQghvUGARQniDAosQwhsUWIQQ3qDAIoTwBgUWIYQ3KLAIIbxBgUUI4Q0KLEIIb1BgEUJ4gwKLEMIbFFiEEN6gwCKE8AYFFiGENyiwCCG8QYFFCOENCixCCG9QYBFCeIMCixDCGxRYhBDeoMAihPAGBRYhhDcosAghvEGBRQjhDQosQghvUGARQniDAosQwhsUWIQQ3qDAIoTwBgUWIYQ3KLAIIbxBgaWAtLS0CxcuqLsKQpoubXUXwBv37t1zc3MzNTV9/PixgYGBusshpCmiHpa8unTp0q1bt8zMzG3btqm7FkKaKAEiqrsG3jh9+vS7777brFmzJ0+eGBkZqbscQpoc6mEpYNiwYT179szJyfn555/VXQtpPKqqqgoKCtRdBT9QYCnm888/B4D169cXFRWpuxbSGGzZssXAwKB58+YjR47cs2dPSUmJuivSaHRJqLC33nrr77//Xr9+/fLly9VdC+G3r7/++tNPP0VEgeDFb6KxsfGoUaMmTpw4dOhQPT09dReocSiwFBYeHv7OO+80a9bs8ePHxsbG6i6H8JJEIlm4cOG2bdu0tLS2bNmSmpp65cqVvLy8O3fusF9JAwOD4cOHT58+fejQobq6uuquV2MgUdxbb70FAEFBQeouhPBScXHxyJEjAUBPT+/QoUNSqbRNmzbs97Fly5b9+vVzdnYWCATsK2ZmZtOnTw8LCyspKVF34epHPSwu/vzzz6FDh1paWj558kTJTlZsbGx0dHT37t27d++uqvKIJsvNzR01atTly5ctLCx+++03Ly8vAIiPjz98+PC+ffsePXrEDmvZsqWdnV1WVpbsKyYmJjdu3OjQoYPaStcE6k5MvmKdrHXr1nE+Q1ZWVkBAgL6+PgCIRCKxWCyVSlVYIdFAiYmJHTt2BIB27dolJCTU+q5UKr106dJHH33UunVr2W9omzZtBg0aZGRkJBQKFy5cqJayNQcFFkcREREAYGFhkZGRoWjbjIyMJUuWsOnyAoHAzMyM/Wh6e3s/efKkHoolGuGff/5p3rw5AHh4eGRmZtZxpEQiiYqK8vf3b9WqFQBMmzZtx44dADBlypQGq1YzUWBxZ2FhoaWl9eOPP8rfJDs7OyAgQBZV7u7ubdq0+eOPP0JDQ9mPsoGBQVBQkEQiqb+yiVocP35cJBIBwNChQwsLC+VsJZFILly4cPPmzZs3bwJAp06d6rVIzUeBxdHff/8tFAq1tLTOnz8vz/HZ2dmBgYEmJiasM+Xk5CQbZ500aRIiPn/+3M/Pj32lb9++L18vEP7y8/MTCoUAMH/+/Orqag5nqKqqEolEAoEgLy9P5eXxCAUWF+Xl5Y6OjgDw2WefvfHgWlHl7Ozctm1b9mc7OzuxWFxVVSU7+OTJk2z8QiQSBQUFcfvhJholPz9fR0dHKBQGBgYqc56ePXsCgJwfkI0VBRYXy5YtA4AuXbqUlZXVfeT48eMNDQ1lF4B2dnaviyqZvLw8WVerV69e8fHx9fMmSANhnSMAWLhwoaenZ2pqKrfzfPDBBwDwzTffqLY8fqHAUtjVq1e1tLSEQuGlS5fqPnL//v0sd1xcXGRR1aFDh127dr0yqmo6efKkjY0NAOjr6y9ZsuSNyUg0Gbun7OrqCgBhYWHcTrJz504AmDx5smpr4xd6llAxlZWVs2bNkkgkH3/8cZ8+feo+WEtLCwB69+7t4+OTlJTUtm1bsVickJAwc+ZMbe03rEQ2fPjw+Ph4Pz+/ioqK7777bsOGDSp7D6TBubu7AwAbFoiJieF2kh49egBAdHS0CgvjHVrATzFfffVVXFxcp06d2FPQdSsuLgYABwcHf3//1q1bT5s2TUdHR/7XKikpmTt3bkZGRlhYWBP/MeU7FlgVFRWgROI4OTkZGBg8evQoPz9fNhWmqaEeFgAAlJXB339DenrdR92+fXv9+vVCoXDHjh1sVKJubM0QU1NTExMTX19fhdIKAH799Vd3d/fs7GwAcHFxUagt0Sisc5SSkgJKBJaWlpaLiwsi3rhxQ5XF8QoFFkB5OcyfD9XVsGULXL0KO3fCli1w/jw8f17zqOrq6lmzZlVVVS1cuJANSbyRLLC41VVzjSTOJyGaoFOnTiYmJmlpaebm5pmZmampqdzOQ1eFdEkIEB0N3t4wYAB4eMDq1XDuHNy+zb7zYPjwxYguLi7dunW7fPlyTEyMnZ3dmjVr5DxxYWEhKB1YiKjMSYgmEAqFrq6ukZGRdnZ2eXl50dHRNR++kcfz58/z8vLYpSXnUbBGgAILQCQCtmpacTHo64OhIfTqBQUFkJx8p6joj8jIP/74AwAEAoFAIAgODpZ/cWSV9LCqq6uVOQnRED169IiMjGSPysfExIwePVr+tklJSe+++255efmnn34KAGfPnq2vKjVekwusxMTEc+fOtWvXbsiQIS++5OYG+/fDpk2QmAhjxsDXX8sOvl5Z2a1bN0NDw7i4uKKioiFDhgwePFj+12KJI5syqigKrMaEdY7Ky8tBwS7SjRs3hg8fnpGR0bFjx08++QQA2OPTTVOTC6wrV67Mmzdv+vTp/x9YAgFs3gxlZSASQU4OiMUQG8v+d/TBg8QaI1lsmoL8lOxhsStKdmuJc+oRDcECi427X79+Xc5WEREREyZMKCws7N69e2JiYlFR0cCBA/ft21ePhWq2JhdY5ubmAJCXl1f7G+yuX7Nm8O8scwD488mT2NjY2NjYa9euhYeHnz59+vbt2926dZPztVRySVhWVqbMSYiG6NSpk6mpaXp6urm5eUlJSVZWVosWLepusnv3bj8/v6qqqr59+167dq2qqmrGjBnbt29v0guQqnvmakOLiooCAC8vL0UbLl68GADGjh0rfxPWdef8GDNrzn6sU1JSuJ2EaI4BAwYAwPLly9/4iKhUKg0MDGS/oX379mV/8Pf3pxXTmlxgxcXFAYCTk5OiDdPT0w0MDAQCwfXr1+VsYmVlBQDp6encHqxhUcXWopF/QRKisYYPH86ix9HRMTAw8O7du688rKqqij1MqqWlxdYj1dLS2rZtWwNXq5maXGA9e/YMAFq3bs2h7ZIlSwBgzJgxch7PVhPNycnp2LGjn59fcXGxQi/HNk0RCARCoZA+WhuB4uLit956y8LCQnZ94+LismbNmgcPHsiOkUgkQ4cOBQBDQ0MPDw/2h99//12NZWuUJhdY7HEZAwMDDm2zs7ONjIwEAsG1a9fqPvL27dsTJkwwMjIyNDQcP348G63v3Lnz33//LedrVVVVDRw40M3NDQDMzMw4VEs0U3V1NVtNlC3ZWLPPdf/+fUTcsGFDixYtHBwcAMDa2lr+Hn1T0OQCC//tuZSXl3Nou3TpUgAYPXr06w6Ijo4eMWIE+ynU19dny7Z16NChc+fOrLvk5+dXVFQkz2uVlpZ+/PHHAGBiYsKhVKLhKioqfv/99xkzZtS8o9KjR4+lS5eyaaUdOnSo2fki2DQDi40N1b2o9uuwThYAvNzJio2N9fHxYbszGRoa+vv7p6enX758mX1UCoVCT09Pdn+nXbt2Z8+ereNVysrKtm7dytbzFgqFvr6+HEolfFFeXh4WFjZ9+nQ2eUUgEGhra/fs2TMrK0vdpWkc/gXWiRMnPv3004qKCs5n6NSpEwCw7jcHrNczcuRI2VdeGVWy75aVlQUGBrInn21sbNirs65WQUFBrZNXVFSIxWLZcxsuLi579uyhJd6biLKysmPHjrFBrqtXr6q7HE3Es8AqLy9n/Y6uXbu+cSDplUpKStq1awcAR44c4VZDdnY2e8Di2rVrd+7ckUWVgYGBv79/WlraK1vdunWL7TwoEAh69OjBulpt27aVrXhbK6qcnZ1DQ0NprL0Jmjx5MgDs2LFD3YVoIp4FFiLWvMhS6NZbeXm5WCxu2bIlAFhaWiqzaPry5cvZgKgsqpYuXfrGa8zKysqgoCAWVa1bt2bv4vTp0yyq2PqiFFXkm2++AYD58+eruxBNxL/AQsTS0tJly5ZpaWnp6OgMGXL7jXfeSkslmzdvtra2Zong7u4uey6nd+/e9+7dU+jV4+LiWK9KT09PV1fXz8/vdb2qV4qNjWWLhAgEgn79+m3atKl9+/asmK5du1JUkQsXLgCAp6enugvRRLwMLObq1auTJv0MgEIh+vvjK3taFRUoFmOrVujquggAunXrJkuEP/74w9bWFgB0dHQCAgIqKyvf+IqxsbHjx49nvSq2xvGgQYM4VF5ZWfnVV1+xm5VMt27djh07RlFFELGgoEAoFOrr68vzM9nU8DiwELGyEoOCUFcXAdDODiMi/v9bZWW4ZQu2bIkACIDjx2e+PPsuPz/fz8+PBVC3bt1iYmJe90JxcXHTp09n06lYryouLo6NZP3zzz/cio+NjXVwcGjXrt2RI0coqkhN7M7MzZs31V2IxuF3YDE3b6KrKwLgiBH47rsoleLatdi374uocnfHsDCsIxD++usve3t71mkKCAioNT8rPj6+VlQ9e/aMfWvFihUA8O6779bruyNN0HvvvQcA27dvV3chGqcxBBYiVlbi+vUYGYkzZmBICH72Gf78Mzo7Y2hoXVElU1JSEhAQwCZ5yu4/1hFVTE5OjpKdLEJeadOmTQAwb948ZU5SVVU1e/bsHj167N27t9E8i9pIAou5cwd37kR/f1ywAPPz5Yqqmi5evCjratna2rL80tPTW7BgQa2okmELqg0bNkwF1RN1y8nJCQ8PLykpUXchePHiRQDw8PDgfIaysjIfHx92M509dDFixIiQkBC+J1cjDKzUVGzZErn9u5SWlrKullAoZL2qutd1ycnJYbOTo6KiOBZNNAZbYy8yMlLdhWBhYaFQKNTT0+M2QTo3N5ctSmNqajpu3DgXFxcWWwAgEokmTJgQGhqqCbnMQaMKrPx8/P13vHYNz5/HN+2sXJdDhw59/vnnt27dkufgVatWAcDQoUO5vx7RDHPnzgWAzZs3q7sQRET28OmNGzcUbfjo0SPWtl27dvfu3QsKCgIAc3PzXr16denSpWZysT6XnE+2aohGFViI2K8fAuCFCw33inl5eWxXS+pk8V1wcDAATJ06Vd2FICJOnToVAL777juFWl29epU9Kuvi4sLGMYKDg9k9R6ZFixZeXl5OTk7s5jgAGBkZeXp68uW5xcYWWN26IQAq/rGkFLaXyZAhQxr0VYmqsb0hHBwc1F0IVldX9+vXz8rKSkdHR/6xpxMnTrDlHgcPHlzr+Li4uMDAwJrJZW1t3a9fP2dnZ7YdlLu7e729G1VqbIFlZ4cA+OhRg76orJOlCcMfhLOKigo9PT1zc4uCAi4rxKpKcXExW6FIV1dXdgVnYGDg4+Nz+PDh1409bd++nU1m9vX1rWPGKUsu2b472tra27dvB4AOHTrU2xtSpcYWWObmCIC5uQ39up999hkAdOzYcc2aNd9//31ISMiJEycuXLgQExPz6NGj3NzcKmUG1UhDeeedFAC8eFFtBeTk5PTp0wcALCwsoqKinj17tmXLlr59+8qu4GRjT7KnaGULwAsEgsDAQHleRSqVXr16denSpTNnzqyurjY0NBQIBLkN/2ujuEYVWFIpamsjgFIj7txERUWJRCLWIX8dQ0PDli1b2tra9u/f/+nTpw1dIpHDvHkIgJs2qenl799fNno0vGrpvpSUlFcm186dOydOnMj6SsHBwdxetnfv3gBQ9xptGqJRBVZRUZGFhWXHjgpvMKGkqqoq9jxz375933777d69e3t6erq5uXXt2rVjx46tW7c2NTWV9e3Zz5aGjOySWrZvRwB87z1lz/Pxxx9Pmzbt4MGDCizkf+kSWlpW6OoumjSpjpU/kpOTayWXlpaWiYlJRM0H0xS0cOFCAAgKCuJ8hgbTqAKLbTDRsmXLBn7dtWvXAkDbtm0LCwvZTjmvY2Ji8sMPP7BHW1NTUxu4TvJGN28iAHbqxP0M1dXV8+bNAwD2cLtsxuYbZg8cP44iEQLg0KFyziF89OjRunXrLC0tAWDt2rWHDx+Oi4vjVvPu3bsBwMfHh1vzhtSoAuvu3bsNf5cnISFBX19fIBCEh4cj4jfffBMQEODn5zdp0qR33nmnT58+Tk5Otra2sq2by8vLx44dCwCLFi1qyDqJPCorUSRCgQDz8rg0Ly4uZnt5GRgYjBkzpk+fPrJ+UPzAgThiBIaEvGJdkbAwFAoRAOfPRwUXaGObDPTr1w8APv30Uy5FI965cwcA2rdvz615Q2pUgXXlyhUA6NmzZ4O9okQiYTvHzZkz540HS6XS58+fI+KdO3dYJ+t1T/wQNVq3DhMSMD0dFe0Bp6ens7nylpaWsu2RkpOTN23a9FafPlJLyxeP4xsb43vv4eXLePYsfvklbtmC+fnYty/KN15ey4EDBwDA09MTAN555x0OZ0BE2bh7Tk4OtzM0mEYVWGfOnGGTUBrsFdlDqq1atWJJJL/x48cDwEcffVRPhRHOnJ0xPBzPnsWwMAVaPXz4kD2I2qFDh1dvF5CcjFu2YN++KBAgAP7wA7J//X/+wa1bkevSVw8ePGCTqgCgWbNm3E6CiOzWpDIDYQ2jUQXWkydPvv/++6NHjzbMyz1+/NjQ0BAATpw4oWjbuLg46mRppsWLce5cPHkSjx/HI0dQnkfurly50qxZM9a7f/OU8UePMCgIIyJw164XX1FiVQapVMrmALLBLM53n/39/QFg3bp1nCtpGI0qsBqSRCLp378/AMyYMYPbGSZMmAAA/v7+qi2McFZZiRIJLlmC9+7h0KH4+ecIgCLRa4eemKNHj4pEIgAYM2aMAk8UZ2XhkiWIiDExuGWLMmW//fbbAMCuRjl/WoeEhADAhAkTlKmkAfz/vXaikG3btv3111/W1tbffvsttzN8/vnnQqEwODiY3dwk6lVcDKNHw4cfgkgEDg7g6Qk6OtCzJ5SXw8mT8P770LIl+Pt/ERYWVlFRIWu1detWHx+fsrKyhQsXHjlypO6JeP/RvDkMGgRr1sD58zBvnjKVsyk1rLPPni5SFP67UgW35g1K3YnJS0lJSWzpPs57hTFsxaKFCxeqqjDCTWrqi0VrrawwI+M/35INPbVqlcIm07GnZE6cOLFo0SJQZH55PTl48CAAeHh4AKdVQ86ePdurV6+cnBzWT3z8+HF9FKkqFFhcODk5gSrmrcTHx7Nlj+pedYvUq/h4bNsWAbBDB6xjZ/jHj3PWrVvHNpdk2M5JBw8ebMBiX+HhKnNdHAAAIABJREFUw4cA0Lx5cwCwtLRUqO2uXbvYFr8+Pj4sju/evVtPdaoEBZbC8vPzAUBLS+vSpUvz5s1LTExU5mzsuYoPP/xQVeURhVy8eLFv3xwA7NsX5byn/+DBgzVr1jg4OLRq1Wr//v31XOCbSaVStlk0G/hPSkqSs2FQUBCbJtarVy/2h3HjxtVrqcqjwFKYVCrt0KED+2cGgJkzZ3I7T15e3vbt2+Pi4tgHNV8WJGpMDh48qKenZ2bWbvbsgtJSdVejhEGDBv0fe/cdFdW1tgH8nRl6BxELEQWs2AULItiISRSNDU2xxMSQqBGM0ZgqsSW2T0mwBGMJGhMjIjfYe2IHxYogImJFBOkdhtnfH9twucbAzDDDzNbnt7KyLGef86L4zDn77EJ/97sr000hl8v5aoUymYwPJJTJZKtXr66HUusIgaWO6OhofhNuZGQkk8mePe6mNu+++y4RjRgxggdWXl6exuuEGoSEhPCHoMDAwMrKSl2XUyd8K/KxY8f+8MMPtXZCVQ3HNzc3r+qwj1Zp1JnuILDUxPs4e/bsqd5N1uHDh3lONWnShEQY//Kc4f/CpVKpniyIXEcrVqzguxAEBgaeOHGihm0uq4bj29ra8pWUGzRocOrUqfqsti4QWGratWtX9Zus69evK9+2sLCQb0/PHyq7du2K1bLq2dGjRy0tLX/77TddF6IZjx49cnR0rHob0KpVqy+//PLy5ctPHVY1HN/Jyal58+ZUw7h8fYXAUh+fwMVvsiZOnKh8Qz6bv1WrVhKJxMjI6OrVq1qrEf6V/s+bU0lFRcVff/0VGBjI79k5Z2dnfs/Fj1mwYAERdejQgXfSKzUuX88gsNS3e/du/mpGpZusY8eO8ZxycnIiogULFmi7TnihVFZWnjhxIjAwkE8w5Nzc3IKDg69duzZ58mR1xuXrDQRWnfDbK/5/ZeboFBUV8Xty/jDYuXPnGpbfBqiLioqKgwcPTp48mU8zrBo7xscqy1Vcx0ZPILDqZM+ePURkZ2en5E1WUFAQEbVs2VImkxkYGJw/f75+6oQXmVwu5/dc5ubmUqlU6JkVCKy6qn6TNW7cuBqOPH36NM8p3uOu9nJrAOopKCgoFnq8GSY/1x3fsCQ5OXnEiBGzZ8+u4ciwsLDKykoPD49bt261bduWbxkNUG8sLCx4B5a4JIwxXdcgPE9Pz7Nnzzo7O7/66qvW1tY2NjbW1tbW1tZWVlZP/X/+/PmLFi1SKBQnTpzgS6YBgPIQWBqwevXqwMBAhUJR65FSqVShUMyaNWvZsmX1UBjAcwaBpRlHjx69fPmykZFRXl5efn5+Tk4O/8FT/zcwMGjRosW5c+f4KpEAoBIEVr168OBB9RHJAKASBBYACANvCQFAGAgsABAGAgsAhIHAAgBhILAAQBgILAAQBgILAISBwAIAYSCwAEAYCCwAEAYCCwCEgcACAGEgsABAGAgsABAGAgsAhIHAAgBhILAAQBgILAAQBgILAISBwAIAYSCwAEAYCCwAEAYCCwCEgcACAGEgsABAGAgsABAGAgsAhIHAAgBhILAAQBgILAAQBgILAISBwAIAYSCwAEAYCCwAEAYCCwCEgcACAGEgsABAGAgsABAGAgsAhIHAAgBhILAAQBgILAAQBgILAISBwAIAYSCwAEAYCCwAEAYCCwCEgcACAGEgsABAGAgsABAGAgsAhIHAAgBhILAAQBgILAAQBgILAISBwAIAYSCwAEAYCCwAEAYCCwCEgcACAGEgsABAGAgsABAGAgsAhIHAAgBhILAAQBgILAAQBgILAISBwAIAYSCwAEAYCCwAEAYCCwCEgcACAGEgsABAGAgsABAGAgsAhIHAAgBhILAAQBgILAAQBgILAISBwAIAYSCwAEAYCCwAEAYCCwCEgcACAGEgsABAGAgsABAGAgsAhIHAAgBhILAAQBgILAAQBgILAISBwAIAYSCwAEAYCCwAEAYCCwCEgcACAGEgsABAGAgsABAGAgsAhIHAAgBhILAAQBgILAAQBgILAISBwAIAYSCwAEAYCCwAEAYCCwCEgcACAGEgsABAGAgsABAGAgsAhIHAAgBhILAAQBgILAAQBgILAISBwAIAYSCwAEAYCCwAEAYCCwCEgcACAGEgsABAGAgsABAGAktfXLx4saKiQtdVAOg1BJZeyMzM7N+/f6dOnbKzs3VdC4D+QmDphblz5+bl5bm6utrZ2em6FgD9JWGM6bqGF11iYmKnTp2I6NKlS+3bt9d1OaADqampP/74Y79+/V577TVd16LXcIelezNnzpTL5R9++CHS6oUVHR29dOnSkJAQXRei73CHpWsHDmyfN++7vLxDf/1lb2+v62pAN3Jzcx0dHUtKSpKSklq1aqXrcvQX7rB0qrKSZs0ac+bMxXffRVq9yGxsbMaOHcsY++mnn3Rdi17DHZZOrVlD06aRiwslJJCxsa6rAV2KjY3t2bNngwYN7t+/b2Jiouty9BTusHSnoIDmzyciWrYMaQU9evRYNWZMorOz8c6duq5FfyGwdOfECcrNJR8fGjlS16WAXpg2cGDD8+clP/6o60L0Fx4JdeH+fdq6lSwsaMAAkkiobVtdFwT6obCQXnqJ8vLoyhXq2FHX1egj3GHpwpdf0vTpNGgQbd6MtIL/srCgceOIiNat03UpegqBVe8KC8nBgczMqFUrysnRdTWgZz78kIho61YqL9d1KfoIgVXvzM2JTxgsLiZDQ11XA3qmQwdau5YiIujIESoq0nU1egd9WLpw9Cj9+SfJ5fTBB2RhQQ0a6Log0CdRUXT7NvXpQ6tW0caNJJPpuiA9YqDrAl5IAwbQgAF08yb5+5OlJR05ouuCQJ8cPEhr1xIRdetGycno5awOgaU7DRrQ7duUmUk7dtDo0cq2unePVq8mY2Nq357GjNFmfaAjxsZUVPSk68DKStfV6Bc8EurUTz9RQAA1a0aJiWRurlSTGTNo4UKysKCPPqJly8jUVMslQv0qL6fbtyk0lBwcSCajL77QdUH6BZ3uOvXee9SjB927R0uWKNukrIwsLIiIGjUirPb3nElOJldXunqVQkPp6681lVYKheLatWsbN2708fH55JNPiouLNXJancAjoU5JpfT993J//++PHRtx65aLi0vtTZyd6dQp6tiRkpOpSRPtlwj1paiIRo6k+/dpxw4aNaqOJ0tPTz937lxcXFxcXNzp06erVrI9c+bMvXv3fv/9d4lEUueKdQCPhLr3wXvvrdu4cdiwYX/88UftRysUtG0b3btHXbqQiQn17av9AqFeTJxImzdTmzYUG6tG11VJScmFCxdiY2NjYmLOnj17586d6r/r6Ojo5OTUrFmz/fv35+fnT5s2bdWqVZorvR4x0LX09HQbGxsi2rNnT+1HJyWxDh1Y+/aMiHXqpP3qQGXZ2dkzZ87s2LHjW2+9FRsbq1Aoam2SExbGiJilJUtMVOOKc+fONTIyqv7v2tLS0t3dfcCAAd27d2/w97iZNWvWHD161NjYmIiWLFmixoV0DoGlF1asWEFELVu2LC0treXQ/HwmkTBjYyaTMQMDVuvxUI/Onz8fEBBgbm5ORFXPXM2aNQsICIiOjq6oqHhmq7Nnz1pZWa3z8mLbt6tx0YKCAgMDA6lU6urq2qNHj+7duzdv3vypJ74mTZoMHz589+7djLFt27ZJpVKJRLJhw4Y6fbW6oPeBtXAhW7iQBQayBw90XYoWlZeXOzo6mpiYrFy5svajXV0ZEXN2ZkTswgXtVwe1KCgoCAsL69q1K08HqVT6yiuvTJs2bfr06S+99FJVajg4OAQEBOzfv7+8vLyq7aNHj/gxn3zyiXpX37ZtGxF5e3v/+uuvVdcyNDR0d3cPDAwMDw+Pj49/qsmaNWuISCaTRUVFqf9l64J+B1ZiIlu6lDHG0tPZF1/ouhotqqioaNasmUwm+/zzz2s/etQoRsR69WJEbONG7VcH/yoxMXHOnDm2trY8JmxsbAIDA2/evFn9mPj4+ODg4LbVxn/a2Nj4+/uHh4fn5eUNGjSIiDw9PcvKytSrYcyYMUS0YsWKO3fuTJgwYfXq1XFxcf92N1fliy++ICJTU9OTJ0+qd12d0O/AOnOGbdrEGGMVFWzaNB0Xo02rV68mIhcXl5KSktqPnj+fETFvb0bEgoK0Xx08rbS0dPv27b6+vlUZ5O7uHhYWVlxcXEOry5cvBwcHd6y2bgzvTmrcuHFaWpralVhaWhLRrVu3VGqoUCjee+89ImrQoEFCQoJ6V69/+h1YxcVswgSWnMyWL2d79+q6GmU9fPhw6dKlLVq06NevX2FhYa3H5+fnN2rUiIh27typzPkL9+696eUVMWTIrK5dxw0erHadpaWlYWFhynQJQ3Xr1683/3uUr7W19fTp069du6bSGVJTU0NCQry8vAwMDMzNzd9//321i+Fvlj08PNRoK5fLR44cSUSOjo537txRu4b6pN+BJZezS5fYypVs61b976wpKyuLjo729/c3NDSs6nPt0qVLrd8Ks2fPJqLevXsrmR38jTV/DLGxsVEvcTIzM728vIho8eLFajR/YeXm5tra2pqamrZv3z4sLEyZD6QaREVFSSQSU1PTp54ilTdx4kQiWrRokXrNi4uLvb29icjNze3x48fqnaQ+6XdgXbvGiJiLCyNiHTroupp/df78+Y8++qhq02ZDQ8Phw4d/++23bdq0ISJ7e/tjx479W9tbt24ZGxtLpdJz584pf0X+orphw4ZElJqaqmrBycnJvDZHR8eLFy+q2vxFxrt+vL29NXXC8ePHE1H//v3V+OCpqKjgmy0lqjUYgsvOzuYbYnbs2FHtk9Qb/Q6sO3cYEWvShBGxFi10Xc3TsrKyqr8b4h9TixcvfvToET8gLy/Pz8+PiIyMjNavX//Mk4wePZqI3nnnHZUu3b9/fyLq1q0bEan6oufkyZP8u7xLly737t1Tqe0LLiMjg3cYnTlzRlPnfPz4Mf/g+eWXX1Rte/DgQSJq37692lc/depUcHBwaGioRCKxtbVV+zz1RvOBVVJSMmXKlF69elVWVtb1XI8fMyJmY8OIWMOGmqhOM5YuXern52dg8GRiU8OGDWfMmHHp0qV/HimXy+fMmcMPCwgIqP4+mzF2+vRp/kRw9+5dlQr4+OOPiYj3fM2cOVP5hps2beIjDEeMGFFUVKTSReGjjz7if3SaPe3PP//crp2Hp+cFVZ/JPvzwQyL6+uuv1b50QEAAEfn4+BDR1KlT1T5PvdHKHVaLFi2ISAPPGqWljIgZGTEiZmamidI0YNmyZVKplA9j8fX13b59e60vpH/55Re+09zLL7+cnZ3Nf1GhUHTv3p2IvvnmG1Vr+Prrr3kBvLPMy8srJCQkMzOzhiYKhSI4OJj3rAUGBmrg4+QFk5rKBgyIMjW1/uewpjpSKBS+vnIiNmmSCq0qKyubNGlSl39olZWVjRs35q+niejQoUPqnac+aSWw3n33XSJavny5Bs5laMiImFTKJBIml2vghHU2duxYIho0aFBGRobyrU6dOsW/OVq2bMlfKm3evJn3Iqnacfvbb7/x+HNzc/Pz86vadNPExGTkyJGRkZH/HBtRWlr69ttvE5GBgcHq1atVuhxwEycyIvbhh0qMO1HdjRvMxIRJJOzwYWWbnDhxgoha1KGr5K+//iKi5s2bE5GdnV2tQ7f0gVYCa8uWLUQ0uA5v3KvEvPrqsX79dvXv/4u3d3F+ft1PWHd8HE1sbKyqDe/fv+/h4UFElpaWERERTk5ORBQeHq7SSUJCQvj9XUBAAP8Oy83NDQ8Pr/6Iam1tPX78+Kq5II8fP+b3/JaWlkpNV4R/iI9nMhkzMmIpKdq6BB9d16oVU2YoXllZ2bhx44ho1qxZGRkZSUlJalwxKCio6nlQ1V5UXdFKYKWlpUkkEgsLi6e6bNTg6OjIX7QR0cOHDzVSXl1UVFQYGxtLJJJ8tdKzsLCQ97Lz0OnYsaPyj2ZlZWziRObj85FMJnvmWIS0tLSVK1fyx0yOzyBr2rQp/yjW+LPMi+P11xkRmz5di5coK2NubqxpU3b16rMPuHXr4datW4OCgnr16sVHnNra2s6ePbt169ZOTk6qvj9RKBT8I5MPwY+OjtbA16B92npL2K5dOyI6depUHc/TunVrIuJ/ssnJyRqprS4SExPreB+uUCgWL15sZGQkk8mkUqmvr294eHhBQUHNrbKyWL9+jIhZW8v37KllLsXt27cXL17MBy7wx8Du3bunp6erXfML7vx5JpEwc3Om7T/C69dZZCTj0bFpE8vPZydOsJAQ5u/PHByYt/d/NyuUSqX8s9zExKRTp068fyArK0v5a8XGxhJR48aN+b2FUlMs9IC2AmvatGlENH/+/Dqehw8aaNWqFRE98zVcPfvjj6MmJjZ1fNpNT0/nOVL1EGdhYTFr1p49e9gzuxFSUljbtk8GeJw/r8KFYmNjBw8ePGXKFJW+lV8cffr08fPzmzFjRmho6N69e2/cuPvU65O0NJafzyorWUgI+/77+igpNJSNHs1yclhQEGvRghH997+ePROGDRu2aNGiw4cP5+XlMcZmzJjBn/T553rPnj2V7w/97LPPiKhPnz5ENHbsWG1+TZqkrcCKjIwkon79+tXxPHwYLu+u1odZmgsWMJmMffVVTVPGanXkyBEi6t27d3Z2dnh4uK+vr0Qi6dIlh4jZ2rLx49mhQ0wuZ/yGMjOTeXgwItalC8OoKQ0qKCig/+XjM0UmYy1asIEDWUAAW7KEzZnDZsxgjNXflM3QUHbyJPvsMxYUxCZMYL17s48/Ztu2sdu3n3FwZWUln/lsb2/Pb7j8/PyU7DvnN+C8Q/b333/X8JehNdoKrJycHJlMZmRkVMfBPnwMLn9/P3v2bE2Vp7Y33mBET2Zkqy00NJSIqs8gS01N/e47RYcO//04HTGCOTqyO3fYhg3sP/9hb7/NantqBNVUVFRcunQpMjJy6dKlH3zwga+v74gRG2Sy/7mp+fRTtnIl++uveg2sW7fYDz8wPz+lji8rK+PrPTg5OfGu3nHjxtU6aP7q1av8zaBMJjM2NlavQ1YntDjS3d3dvS6DOwoLC/mnh0Qi4d3GRDR69OiqceQ60bEjI2KqvyH8H3y83zOXvoqPZ8HBzNWVhYSwmTPZtGlswwZ2+XKdLgfKKytjN26wffvYqlVs9mw2bx7LzmYBAfW3VsjBg+zBA1ZRwZRZGI3Lz8/ncx7atWvHZ2V/UdtaTFu3bjU2Nu7duzcRDRs2rK5F1yMtBhaf06vUAk//cPNmCr9ZtbKy+uOPPxQKxdq1a/msCHt7+8hI1caFx8XFTZ8+vWvXrr6+vmqvOsQYq6hgxsZMImF1/EDiL5IPHDjwbwcoFCwnh82dy7ZvZ6NHI7B0Zt48lpvLLl5kr71WT1c8fpxJpUzVDMnIyODdWF26dOEzGVasWFFzk0ePHnXo0IGIfv75Z/XLrXdaDKx9+/bxjkDVG7J27crs7d1at25dfeGOBw8eDB06tEePoURs8ODaO3SemuvHe7h9fHxUGvBZ3fXrjIg1b65e6//it+7379+v4ZjCQjZ3LmOMDRqEwNKltDQ2bx6bN6+eLrdxIyNib7+tcsOUlBTe1durVy+JRPLM6fQPHjzYvn17YGCgl5cXn3JvbGys20cWVWkxsAoLCw0MDCQSydSpUw8ePKjMe1OFgn37LZNK+ZDiNP4q5H8PUPz8c6G1NeP9088cdFlWxiIj2dChrE+ft3lUNWzYMCgoaMOGDXx4xEsvvXRepZdtjDHG0tLYlSvs3Dn244+qNv0f/BWhlZVVzR0NCgUrLmY//cTeeYepG7CgAamp9TqT9csvGdGTzypVXblyhe9m4unpuWDBAsZYRkbG7t27v/7660GDBvHfqmJgYODo6LhRtBVrtbtaw2uvvWbBd/0kMjU1ffXVV9es2fFvi50VFLDRoxkRk0jYnDmshgGV9+6xwYOfdIu+9x47cYIxxg4fZnFxbPp01qDBk9/y8Dg8bNiwqKioqsfAtLS0nj178mEEkZGRKn0tu3Yxb29WUvLktZHajh49yr+llDmYL4N85Eidrgh11KgRI2IqruipJv5WR8XpD/91+PBhPqbU2dnZ1dX1qdegzZo1Gz169LJly44fPy7o1HftBlZ5efmBAwc+++yzbt268Wm3Pj5RRKxRI+bvz8LCWFoa27mTZWczuZx9+umTpRl271bq5Nu3s8aN2fffMy8vlpvLZsxg3bs/iSo3N7Z48bOH+ZWWlr7zzju8L3/OnDlKDjQ/f55FR7O1a9m339Y1sPgrwsmTJytz8IcfMiJWW3cEaNfQoYyI/fZbfVyLfw/XZQDP77//bmhoyF+sm5ube3l58a0oVF1DWT/V33pYjx49+uWXX2bOfNC48X9fGxsbs3ffZZ9/zsrK2OzZbO5cduOGCucsKWG7d7PNm9nnn7MZM9jmzSwoSKmlSUNCQvjfqL+/fw0fNWlpLCSEde7MiNjixezoUTZ/Pnv9dVZcrH6/+5QpU5TpE+XWrmVEbOJENa8FGrFwISOq6weVknr2nNK7d+jDh3W6/Tl16tTs2bMvX74s14/1AjRINwv4paSwkBDm68sGDmSffMLWrGF//cXUG2W1ezc7coStXMl8fVVruG/fPv5U37lz59v/OyyvpKQkKurU4MGsalROo0bsiy/YiROsqIj16cPefpt16KDmM0Lfvn2JaP/+/cocfPo0I2KdO6tzIdCUw4fLPDz2TZz4k7YvlJOTw/srsND+v9HxiqMKBfvkEyaXs3ffVTOwTpxgsbGsvJy9+abKbW/cuMFnftrb2//555+Msfj4+Dlz5tjb20ulBk2byo2MmJ8f276dVZ/E/fgxa9eOETF7e/bvSx8/W1FRER+coeRU1cJC5uZ2vn//dXUZjQF1lJeXx1+o1b7Nbd2cO3eOiDphQ+9/p/slkvkAuZgYtmyZOs0XLmSenkztRVOysrL4Zk2GhoZ8AU/O3d1948br/7YCZH7+k+n7BgbKTjE7f/58YGBggwYNpFKpqamp8h+hfAoFVl7XLTc3N1JrTSGV8C1RNb6i6fNESro2YwYxRmvX0oIFlJGhcvO9e+nMGZLL1by6nZ3d/v37P/74Y8ZYdna2nZ1dQEDAhQsXzp8/P2lSmwYNnt3K0pIiI2n2bJLLafPmAx99NL2iouKZR96/f5/vRuHh4fHDDz9kZWW5urpu3rz5qZ3Ea9ClSxciunTpklpfH2gGf7kcExOj1askJSXR33uLwLPpOjGfGDZMnddheXnM0JAZGrJ/DNhS2cGDB3/99VdVF13curXYwaExEfXv37/6Lkl8o83qi+o1adIkMDBQjQUnvv32WyKaUT9dvvAvfvzxRyIaN26c9i6RkpLi6OjIt613c3MLDg5WdbvDF4G+BFZkpDpbee3YwYhY375aKUlJcXFxzZo1IyIXF5erV69WPfrxnDI2Nvbz89u+fbva68/u2bOHNLHuBdRFbGysubm5paVlTEyMNs4fExPDb6wcHR15Lyfn5ub21VdfxcXFaeOiItKXwCorYw0bMiLV9ksNCGBETN1NJDWmau3jqvspIurRo8fq1aurtpxQ25EjR6RSqaWlZfVVj6GeyeVyPlnP2Nh47dq1mj354cOHeUj5+vqmpaWZm5u3b9/ex8en+rNh8+bNAwMDDx069IJ/A+hLYDHGAgMZkWrreDg7MyLV1rTTkuLi4lGjRpmamtra2gYGBmqqj/zAgQPW1tbVH+EdHR1nzpypxtQiqKOKioqqHdvefvvtOu75XOWXX37hW4WPHz++vLz84MGDfIQgEclkss6dO/fp08fBwaHqG6BJkyajR4/Wh7XhdEKPAisujhGxBg2Yku+O+VRke/uaJvHUs7S0NA2OP1i/fj3/Vvby8rpw4cLixYv5hzzXokWLOXPmqLf7AKgtKiqKf4S0a9cuISGhjmf7/vvv+er+1Tdey8rK4ruK8Ek2nIuLS9++ffkGenxR4+LiOq0iKSg9CizGnowp37mTMcaKi9njxywlhV25wmJj2aFD7D//Yb/9xsLC2MGDjDF2+DBr1oy99ZZuS9YKvodg1aOlRCIZPnw4HwnBR4rxDemqujkWL16clpam66pfFNevX+frSlpZWe3YsUO9k1T9FUskkiVLljzzmLy8vK1bt44ePZqvcsV9+umnVlZWRPTPxRheBPoVWJs2sU8/ZamprKzsya5Hz/zvjTfY55+znBx2/z4TZLMPFZSUlPCtD42MjPgSazKZLDQ0tPoxcrn84MGD77zzDv/e5ce0adOm7l1moIyCgoKq1SUDAwNV3R1KLpdPnjyZd3pu2LCh1uNLSkqio6MDAgIaNmx49erVCRMmENGaNWvULV9g+hVYJSXspZdYZuaT5LKxYc2aMVdX1rYt69aNeXiwnj2Ztzf74AM2YQL7/HOWmMg03QGqY2lpaXyfLhsbG74bioWFxa5du/7t+NLS0ujo6PHjxxsaGkokkpEjR9ZntS+4sLAw/szet29f5fegKyoqGjJkCBGZm5vv3btXpSvyZFy9ejURTXwhp5j+962WnvDzo8WLqUMHMjKi3FzKzX3GMTIZubtT06YUG1vv9WlTfHy8n5/fnTt3nJycZDLZlStXHB0dd+3aVbUG4T8ZGxsPGTKkXbt2jRo1Wr58eWlpaX0W/IILCAho167d2LFj//rrLw8Pj9DQUG9v7/z8/LKysuLi4qKiovLy8ry8PLlcnpeXV15eXlRUVFRUFBkZmZCQ0LBhwz179lTfRFIZPB/rZxSrftK7wGrQgJo3p9OnqVUrcnAgCwuysiITkyc/MDUlc3Pq0IHu3KEpU+j118nPT9cVa8ihQ4f8/f3z8vI6dOiQlpaWnZ3duXPn3bt385GENUhKSnJzc+ObpmBAfD3z9vaOi4sbO3bsiRPmONrHAAAgAElEQVQnRo0axRirtYmzs7Odnd2JEyf45nVq6NSpk6mpaVJSUk5Ojq2trXonEZREmT/ielNaSgsX0vz55O1Nq1bRv99Y0I4dNHo0nT9PxcXk41OPJWrHtGnT1q1bJ5fLPT094+LiysvLR4wY8csvv5iZmdXatrKy0srKqqSkxMLCoqCg4NGjR9XfgkM9kMvlw4YNO3bsmJmZmY2NjZGRkbm5uZmZmbGxsZWVlYGBgY2NjaGhoYWFRVZW1vr161u1amVnZ1dQUHDt2jX1rujl5XX69OkDBw7wLXNeILp+Jv0fCgXjO37m5io7uOE5IJfLTUxMpFLpyJEj+V/KJ598ovwW9oyxHj160N97zB3k71BBL5WVlfHF1M3NzSUSSWZmpnrnmTlzJmlio2Lh6H7yc3USCdnZERFZW1O1MSjPOZlMxpdA+u6770aOHLlq1arly5fz4TlK4hOk+fggPBXqMyMjoy5duigUCldXV/b3fvFqeGG7sfQrsF5Y/PvvypUrkZGR06ZNU7V5586diUihUBDR5cuXNV4eaBD/u+aLR6qdOPwkZ8+eZfrUpVMPEFh6gSeO2lnD77CysrIId1h6j2cNf5+rdmA1b968SZMmWVlZqampmixO7yGw9AIPLLWzplOnTlKpNDU11cDAICkpCYMb9BkPrFu3bhFRTEwMvy9WAx8ScfbsWQ3Wpv8QWHqhjqv0WVhYuLq6lpeXOzk5yeXy+Ph4jVYHmuTq6urg4PD48eMmTZrk5uYmJyereoZvvvlm3759/E1LZGRkZWWlFsrUUwgsvdCyZUsLC4v79+8/fvxYvTPwyOOrPOOpUM/xmyO+ra9KT4WVlZUffPDBvHnz3nzzzZMnTzo4OOzcudPBwWHChAkRERFFRUXaqlhvILD0glQq5YMS1O7G4g+VfEEu9LvrOf5UyBdjUD6wysrK3nzzzXXr1hkbG7u4uOzfv7+goMDZ2Tk7O3vLli1jxoxp2rRp0KWgHbk7ihTPbXIhsPRFHZ8K+/btO3nyZC8vLyI6dOiQJisDTeOBxTf1UjKwcnNzBw0aFBERYWNj06pVq4sXL9rZ2R05cuTWrVspKSkhISFeXl5Sa+mP7Ef/W/72V+yHpgxd93hdhjwjrSJtS/aW+JL4zdmbtftV1Q9dDwSDJ/iq4ePHj1f7DFlZWT179pRKpe3bt9dgYaBxOTk5UqnUxMTEyspqwIABtQ4SfvjwIf88c3BwcHZ2JqIWLVpcv379qcNSM1OXpy/vfb23NE5KcURxtCR9yZu33rxZejM6N/rjex9r7QuqPwgsfcFf96i9J11SUhKfm+bo6LiTrygGeqxly5ZE9NVXX9W61+HNmzf5wS4uLk2bNiWiDh063L9/v4YmD8ofrM5YPfDGwJ05Ozc+3sh/EYEFmlRcXCyTyQwMDEpKSj788MPPPvvsypUrSrY9deoUX/+7c+fOSm7RCrr18ssv863ezMzM/Pz8wsPD85619dO5c+f436ybmxuf59y3b9/c3Fwlr3K95Pqih0+2PEBggYbxPVN//PFHIyMj/sDOt3u6efNmDa22bdtmYmJCRCNGjCgqKqq3aqEuSkpKxo8f361bt6rOGVNT09dffz08PLxqFcbi4mK+tKyHh4epqSkRDR8+XNWVkRc8XDA3be6KRyvmpz0PEw8RWHqke/fu/FPXxcXFy8ur+qYp7u7uISEh6enp1Y/ny+zyJtUXBQeB3LlzJyQkxNfXt2rLJZlM5uXlFRIS8uDBg0OHDvn4+PDfmjRp0gu+ZQ5DYOmVzMzM3r17V21LZ2Bg4O7u7unpWbXIjKGh4ZAhQ/gylaWlpePGjePf36tWrdJ17VBXaWlpa9asqZ5cUqmUD6wjom+++UbXBeoFBJbe4Qt4+/v7Vz0YmpiYdO/e3dPTk//K/Pnzs7KyfHx8iMjCwmL37t26Lhk0KTs7Ozw83N/f39zc3MDAwMjIaPXq1bouSl/o1wJ+UF1ubm50dHRERMS+ffv49Atra+u2bdv6+vru2LEjKSnJ0dFx9+7d/IU3PH8KCgrWrVvn4+Oj6krKzzEElgAePHiwY8eOiIiIU6dOEZFUKlUoFN27d4+Ojm7cuLGuqwOoPwgskSQkJPzyyy8///xzy5Yt9+/fr8wCygDPEwQWAAgDcwkBQBgILAAQBgILAISBwAIAYSCwAEAYCCwAEAYCCwCEgcACAGEgsABAGAgsABAGAgsAhIHAAgBhILAAQBgILAAQBgILAISBwAIAYSCwAEAYCCwAEAYCCwCEgcACAGEgsABAGAgsABAGAgsAhIHAAgBhILAAQBgILAAQBgILAISBwAIAYSCwAEAYCCwAEAYCCwCEgcACAGEgsABAGAgsABAGAgsAhIHAAgBhILAAQBgILAAQBgILAISBwAIAYSCwAEAYCCwAEAYCCwCEgcACAGEgsABAGAgsABAGAgsAhIHAAgBhILAAQBgILAAQBgILAISBwAIAYSCwAEAYCCwAEAYCCwCEgcACAGEgsABAGAgsABAGAgsAhIHAAgBhILAAQBgILAAQBgILAISBwAIAYSCwAEAYCCwAEAYCCwCEgcACAGEgsABAGAgsABAGAgsAhIHAAgBhILAAQBgILAAQBgILAISBwAIAYSCwAEAYCCwAEAYCCwCEgcACAGEgsABAGAgsABAGAgsAhIHAAgBhILAAQBgILAAQBgILAISBwAIAYSCwAEAYCCwAEAYCCwCEgcACAGEgsABAGAgsABAGAgsAhIHAAgBhILAAQBgILAAQBgILAISBwAIAYSCwAEAYCCwAEAYCCwCEgcACAGEgsABAGAgsABAGAgsAhIHAAgBhILAAQBgILAAQBgILAISBwAIAYSCwAEAYCCwAEAYCCwCEgcACAGEgsABAGAgsABAGAgsAhIHAAgBhILAAQBjPVWBdvnz59u3buq4CALTlOQms5OTkkSNHenh4tG3bNigoqLCwUNcVAaggNTV1zpw5+/bt03Uh+k74wMrOzp4xY0b79u2joqKIqLy8/IcffujUqdN//vMfXZcGoKzo6OilS5eGhITouhC9x4RVXl4eFhbWsGFDIpJKpePHj79z584rr7zSvn17/qUNGDDg2rVrui4ToHY5OTlmZmYSieTGjRu6rkWviRpY0dHRLVu25MHk6+t76dIlxhj/gJJKpf369WvQoAERGRoaBgYG5ufn67pegFpMmjSJiGbPnq3rQvSaeIF17tw5Hx8fHlVt27bdvn171W8VFRUFBwcbGxsTkY2NjY+Pj0wmI6KmTZuGh4crFAodlg1Qs5iYGCJq0KBBSUmJrmvRXyIF1r179wICAqRSKf97DQkJqaio+OdhN27ceO2113iitWnTpkOHDvzH/fr1u3r1av2XDaCkVWPGZHh4KLZu1XUh+kuYwNq1axe/dTI1Nf38889rfcqLjo5u0aIFEUkkkl69etnZ2fEnxKFDh9ZPwQAqCwtjRMzbW9d16C9hAqtr164ymaxbt2537txRsklRUdFXX31lYmJCRNbW1q+88opEIiGiffv2abVUADUVFDBra0bErlzRdSl6SphhDU5OTpWVle3bt581a9aFCxeUaWJmZrZgwYL4+Hg/P7+8vLzp06fzF4g8wgD0joUFjRtHRLRuna5L0VPCBJZcLieia9euRUREZGZmKt/Q1dV1165dZ8+eHTJkiJmZGRHx/wPoow8/JCLaupXKy3Vdij4SJrAqKyuJiDFGRPzdn0p69uxZdRI1mgPUkw4daO1aioigI0eoqEjX1egdYQKL32EpFAqqQ+LwkyCwQK81akRXrpC9PU2dSpWVuq5GvxjougBl8ZsjHlgGBmqWzU+idnOA+nDwIK1dS0TUrRslJ1PbtrouSI8Ic4dVx0fC6ifBHRboNWPjJw+D2dlkZaXravSLMPca1R8J1b5F4ifBHRbor/JymjqVPvuMHBzI2JiaNtV1QfpFmH+61R8JcYcFz6fkZBowgEJCKDRUg2dVKBSJiYkxMTE///xz9+7dFyxYIO6LcmECS4Od7rjDqlLOyitYhbnUXNeFAFFREY0cSffv044dNGpUHU+Wnp5+7ty5uLi4uLi406dPZ2dn818/c+bMvXv3fv/9dz6IWjjC/NPVYKc77rDOFp2NyIkwkBj0teybX5n/hu0buq4IiKZOpfh4atOGwsLUaF1SUnLhwoXY2NiYmJizZ8/euXOn+u86Ojo6OTk1a9Zs//79ERERDg4Oq1at0lDd9UvXQ+2V1bFjRyJycXEhooSEBFWb82WGGjduTEQPHz7UQoEimXh7ooIpFEwRWxT7W/Zvui7neZOdnT1z5syOHTu+9dZbsbGxyiwTksNnEVpassRENa44d+5cIyOj6v+uLS0t3d3dBwwY0L17d77UEhGtWbPm6NGjfE7ukiVL1LiQzgkTWHwm86pVqw4dOlRUVKR8w4SEhCFDhpiYmNy+fZtPgc7MzNRenUJ4/877/AcILM06f/58QECAubk5EVU9czVr1iwgICA6OvqZi4swxs6ePWtlZbXOy4tVWytJeQUFBQYGBlKp1NXVtUePHt27d2/evPlTT3xNmjQZPnz47t27GWPbtm2TSqUSiWTDhg11+mp1QZjAat++vUwms7GxCQkJqaysVKZJWlrae++9xx8AbW1t/f39pVKpgYFBWlqatqvVTwqm+Drt6/Cs8I/ufnS1+OqdsjvHC44jsOquoKAgLCysa9euPB2kUukrr7wybdq06dOnv/TSS1Wp4eDgEBAQsH///vLy8qq2jx494sd88skn6l1927ZtROTt7f3rr79WXcvQ0NDd3T0wMDA8PDw+Pv6pJmvWrCEimUwWFRWl/petC8IE1vHjx6u+IXr16nX+/PkaDi4qKlq8eLGVlRX/m+vZs6e1tTX/G3rjjTfqrWbtycnJUbVJQWXB8JThFEfmF83vld3b8HjD2sy1N0tv3ijFmrzqS0xMnDNnjq2tLf/OtLGxCQwMvHnzZvVj4uPjg4OD21Yb/2ljY+Pv7x8eHp6Xlzdo0CAi8vT0LCsrU6+GMWPGENGKFSvu3LkzYcKE1atXx8XF/dvdXJUvvviCiExNTU+ePKnedXVCmMDioqOjnZyc6O9F3DMyMp46QKFQbN++nT8/ElH37t358UTk6+t7+fJlnZStQRcuXLC1tTUyMho4cGB4eHhxcbEyre6W3e2W2I3iyO6y3cG8g9ou8rlXWlq6fft2X1/fqgxyd3cPCwur+a/j8uXLwcHBvDeW491JjRs3Vvuuv7S01NLSkohu3bqlUkOFQvHee+8RUYMGDdToFNYVwQKLMVZYWFi1DrKtrW1ISIhcLue/debMGU9PT/6t0LZt206dOvEft2vXjj+9i27btm18BA1fdpV/t02fPv3ChQs1tDp67Gi7y+0ojtyuuSWXJtdbtc+r9evX814qIrK2tp4+fbqqe52kpqaGhIR4eXkZGBiYm5u///77ahfzxx9/EJGHh4cabeVy+ciRI4nI0dFR+WXmdEu8wOKqr4PctWvXU6dOMcbeeust3r/Yq1cv3ulob29fPdHEpVAoFi9ezL8oT0/Py5cvh4WFeXl5VX1Wu7m5LV68+NGjR081DA0NNTAwaD+m/YgbI/LkeTop/nmSm5tra2tramravn37sLCwwsLCupwtKipKIpGYmpo+9RSpvIkTJxLRokWL1GteXFzs7e3Nv38eP36s3knqk6iBxVVfB3n8+PHHjx8fMGAAX5/PzMxszpw5eXnPwz/RgoKCESNG8D44vk6Op6cnT+Fr167NmTPHwcGBx5ZMJvP19d2+fXt5eXlFRcVHH33E/3DmzJmj5JsKqBnv+vHW3CrG48ePJ6L+/fursUlKRUWFvb09ESWqNRiCy87O5gtbduzYUe2T1BuxA4sxVlRU9OWXX/InRAsLC/64NGHChHv37um6NM24efMm/36ytbXt0qUL7/j4+eefqx9TVlYWGRnp5+dXNaS2cePGzs7OPLh/+w3vATUjIyODdxidOXNGU+d8/Pgx31vzl19+UbXtwYMHiah9+/ZqX/3UqVPBwcGhoaESicTW1lbt89SbehrpnpubGxQU5OTkxDOFMzc3rz7ajf/07t27QUFByo9lNzMzW7hw4TvvvDNixIj79++7urpu3769W7duGv4CdOT48eOjR4/OzMxs0aKFXC6/dOlS06ZNo6KievToUf0wIyOjkSNHjhw5Mj09/ffff9+0adPly5dbtGjRoEGDffv2de/eXVf1P2fmz5/P73Z79eqlqXM2aNBg2bJlS5asWr3a7dVX6e8xnkrZuXMnEfF+KPWEh4evW7fOx8eHMfbmm2+qfZ76Uz+52KpVK+VL6tChgxqX+Oabb4goODhY07XrTFhYmKGhIRF5eHjwD/ZevXop8zqpvLx8xowZRDRq1Kh6qPMFkZrKBgyIMjW1/uewpjpSKBS+vnIiNmmSCq0qKyubNGlCRBcvXlTvupWVlXzuB59AcujQIfXOU5/q4w5r27ZtycnJpqamr776amZmZtVUvvLycolEUv2nhoaGZ8+ejY+PP3z4cPV3xsp4nuYJlpWVTZ06dePGjRKJpG/fvidOnFAoFG+99db69etNTU1rbnvhwoVevXq5uroSUUpKSr3U+0L45hs6enT4hx+mt2+v4U1MJBLJmjWyTp3o55/p7bdp4EClWp0+ffrhw4ctWrTgHQVqOHnyZHp6evPmzW/dumVnZ9evXz/1zlOvtJ2IRUVFfCTU+vXrly5dWnMxixYtWrJkCRF16tRJ1Vd7vDdU7dcleqV169ZEZGZmxrvYZTLZ4sWLlWybk5NDRKamphKJxMTE5Dl4Q6oP4uOZTMaMjFhKirYuMX8+I2KtWjFlNn4uKysbN24cEc2aNSsjIyMpKUmNKwYFBRER30f9nXfeUeMM9U/rd1jz58+/e/euu7v7pEmTzp07N3fu3LKysqrfLSkpKS0trfppt27dBgwYsG7duitXroSHh7/77rvKX+i5WTrm9u3bqampMpnsiy+++Oqrr+zs7LZt2/byyy8r2dzGxqZx48bp6en8/3fu3OE3/FAXX35JlZU0dSpp789yzhzato1yc+nmTfp7t/L/kZqafubMUb4ew8WLF8vKymxtbSUSSZ8+fUpLS0+dOlV9GlCtGGNRUVFElJGRQXXrCKtXWo3DGzduGBsbS6XSs2fPKt/qt99+I6JGjRrVur1zdZ988gkRLV++XPUy9YtCoeATiTIzMxcsWJCcrPJQzwEDBhARn8m0a9cubRT5Qjl/nkkkzNycpadr90LXr7PISBYdzRhjmzax/Hx24gQLCWH+/szBgXl7/3ezQqlU6ujoSEQmJiZ8gLSbm1tWVpby14qNjSWixo0bSyQSCwuLEmXu6/SAdtd0DwoKKisrmzx5Mn+0UdLYsWO9vLwePXq0fPly5Vs9N31YEomEzztLSEj46quvWrZsqeoZ3NzciIiPxk5ISNB4hc8Nb2/voUOHfvzxx6tWrdq3b19y8r2nNgN8+JAKCqhrV1q5kr79lho10m49bdpQWhpt3ky5uXTpEnXqRN7eNGMGRURQRgaVl/cZNmzYokWLDh8+nJOTc//+/RkzZpSWlqamprZu3TohIWHw4MFFSu8Mxt8wtmzZkjHGlzPR5lemMVp8gNq5c+e+fftsbW0XLlyoUkOJRLJ8+fLevXsvW7Zs8uTJzZo1U6bVc/NISETt2rWLiYlJSEjg/QtqNKe/N+xITEzUcHHPi8LCwpMnT1b/FR+fKadOrWnWjFxdn/yXnU1lZbRyJaWmUkhIPRU2YwYtWcLroaZNqWdP6tmTevWi5s3bEf1R/cj/+7//S0tL2759u7GxsaOjY0xMzBtvvBEVFaXMvwL+PJiXl0cCPQ9qL7BKSkpmzZpFRIsWLeLj4lTSq1cvf3//7du3z507d9OmTco0eW7usOjvxFE7a3jz3NzcupzkuWdiYnLp0qWUaiwtPYjo9m26fZuOHCEi+vRTat6cjh+v18KaNqWmTengQdq1q5YjpVLpli1bcnNzDx486OTkZG9vv3v37kmTJm3evLnmFZDj4+OTkpLs7OwSEhKMjY2rZrkJQEuPml9//TURde3aVe23VLdu3eL9XzWvJFPl/fffJ6J169apdzm9smvXLiJ6+eWX1Wuenp5ORLwjzMrKSo05Hy+ssjJ24wbbt4+tWsVmz2bz5rHsbBYQwKZNq6cCDh5kDx6wigq2cqWyTfLz8/lI6Xbt2vF+gC+++KLmJlu3bjU2Nu7duzcRDRs2rK5F1yOtBFZKSoqJiYlEIvnrr7/qcp7Zs2cTUb9+/ZQ5mL9SFHERxX+6efMmETk6Oqp9Br4qLv//czNLqf7Nm8dyc9nFi+y11+rpisePM6mUqZohGRkZfChMly5d+OyRFStW1Nzk0aNHHTp0IKKnpnnpOa10uk+bNq20tHTChAnqdcFU+eKLL+zt7f/888/o6OhaD36eHgmdnZ3NzMwePHjAuxjUwJ8K+Ysk9Lurbe5cKi6m6GjS3FScWty8SQoFWVqq1qphw4b79u1r3LjxpUuXunXrJpFIZs2adf78+acOS0tLi4iICAoK6tOnj5OTk3jPg9rowzp37tzhw4eNjIwWLFiwcePGcePGPbU8vpKKiooqKiqCg4OnT5/+zjvvuLi4WFtbV60DRURP/fTixYtEtHnz5tOnTxORlZVV9fCq+mlFRUVmZuaSJUs09VqEMZaWlla10ZuFhQWfT1MXUqm0devWly5dSkxMVG/amqenp1QqNTc3v3LlSkxMDF/WEtRQVkbBwdSwIc2dWx+X43MTXF1Vbuji4nLw4EEfH5+zZ896enoOHjzYw8MjMzOTj9uKiYmJjY3l3ZqcgYFBkyZNFixYULXUhxg0fs927do1Q0NDqVTKRwOFhISod57PPvvM1tZ2wYIFMpms+pTpGlgpva93p06dNPLFlpaW9unTp4bbOgsLC1tbW1tbW3Nz87Zt28bFxSl5Zr6218aNG9Wu7cGDB3yu2fjx49U+CTDGGjViREzFFT3V9MYbjIiFh6vZ/PDhw3zlEmdnZ9d/xF6zZs1Gjx69bNmy48ePq7STi/7Q/B2Wm5vblClTfvjhh6ysLCKaN2/euHHjGqg0CZ3o5s2bK1eurKio+O233yorK996662AgIDc3FzGWNUxeXl5fJtCbsmSJXFxcR988AHvgHzqd/Pz8/kzY2Zm5pYtW65cufLnn3/WffLUihUrTp48KZPJqlb1LiwsrKioqDqgsLCw6sfJycnz5s3jS0TWqvqLwvLyclXvUmNjY0eMGPHw4UN7e/tPP/1UpbbwlB49aNcuiokhZ2etX0vtOyxu4MCBmzdvHjdu3N27dysrK83Nzbt06eLu7u7u7u7t7e1cD1+AtmkjBbOzs/mGWu7u7kT08ccfq3oG/lzNV9Rs1qyZMus68iXudu7cWeuRixYtIqIuXbrUcU27e/fu8ZcyR44c+bdjCgoKsrOzs7Oz4+LizMzMJBIJXxy1VpGRkUQ0ZMiQW7du2djYjB8//tChQ0q+7/v111/5HOk+ffr8cw1SUNXChYyIzZhRH9fq2XNK796hDx/W6fbn1KlTs2fPvnz58vM3k1Rbwxr4IHUXFxeZTGZkZMT3MVUSH4NrY2PDUy8yMlKZVsOGDSOiP/74o9YjS0pKmjdvTkThat95M8YY8/f3J6KxY8cqeTyfnu3p6alM7vAuOTs7Oz7liGvXrt3SpUtrWGFGLpfPmTOHHxwQEFB9OylQ2+HDZR4e+yZO/EnbF+IT1y0sLDAS5d9oK7DKysr4Glj8Lkn5hZmKi4v5jWufPn2IyNfXV8mGgwcPJqI9e/Yoc/CWLVuIyNHRUe01uY8ejSEic3Nz5QcNFBQU8OWHduzYUfORDx486NGjB+8KJKIWLVr07du3adOmPImkUqmvr+8/t8zJz88fOnQoERkYGPzwww/qfV3wT3l5eVKp1NjYuLS0VKsXOnfuHGmug/W5pMXJzxEREURkb2/Pu8yPHz+uTKu5c+cSUcuWLfmtmfKLVb/yyitEtH//fmUOVigUfB3OBQsWKHn+6srLmZsb8/K6tWKFap3iP/74I7/xrOFbPy4ujs9Gat68+fvvv8+HJhCRTCZzd3fv0aNHVX+Wvb19UFDQw4cPGWM3btzg3V729vZHjx5V44uCGvDpmbGxsVq9Ct8SdcSIEVq9itC0u1oD35CDj8bq2rVrrX1GVSNO+ffHnDlzlL/WwIEDiejw4cNKHn/q1Ck+T12NLeGWLWNErGVLpuonrlwu56P1/m1c39atW3n3k7e3N+9+qqysPHTo0Pjx46tGTlhbW3t7e7dp04aIjIyMMjIy9u3bZ2Njwz+cU1NTVf1yoFaTJk0iotDQUK1eZd68efxZXqtXEZp2AysmJoYvI8cfZ2pdZp8/0fAZA40bN1Zpzxv+yu/YsWPKN+H99JMnT1a+CWPs4UNmbc2I2N69KrV7Yu/evURka2v71K5KtXY/5ebmPrW1l7Oz86hRoz7//HM+rsLf37+Ou07Bv+G3xuPGjdPeJVJSUhwdHfmaVm5ubsHBwapud/gi0PqKo3w8Ec8gJyenGpbdOXDgAO9x5DsXqbrXC7+bU/LBk0tJSeHTFWveiPQpb7/NiFhdbtv502tQUFDVr+Tl5fn5+fE7pp9+qqVzNyEhYc6cOY3+XutEKpVKpdKFCxeip1Z7YmNjzc3NLS0tY2JitHH+mJgYvkaAo6OjZbVx7m5ubl999ZXyw/eee1oPrHv37vHX+QMHDqx5zEFiYuLAgQN57vTp00fVf358z+fTp0+r1IqvEjtgwAAlj1co2KefMmtrVpcHr2vXrhkYGBgaGvKVbZOSkvgCWPb29srfIZaXl0dFRXXu3NnFxWXp0qXqVwNKkMvlfLKesbHx2rVrNXvyw4cP85Dy9fVNS0szNzdv3769j49P9WVOmjdvHp/8mMEAACAASURBVBgYeOjQoYqKCs1eXSwSVm0oppZ8/vnnixcvtra2Hjt2rKmpafU5MU/9NCUlZcOGDVKpNC4urmqjeSX17NmTz0J4agusmuXk5LRq1SorK2vv3r01T6ras4diY2nePFqwgAIDydpapeqeFhAQ8NNPP40YMeL9999/6623cnNzO3fu/Mcff/DxFqCH5HL5V199xfccePvtt8PCwqo2rK+LrVu3Tpo0qaKiYvz48Rs2bPjzzz9fe+21qomxHTp0sLS0vHHjBl/ImIiaNGni5eU1Y8aM6p0DL5B6CMWcnBxLS0slZ9hJpdLhw4ercRU+wF3JYZnV/d///R8RGRkZufytbdu2b765xd2d8f969WK+vmz5cvb22+zyZVbtSU59jx494hOJ+LpFb7zxhqBTJV40UVFRfN2edu3aJSQk1PFs33//PR+5EhgYWPVKKisrKzw83M/Pj0+y4VxcXPr27Vu1z7mFhcVTg1peEPVxh0VE6enpy5Yta9OmzVO7Tjz107t379rb23/33XdqfHa1bds2KSnJwcFh2bJlEyZMUL5hYWFht27dbt++XX1KTZ8+P508Obn6YQsXUr9+FB5Opqb0/feqVvcMY8eOPXDgQF5e3vvvvx8WFlbzimugP5KSkkaNGnXt2jUrK6uNGzeOGjVKjZMwxubNmzdv3jyJRLJ48eJnTp/Kz8/fvXt3VFTUvn37qtY+/vTTT3/88cf8/Pxz5855eHjU6SsRka4TUwMeP34cGBhY/R/8K6+8cv36deXPUFlZee3ataqVJxMTEy9cuHP+POP/nT7NDh1imzaxmBh27Bjr2FEDNefn51cNBDUzM4uKitLASaG+FBQUjBkzhogkEklgYKCqMwrkcvnkyZOJyMDAQJkV3EpKSqKjowMCAho2bHj16lX+ebxmzRp1yxeY2IFVXFz87bffVi3SIJFIevTowUckGRkZJS9ezAoKNHWtmzcZn5b366+s7sua8gk3vXr1mjJlCq/8edqz+gVRtTV33759+fBdZRQVFQ0ZMoSIzM3N96o4NIYn4+rVq4lo4sSJqhb8HKinR8KazZ07t2vXroMGDVL+SZAx+u039t13XePjLxPRkCFDnJ2df/rpp7KyMmtr686dOzd//Hjz9evUuDF99x2NH08aeuAqLaXmzSkzk06fVn9Rt8TExM6dO1dWVp49e7Z79+7ffffdl19++UqLFtHDhxsuW0bPxRqEL4gTJ06MHTv24cOHjo6OoaGh3t7e+fn5ZWVlxcXFRUVF5eXleXl5crk8Ly+vvLy8qKioqKgoMjIyISGhYcOGe/bs4dMtVBUXF+fh4dG2bdsXccF+XScmu3PnDn+aMzExefXVV9esWXP3bi1Dz8+eZV5ejIj17bvczc2t6mMqKSmJD3EykEozfXyYmxsjYkSsf38WH6+pgr/+mhGxXr2Y2sOeeJFTpkyp+pUd27eXtWzJiNiQIRq8K4R6kJaWxsfiKNkL6ezsbGdnd/36dbUXCykvL+c7e2dnZ2v2a9F/ur/DyszM3LBhw65du2JiYvjbXC+vGzk5rYYOJT8/6t2bpFIqLCQLCyovp9RU+vJLiowkInJ0pG+/lY8bJ62+7igRRUVFsfDwkX/8QRIJeXpSUhJlZZG9Pd29S6amdS+4sJBat6aHD+n332nMGJWbR0REjBkzxs7OLikpiQ+RfeLsWXr9dcrIoI4dac8eUm5zM9AHcrl82LBhx44dMzMzs7GxMTIyMjc3NzMzMzY2trKyMjAwsLGxMTQ0tLCwyMrKWr9+fatWrezs7AoKCq5du6beFb28vE6fPn3gwIEXbi1ZXSfmf2VkZGzatGnUqFHNm8v5jRERa9KEzZ3LHB1ZejqLiGD+/oyImZuzefNYTcMAiovZ3LnMxIQRMSsr1qcP++EHFhrKFi1iy5axui2DxRj76Sc+l7CytFS13taioiI+0iosLOwZv52czFq3ZkSsd+86Vgj6qaysjE+uMDc3l0gkmZmZ6p1n5syZRDR//nzNlqf/9CiwqlRUsBMn2Jw5T/7xzpjB3n2XzZjBIiLY7t1s2jSm7GzllJQnCde+PfvzT8Zfx/znP0yJRf5qJpez4cNPtW7dWdUh5nxJrG7duv3rympZWczPj129ytavZ/Pns9mz2YMHbNGiJ79b9QMQFt8FnY+LVnI1pH/6/fffiWjIkCGarU3/6WNgVXf5MktJYZ98wjZtYtOmMVVmCv5t92525gz7+WfGZ+0kJ7Nly+pe2JEjR4jI0tIyPT1dySY3b940MTGRSqVnzpyp5dDMTMZXqsjKYrNmsY8+YqWlrLSUffRR3aoG3QsMDKS/lzCZO3eueie5ffs2ETVo0OBFm0CqlW2+NKhTJ3JxISKaOJHUfN4fMoR69SJ3dzp8mIjowAHq2bPuhQ0YMOC1114rKChYuHChkk2CgoJKS0snTZpU+0Y4jx9TkyZERHZ2VFhI5eUUGkqhoVRQULeqQff4HRYfLx0TE6PeSZo3b96kSZOsrKzU1FRNFqf3dN/proxjx+jhQ2rUiHr2JOU20HmWgwcpJoY6dqThwzVSVWJiIr+x37RpE1+OgnvmfMn//Oc/I0aMsLKySkpK4uuO1qS8nN5/n77/nv76ix49oqtXKTSUiGj69Cc/AGGlpKS0bNnS3t7+8ePHNjY2WVlZT701UtLrr78eHR29detWviDKi0LXt3hKWbWKEdXfduHK+/DDD6vW1asZf+etwqZn9++zH35gu3Yxxv77JKzOIzHoHb4VIN+ETaUpGVxwcPDevXv5rf3IkSOfv50maqD5bb60QS4nIn0cUPnpp59ev3795s2b1bfhKi4uLisrq/opny8plUo9PT0/+OADZU/t6EjTpz/5sbf30z8AkXXv3n3Pnj1OTk4PHz6MiYnhi8cqo7KycurUqevWrbO2tvb09HRwcNi5c6eDg8OQIUOGDh06ePBgjSwgoc/ECKzKSiIiA/0r1tnZ+dixY7quAgTTs2fPPXv28MUYYmJilJyrX1ZWNn78+IiICGNjYxcXl/3795uamjo7O6empm7ZsmXLli1WVlbv/PWOdwvv16xeM5c+n8ml753uHA8sPbzDAlAD73fnm3op2e+em5s7aNCgiIgIGxubVq1aXbx40c7O7siRI7du3UpJSQkJCfHy8pJaS39kP/rf8re/Yj80Zei6x+sy5BlpFWlbsrfEl8Rvzt6s3a+qXogRWBJJKSGw4HnRo0cPqVSanJxsZWVlbW1dfYvyZ0pPT+/fv//x48cdHBxsbW3j4+NbtGhx+vRpvsqui4tLUFDQyZMnL164+G3Tb3ub9y5XlO/O2/3B3Q9+zvp51v1Zvc17p5anXiq+VC9fnHaJEVilpcuJJAYGX+u6EAANsLGx4Vu9BQYG7t27t+a3hCkpKd7e3pcuXXJxcTEwMEhNTe3QocPJkyf/2fPVwr7FJ40+OdXm1L2O91Y3Wz3QcmAr41YvW73sauw61HqoNr+g+iNGYFWtGKvrQgA0w9nZWSKRLFy40M7ObujQoZs3b87Pz//nYefPn/f09Lx586abm1tOTk5aWlrfvn1PnjxZtVvlMzU1bDq14dTDrQ67mbg9rHiotS9CBxBYADoQHR09bty4bt26FRcX7969e+LEiY0bNx4+fPjmzZt53xYRlZSUDBs2LDMz08PDIzU1NScnZ/jw4fv27bNWekOBNiZtFKQIfhi8MmOlrcxWa19NPdL1uAqlfP7550T07bff6roQAA27c+dOSEiIr6+vwd9vwWUymZeXV0hIyIMHDw4dOuTj48N/i+9Voet6dUyMwOIrXi9ZskTXhQBoS1pa2po1a6onl1Qqrdp98ptvvtF1gXpBjKk5CQkJ165d69Spk/JD7AAElZOTs2vXrt27d+/du7esrEwqla5cuXLq1Km6rksviBFYAC+ggoKCdevW+fj4qLeS8nMJgQUAwhDjLSEAACGwAEAgCCwAEAYCCwCEgcACAGEgsABAGAgsABAGAgsAhIHAAgBhILAAQBgILAAQBgILAISBwAIAYSCwAEAYCCwAEAYCCwCEgcACAGEgsABAGAgsABAGAgsAhIHAAgBhILAAQBgILAAQBgILAISBwAIAYSCwAEAYCCwAEAYCCwCEgcACAGEgsABAGAgsABAGAgsAhIHAAgBhILAAQBgILAAQBgILAISBwAIAYSCwAEAYCCwAEAYCCwCEgcACAGEgsABAGAgsABAGAgsAhIHAAgBhILAAQBgILAAQBgILAISBwAIAYSCwAEAYCCwAEAYCCwCEgcACAGEgsABAGAgsABAGAgsAhIHAAgBhILAAQBgILAAQBgILAISBwAIAYSCwAEAYCCwAEAYCCwCEgcACAGEgsABAGAgsABAGAgsAhIHAAgBhILAAQBgILAAQBgILAISBwAIAYSCwAEAYCCwAEAYCCwCEgcACAGEgsABAGAgsABAGAgsAhIHAAgBhILAAQBgILAAQBgILAISBwAIAYSCwAEAYCCwAEAYCCwCEgcACAGEgsABAGAgsABAGAgsAhIHAAgBhILAAQBgILAAQBgILAISBwAIAYSCwAEAYCCwAEAYCCwCE8f/s3XdYU9f7APD3ZhEgyFARWQqCAoILRFERB86qtdZR2+JolbYOHHW31jq+FbWuqrVUbcWFs9ZRRxG1xYngZCh7KCB7QwjJ+f1xlPJTgeQmIQTez9PHh+I957xB8ubcc8/AhIUQ0hqYsBBCWgMTFkJIa2DCQghpDUxYCCGtgQkLIaQ1MGEhhLQGJiyEkNbAhIUQ0hqYsBBCWgMTFkJIa2DCQghpDUxYCCGtgQkLIaQ1MGEhhLQGJiyEkNbAhIUQ0hqYsBBCWgMTFkJIa2DCQoiNBw8ehIaGajqKZgcTFkIKO3/+fI8ePRYuXKjpQJodhhCi6RgQ0jIVFRXm5ub5+fmPHj3q0qWLCmoUi0FHRwX1NHXYw0JIYUKh8KOPPgKAAwcOKFuXRAJz5sBPP4GvL2RnqyC4Jg17WAixce/ePXd3d1NT0+fPn/P5fPYVXboEJSUwfjxER8Ply7BggepibIKwh4UQGz179uzSpUtWVtbFixeVqqiiAvT1AQD09aG8XCWxNWGYsBBiacqUKQDw+++/sywfGQnPn8PAgXDsGNy4AVu2wLhxqoyvKcJbQoRYysrKsrS0JISkpaWZmZkpWhjc3UEshtOnwdERHj4EBwdo00Y9kTYd2MNCiCVTU9MRI0ZUVVUFBQUpVlIigYkTISUFWrWCoUPh1Cnw8sJsJQ9MWAixN23aNAD47bffFCs2dy788w+0aQOZmVBcDM+eqSO2JglvCRFir6qqytLS8uXLlxERET169JCnSPj+/W6+vsDjQfv2EBMDQ4fChQvA5ao71KYBe1gIscfj8SZPngxyD71fu3atj6/vQmdncc+eEBMDnTrBsWOYreSHPSyElPL48eOuXbtyudzp06c7Ozs7OTk5ODhYWVm9fWVycrK7u3t2dnb//v2r4uIum5mJgoKgU6eGj1l7YcJCSFldunR5+vSpRCKp/k6LFi3s7e1tbW2dnJw6d+7s5ORkaWnp6en55MmT7t27P3r0CADOnj373nvvaS5qrYQJCyFlVVZWHj58uKSkJDo6OiYmJioqKicn541r+Hy+RCIxMDAAgOLi4h9//PHrr7/WRLDaDRMWQqqXn5+fmJgYFRUVHR1N/0xKSiKEcDgcmUzm4+OjgkWIzZK2Jqxr165t377d3t5+48aNDMNoOhyE6lFQULBo0aJ9+/a1bNny+fPnQqFQ0xFpJS1LWISQkJCQ7du3nz9/nsvlSqXSIUOG7N+/39zcXNOhIVSPwsLCtm3bisXi5OTkd47Ko3ppzbQGsVj822+/OTs7Dxky5Pz58y1atHB3dzcxMQkODu7evftff/2l6QARqoehoeGYMWNkMtnBgweVr62wsHDjxo0hISF5eXnK16Y1SKNXWFi4bds2S0tLGnDr1q179eolFAr9/PwyMzNHjhxJv+/j41NSUqLpYBGqy6VLlwCgm5MTkcmUqaeoqKhNmzbVgyHGxsZ9+/b19fX19/c/e/ZsQkKCTLn6G61GnbDS09NXrVplZGRE/1U6dOjQtWtX+o/E5XKnTZtGCJHJZNu2bdPR0QEAR0fH+/fvazpqhGpVVVV1d8wYqYkJCQ1lXYlUKh09ejQA6Ovr9+jRQyQSvd0RMTEx6dev38yZM9evXx8UFKTCl6BZjTRh/fHHH5MnT+bxePSn361bNycnJ/q1jo6Oj4/P06dPa14fGRlJd6rV0dHx9/eXSqWaihyheqxYQQDI55+zrmDZsmUAYGRkNGrUqMzMTELIixcvgoODAwIC/Pz8vL2927y1jvr7779X3QvQpMaYsB4/fiwQCACAw+F069atXbt21TeDq1atys7Ofmep8vJyPz8/2v8aPHjw8+fPGzhsdZNIJKmpqUeOHME7X+0WG0sYhohEpLiYRemTJ08yDMPj8VxcXABg4sSJ77wsPT39ypUrO3bsoB/knp6eygXdWDTGhLV3714AMDU1Hfd6PzN7e/vdu3eXlZXVW/bSpUtt27YFgFatWmlpTzgvLy8yMpJ+YC5dutTHx8fb29vW1pb2NzkcTosWLdLS0jQdJlJC374EgAQGKlru/v37enp6ANCvXz8AMDc3f/HiRR3XHzt2bMSIEfr6+gzDxMfHKxFxY9EYE9auXbsA4Isvvrh165aHh8epU6cUusXLyMgYNmwYAPD5/D/++EN9capKTk7Ovn37li5dam9vX8f0HA6HY2FhQUfr/P39NR01UsLevQSATJigUKHMzEw6GaJXr14AIBQKw8LC6i7Sv39/AOjTpw8AfPfdd0pE3Fg0xoS1cuVKAFi1ahW74tnZ2S9evHB1dQWAMWPGsI8jJ4f4+ZG1a8nSpUo+06ml+pzAwMBRo0bRIww4nFdTTIRCoa2trbe3t6+v76pVqwICAoKDgxMSEiorKwkhly9fph+tYrFY5SGhBlJURP78k+zdS06eJPJ9GFdWVtLs4+zsLBAIGIY5cuRIvaXoHhL0rrBdu3ZNYGy3MSasmTNnAsAvv/zCrvjSpUsBoHfv3gCwfft29nFs3EiePSOEkH37yM2b7Ov5/9LS0rZv396/f3/u601FBAIBfaTw/vvvy3Pb261bNwD4/fffVRUS0oDPPiPx8eTGDSJfx4e+KczNzVu2bAkAy5cvl6dUSUkJXb1obW0NAFeuXFEuaM1rjBNHMzIyAEDhTbL/f3G6dJ6OZ7FUVAQmJgAALVtCYSH7egAAICUlZfv27f369bO2tp43b96///7L5/NHjRoVEBDw/Plzd3d3ABgyZIiurm69VdEDhzds2CCTyZSMCmlGZSXo60OHDtC3L7x8CUuXwrBhsGAB/Por3LgBb00E3b59+549e3R1dfX09HJzc4cNG7Z27Vp52tHX1x8/fjwAtG/fHpQ5L6Px0HTGfAc3NzcAuHPnDrviQ4cOBQDaZ/n333/Zx3HnDlm5kkRHk+nTSUEB62pu3LhhYWFR/QPX19efMGHC0aNHi4qKqq9xdnaW/yVXVlbSD8y//vqLdVRIw+i0hqoq4utL3N0JQPV/f/bq1aZNm4EDB86aNWvXrl2bNm3i8XgMw9CbBgcHhwJFfhv//fdfADAzM+NwOLq6uvn5+ep6RQ2iMSYs+vZOSUlhV5w+7qWVxMXFsY/j3DkSGEi2bn11Y8hW27ZtGYYRCoWjRo0KDAwsfuthdmlpKY/H4/P58twPUj/++CMADBw4UJnAkCb98QdZsYIsWkQePyaJieTMGeLvT6ZOJW5uG4YOrdml4HA4HA6HdpSMjY1jY2MVbapTp04A0L17dwD49ddf1fFqGkyjS1gymYzP5zMMU1FRwa6G1q1bAwC9t3o7OyigVSsCQHR1CQC7KTOvq2kFAImJibVdcPt2ed++8ZMn/yl/nUVFRXQBAOt+KGrMkpOTL126tHnz5hkzZhgbGwPApUuXtm/ffvnyZRa1rVu3Dl6P6np4eKg82obU6BJWVlYWAJiYmLArXllZyeFw6Hi2SCRiH0dlJeFwCI9HAIiBgRLVVHI4HB6PV1VVVds1W7cSADJzpmI1L168GAAmTZrEOjakFehw1eTJk1nX8Pz5cy6XKxQKDQ0NASA6OlqF4TWwRjfonpmZCUoMlr98+VImk5mYmChTCY0DZLJXg+5sh/+r4zE1NeXWftBARAQAgKurYjXPmzdPIBCcPHkyISGBdXio8Zs2bRqXyz19+nR+fj67GiwsLAYPHlxRUUGHSgMDA1UaYINqdAlLyUeENN/R2yVlExYAGBoCAChRjzwvJzwcAMDNTbGaLSwsJk+eLJVKt2/fzjo81PhZWloOGjSooqLi2LFjrCuZPn26g4PD4MGDAWD37t0ffPDBihUrDh06FBERUVZWprpg1a7RJazqHlZiYuLq1aurqqoUKk4ThL6+PiiR9WhFAAB0HbwS9dB46kidJSUQGwsCATg7K1z5okWLGIbZt29famoq6whR4zd9+nRQblLCxIkTY2JiSkpKAKC0tPTPP/9cv369j4+Pm5vbwIG9IiNt4+Pfe/58cU7Ob6Wld6XSgrQ0v4yMtWJxvMpeg4rwNB3Am/755x8Oh3Pjxg0fH59bt25dvHjx8OHDHTp0kLM4zXd0/YoyPaw/8/KCu3Sxa9OmnZeXrbNzN7b10HjqSJ1lZfDll1BaCjo6ClfesWNHkUhUVlZ26tSpBQsWsI0RNXYffPCBsbFxWFjYkydP6ENwRXE4nIMHD27ZsoXP5//yyy/6+vr0vIzo6GhHx1ZicaRYnFRYeIFebGW1paoq39LyR4YRqPR1qECjS1hffPHFoUOHkpOT+Xy+lZXV3bt3u3Tp8sMPP8ybN0+e4gKBwMHBgW72oEwP61FKys+PH3vo69++fXv98OGsE1bdPawjR+DxY9i1C5YvV7jm4uLisWPHFhcX6+npVe9iiJokoVA4adKkX3755eDBgxs3bmRRQ0RExBdffAEAO3fu/Oyzz2r+FSFVYnFCRUVURcXT8vKoiooYfX0PXd1uKSkzTU3n6ukpOFShZo3ultDd3f3atWsdO3aMi4vLzs52c3MrKyubP3/++PHj5dkKdurUqefPn8/OzgaAQiWmp9OekVQqBeV6anX3sMRiKCiA+/ehvFyxavPy8oYOHXr16lUzM7ObN292wsM4m7pp06YBwIEDB2qefiinjIyM999/v7y8fO7cub6+vm/8LcPwhMJORkbjzMxW2NgcdnS8r6vbRSBob2Q0rrQ0XCXBq5KmH1O+W1lZmZ+fH42wa9eu9HGslZXVtWvX6igVERHh4+NDt2Fp0aIFl8tdvnw5XTOsqLFjx8LrVaOXLl1i+TJe13Pq1Kl3/u1vv5EHD8iMGWTuXPLgAZFzlmtycjLNUDY2NkrNjEVahd4Mnjt3TqFS5eXldOGXp6ennAvmpdKSnJz9OTm/FxVdkUhyWAWrLo00YVF//PEHXerZsmXLzp07AwDDMH5+fm/83GUy2dmzZ+ladgDQ0dGZNm3awoUL6S4Ibm5uzxSfqk43e6BPGx89esT6JdCdQG6+tXb66VMyfDj56Sfy5AkJDSU9ehBXV8LnEz8/UvfaiaioKLq9vbOzc917IaEmht4Mjhs3jhASEBBw5MiRBw8elJeX112K3gC2b9++tp0va5OcPCM8HF6+3MY+YjVo1AmLEJKRkTF8+HCaqlxdXelsJk9PT7rHvlgsDgwMpLmM9qr8/PyqN7e7c+eOnZ0dAOjq6m7bJu/PPSkpyc/Pj3bT6P6lZ86cYR0/3S71jWnuf/zxl7m5FIBMnfpqkWJICJk+nXA4BIC0akV27iQSyTtqu3v3Lp037+XlpdCCMtQEZGZm8vl8gUCQlZVFP8iptm3bent7+/n5BQQEhIaG1lyjumHDBgAQiUSPHz9WtLm8vJPh4RAV5aLSF6Gsxp6wyOtjJug4uo2NjZWV1c6dO+lROtWLitu2bbtq1aq3F3YWFhZW37R/8MEHOTl19W/v3bs3adIkmhMZhunVq5etrS0A8Hg8OsFC0cjLy8vp88rS0tLqb65Zs4ZhmJ49V3/6qeyNtYP375MBA16tgR03bsEba5uvXLlCtwoZM2aM/KsOUVNCF/bb2Nh4enq6u7vb2NjQ24g32NvbS6XSy5cvc7lchmGOHz/Ooi2ZTPzwYevwcCgtfaDyF8KaFiQsKjw8nA7cCIVCFxeX6pNCunfvfvjwYck7OySvHT9+nC7IMjMzu3jx4tsXhIaGjho1ilYoEAh8fHyePHlCCBGLxUuWLKFb6306dixJSpIz2uqjyfT19YVCoY+PT/WqxtOnT/P5/Dq2DD19mrz33nUazNChQ2kkhw8fpr+aU6ZMqfvFoiZs165dbyyZ4PF4VlZWXbt27du3b+/evTt16qSnp9e5c+enT5/SAY1169axbi411S88HFJT/VT4EpSkNQmL1BiJp/9mffv2PXv2rJznr6WkpNBBrpqjYPSO0vn1lE0DAwM/P7/U1NQ3yl69erV9u3a3nZ1JixYkIKDuhvJSU+fPn1+dT21sbGgnq1OnTuHh4fSapPoSn1gs3rJlC02yXC63d+/eNGkuW7asqZ43h+R07dq1vXv3Ll++fOzYsfb29tUnS1VjGMba2poOHUyYMEGZX5jS0gcPHrQ+eXJk49neVpsSFrV169bPP//8+vXrihasqqry9/en/RQHB4fp06dX31FaWlpu2rSpsLCwtrKVublk/PhXd2uffPLu7bEePiQ+PjJj43aGhjXzaXR0NN0jlMfjrVq1Sv5by4yMjPfee49uTcMwzIYNGxR9yajJq6ysTEhIOHv2rL+/v4+Pj6urK92nxNLS0sTERPkDltzdXQHg5MmTKolWedqXsJR09+5dOhJP+ywuLi4BAQH1Pmp5Ze9eIhIRAOLsTKqqSG4uKSkhugtjHAAAIABJREFUMhm5dIl4e79KZ3x+6JIlDx8+rFmuoqJi6dKltMWBAwfWe+ZNQUHBhg0bzM3Nq0focBsZJCeJRBIVFUV7WNWdetboStX33ntPJbEpr9klLEJIYWHh8OHDu3fv/tdffyncYU5KIn37kr17yYYNZOtWsnIlOXqUWFkRACISET8/Uvu+g8HBwTQHGRoa1naCQEZGRs3Drrt06aJAPkXoNbpUa86cOUrWk5OTo6Ojw+PxGskcmuaYsJQlkRCplHzxxav/nTmT7NlDNmyQZxvlrKysMWPG0GRUcySeEPLo0SNfX1+d10sKFRqhQ+gNT548AQATExPWG2FW+/DDDwFg2rRp8fHxGj93p5kmrLCwMKVu76VS8tVXr7729VW0dGBgIN1Pon379jdu3KDPKOmcLw6HM2rUKLwBRMqjZyOcOHFayXoWLFhAbzDh9QlPEyZMWLp0aWBgYHh4eAN3/xlCyNvzOJq8Y8eOjRw5kk5rYmnVKrCzg6wsaN0apkxRtHR0dPQnn3zy8OFDDodDD78RiUQzZsyYP38+nWuK3lRRAfSU2fJyoGcLFRSAoSEwjGbjarR+//3mzp2ObdoYX7jA/kd048aNwYMHV1ZWuri4ZGdn07WxNfH5fHt7eycnJ0dHR11d3Tlz5ij1tqpXQ2bHpiY2ljx/zrp0RUXFlClTGIbR19dftWpVbm6uCkNrghYsIPTh+pw5RCwmM2eSnTvJZ5+RxjG20gjl5hIdHcLhkLcm6sgrJSXF1NQUABYtWnT06FEAEAgEtra2Hh4eXl5eHh4etra2NeeF0R1W1Hrb2Bx7WBKJJDs7u02bNnVsW9xgysrKOBxOHSfUo1cWLoThw4HHg4MHYdIkKC2FDz+EuDg4fRq4XLCyAgcHcHAAQaPbwkmDJk6EEydg/XpYtkzhsuXl5f379w8PDx8yZMjFixcPHTq0fPlyul1STQKBoF27diYmJtbW1mfOnKmsrLxx40bfvn1V8wLe0uj2w2oAcXFxQ4YMiYiIUGpLUhXR09PTdAjaQ1cXeDxgGKiqepWYBAIoK4O1a4GeKcvjgY1NyIgRIfr6Tk5OTk5ODg4OzfknPH06nDgBv/8OS5cqdutMCPnss8/Cw8M7dux4/PhxLpc7derUqVOnFhYWxsfHR0VFRUdHJyYmRkVFPX36NC4uDgCmTJnSoUMHf3///fv3qy9h4S0h0hI1bwlLSsi0aeTiRTJrFgkPJ8uXk7Fjib094XIJwIoa53lwOJzu3bufP39e09FrRlUVsbAgHA5RdO3zmjVrAMDAwCAyMrLuK4uLi+/duxcYGBgXF/fs2TOGYUQikVLH69WpOd4SIq2Ung5t2wLDQHo6mJtDWRlER0OHDmBs/N81YjE8e3Y5Lu7W48d0/1/6FjIxMXl7tLiZOHECOBz48EO4fRs8POQqcubMmXHjxtEvqtfYyqlv3763bt06cOCAj48Pi2jrp6ZE2JiNGDGid+/emZmZmg4EqV1xcXGbNm0A4Pbt25qORTNCQ4mrK8nOJvPny3V9dHQ03S9z48aNLJrbs2cPqPNM8ubYw3rx4kVaWpqrq+s7t+ZATczSpUs3btzo6+sbEBCg6Vg04MYNiI6G2FiQSsHKCo4eBScncHQEJydwcoL27QmX+9/gVl5eXq9eveLj4z/99NODBw+yaK6oqKht27bl5eXx8fF0dybVao4JCzUrsbGxDg4OBgYGGRkZSg7Al5WV/frrr5GRke+//76Tk5ONjQ1dH9qY3bgBWVmQkwOBgdCuHQQF/fdXfL5EKGzZoUMHR0fHzp0729vbb9++/datWz169AgNDWX9s5oyZcrBgwe///77VatWqeY11NC8ElZOTs6uXbsqKirWr1+v6VhQw/Hw8Lhz586hQ4c++eQTZeqZNWvWsWPHqg9DEQgEdnZ2nTt3trW1dXJy6ty5c+fOnRvVDJUnT0AshtxcGDIExoyBAwcgKgpiYiAmBqKioLg47s6djjWvNzY25nK5Dx8+bNmyJesXcvXq1cGDB7dv3z4hIUH1CV1Nt5qNTVxc3KxZs+iHhlAoVHR/a6TV6M3g4MGDlank119/BQCBQDBs2LAhQ4ZYWVm9/W4SCASdO3eeMGHCxIkTnysxqVglbt0iOjrkk09IHRsaFRYW3r1797ffflu8eDE9x6Bbt24jRoyws7NjvY5VJpPRm8GrV6+yDL12zSBh3bmTPHcuzfQMw4waNeqff/7RdEyoQRUWFurp6TEM88bm+vK7efMmXZe+d+/emtWGh4cfP3581apVEyZMcHJyqu5QCASCnj17anDteno6sbAgAGTePHmLFBcXi0QihmFoLq77hKq60ZtBHx8f1jXUpukmLJmMnD37apsqDmekvb2Pj0+9k0pQU0VvBtesWcOibGqq2MLCBgC+/vrruq8sLS2NiIg4cOBAixYtAIDFNpMqUV5O3N0JABk8+N2nmdRm6tSpAED35p0yZQrrAJKSkjgcjq6u7tvHLChJyxPWnTskIYEQQg4fJoSQu3fJ99+TjRtJcjJxcHi1o56xMVm+XJKRodlIkWYFBwcDgI2NjaK9ntJS0r076dKlYPz4r+TfLXblypUAMHXqVIUDVYXFi88CkA4diKLrU69fvw4AZmZmHA5HX1+/jj14a1NRUeHj4/P06VNHR0cAWLJkiaI11E3LE9ahQ+TWLUIImTOHVFSQzz8nMhmJjyfffUd69ybt2hF/f3m2qUJNnkwms7GxUbTXI5ORjz4iAKRjx3rOi3xDYmIiXdZe89At1iorK2NiYuS8mB7tNXjwl0+eKNyQTCbr0KEDAHTt2vWN+185TZ8+HQAcHR1FIhGPx/v5558VDqJO2p+wvviCrFtH+vUjSUlk/fpX3//yS5KaqlhvGDV1LHo9a9cSAGJgQFiMJXh5eQHAvn37FC75/4WHhxsYGHA4HENDQ1dXVx8fH39//+PHj0dGRr69L8KlS5fo0V4nTpxg1xxdlOPh4QEA/fr1U6jsli1bAEBXV5fuQu7t7c3u3PU6aH/Cqu5hlZeTmTMJISQ5maxcqdm4UCNEez06OjpHjhxJTk6u9/rUVKKjQ7hc8v/Ph5TXoUOnvLyWjBsXx6bwawUFBfTe6p2TnEUikZub29SpU/39/c+ePXvmzBnlj/ZKS0vjcrm6urr05Cf5e3bBwcE8Ho9hmN69ewOAg4ODOs761fKEdesWiYsjhJADBwghJDSUrF5NfviBqKIfjpoeOzu76hPYRCJRz549P/98pr8/OXuWxMcT2l958YJcvkwIISEh5N9/yc6dLNsqKSEGBgSAPH3KsgapVEqX8jk5ORUWFubl5YWGhgYEBCxdunTUqFG1zSOfOHGikk8nBw8eDAB0x4UVK1bIUyQxMZHuSkoH7E1MTOLilMrUtdHyhIWQIjIyMmbOnDlw4EC6Lx0A2Nl1ps9mAIhQSLp1Ixs2kB49SHo6WbCAKDktYfp0AkC++YZl8SVLlgBAy5Yt4+Pj33lBbm4uTWHz588fOnSokZHRmDFjah4zzs6hQ4cAoHPnzgBgYWFR76OGoqIierG7uzvDMFwu98KFC0rGUJvmNdMdoWq5ubnR0dHJyeKICO/oaHj6FNLSAAD8/cHEBCIjgcuFzZuV2oE5NBT69wcLC0hJAUU3izxx4sSkSZN4PN7ly5cHDhzIPgjFlZeXm5ubFxQU2NraJiYmXrp0adiwYbVdLJPJxo4de+7cORsbm5cvX5aVlW3fvp0eeKwWakqECGmdwkJy9y65fJkcP04CA4mrq7I9LEJIp04E4NU9pvzu379PV2Xs3r1b2QhY8fX1BYDhw4evX78+o84pQcuWLQMAY2NjOt1U3TM5uN9//726ciFCWkVHBywsoKwMpFIYOxb++QdGj4a3joJXjIEB9O4N48ZBQQEIBHL1szIzMwcNGpSbmzt9+vS1a9cq1TxbrVq12rdvX0pKSqdOnXJzc0tLS0Ui0dvLoaOioj799FMej2dnZxcbG+vh4XHy5Emekj+yOuEtIULvEBICCxfCiBHg769UPenp4OkJYWFw4ACMGwf1nohUWVnp7e0dGhrar1+/kJAQgea2qLe3t09JSZFIJNXfMTY2rl7mTf+0sbE5ffr09u3b//33X3Nz83v37lUfV64mmLAQeodbt6BvXzA3h9RUhYefakpPhx07QCIBCwuwsoKQkP+2o3rnW3vmzJl79+5t165dWFhY9ZMBjSgrKwsMDCwpKYmJiaF7txcVFb1xjaGhoZ6eXkZGhq6ubmhoqGuNzanVBBMWQu/m6AhPn8KFCzBiBPtK0tMhKAhEIrh6Fdq1g02b/vsrIyPw8lrYunWxg4ND586dHRwcTp06tWjRogZ78ysqPz+fHj9B/4yMjKQbT3M4nM2bN8+fP78BYsCEhdC7+fvD8uUwcSIcO8ayhvJyyM+HoCBYsAA8PGDNmld7UUVHQ3Q0FBUBh2NQWVlSfT2Xy5XJZMePHx8/frxqXoOaZWVlnTt3zsPDw8nJqWFaxISF0Lu9eAHt2oFIVJGQIGvZUuHtN0tKoE8fGDAA/P1BTw8qKkAggJr72WVlSaOi/q2+4YqOjubz+f369Tty5IgqX0bTggkLoVrNmrU7KOibtWvXzJkzR6GCMhmMGwdnzoCTE9y9C69n19dDIpHgOQN1a+w7UiOkQQMGtCwoyN+/f7+iBb/7Ds6cARMTOHNG3mwFtSwYRDVhDwuhWlVWVlpYWOTk5Dx8+JDuuCKPM2eyP/igNZcLFy+Ct7daA2x2sIeFUK0EAsGkSZMAIDAwUM4iDx8+/OQTWy+v4M2bCWYrlcMeFkJ1iYiIcHNz4/F4AwYMcHJycnJycnR0dHJyopsTvCE3N9fd3T0xMXHq1KksbiRRvTBhIVSPoUOHhoSEyGSymt98e9q3paXlsGHDrl+/7uHhce3aNXpoBVItTFgI1UMqlUZGRqalpUVHRz99+rS2ad8CgaCystLS0vLevXtmZmYaCbXJw4SFEBvvnPZtY2Nz/PhxNzc3TUfXZGHCQkg1nj171q5du0Z18nPTgwkLIaQ1cFoDQkhrYMJCCGkNTFgIIa2BCQshpDUwYSGEtAYmLISQ1sCEhRDSGpiwEEJaAxMWQkhrYMJCCGkNTFgIIa2BCQshpDUwYSGEtAYmLISQ1sCEhRDSGpiwEEJaAxMWQkhrYMJCCGkNTFgIIa2BCQshpDUwYSGEtAYmLISQ1sCEhRDSGpiwEEJaAxMWQkhrYMJCCGkNTFgIIa2BCQshpDUwYSGEtAYmLISQ1sCEhRDSGpiwEEJaAxMWQkhrYMJCCGkNTFgIIa2BCQshpDUwYSGEtAYmLISQ1sCEhRDSGpiwEEJaAxMWQkhrYMJCCGkNTFgIIa2BCQshpDUwYSGEtAYmLISQ1sCEhRDSGpiwEEJaAxMWQkhrYMJCCGkNTFgIIa2BCQshpDUwYSGEtAYmLISQ1sCEhRDSGpiwEEJaAxMWQkhrYMJCCGkNTFgIIa2BCQshpDUwYSGEtAYmLISQ1sCEhRDSGpiwEEJaAxMWQkhrYMJCCGkNTFgIIa2BCQshpDUwYSGEtAYmLISQ1sCEhRDSGpiwEEJaAxMWQkhrYMJCCGkNTFgIIa2BCQshpDUwYSGEtAYmLISQ1sCEhRDSGpiwEEJaAxMWQkhrYMJCCGkNTFgIIa2BCQshpDUwYSGEtAYmLISQ1sCEhRDSGpiwEEJaAxMWQkhrYMJCCGkNTFgIIa2BCQshpDUwYSGEtAYmLISQ1sCEhRDSGpiwEEJaAxMWQkhrYMJCCGkNTFgIIa2BCQshpDUwYSGEtAYmLISQ1sCEhRDSGpiwEEJaAxMWQkhrYMJCCGkNTFgIIa2BCQshpDV4mg4Aoabuxg24dg1EIvjqKxAKNR2NdsMeFkLqVFQEhw/DypXg7Q1bt2o6Gq2HCQshdUpJAWdnAAAXF0hJ0XQ0Wg8TFkLqZG0NMTEAAM+egbW1pqPRegwhRNMxINRYFBUVpaWl3b9/XywWT58+ncvlKlXd7duQng4iEYSFgUAAc+eCnp6KIm2mMGGh5ig/Pz8xMTExMTE9PT0jI6Pm19XXeHh43Lp1S6lmhg+Hy5dh9Gjo0wd8fcHERNm4mz1MWKgZOXr06OzZs4uLiyUSyTsv0NPTa9++fYsWLcLDw6uqqn7//fdp06axbCw2FhwcQCgEPh+KiuDhQ+jalXXkiMKEhZoLiUTSqlWrkpISmUxmbGxsa2vbtm1bc3NzW1vb6q9tbGwYhgkJCdm8efPFixeFQuHdu3e7dOnCpr3Zs+Hnn6FfP7hxAwYMgGvXVP56QCIBPT0oKQFdXeByIScHeDwwMlJxQ40JzsNCzcWJEyeKiorat28fHBxsZ2dX22UFBQUffvhhYWFhnz59bt269fHHH4eFhekpOvZUVASHDgEAvHgBADB3rjKRv9uDB/D0KUyZAj//DJMnw7FjwOdDcTFYW8OUKapvrnHAp4SoudixYwcAWFhYODo6BgYG1naZkZFRQEAAANy/f9/W1jYqKmqu4unmr6NH/7Wxge7dISkJrK1hzBhlIq/Vgwdw9ixERwMAxMbCvHnw7bdw44Za2mocMGGhZiEiIuLOnTtGRkYREREymaxfv351XDxp0qQZM2ZUVFRIpVJdXd3ffvvtwIED8rclk8nmbdzo9ejRRBOTfZ6eFXPnAk89tzKtW4ONzauxfIZ59c3qL5oiTFioWdi2bRsAdOnSpaKiYtSoUR06dKj7+h07dnTr1i0lJcXFxQUAZs2aFUOnU8nhr7/+SkhIsLCwOHXt2tzw8NLp05UMvlaWluDiAmZmAADt28OePbBlC/Tura7mGgOCUFP38uVLHR0dLpdrZmYGAMHBwfKUio2NNTAwAIC+ffsCgLOzc2lpqTwFhwwZAgCenp4A4Ovrq1zstauoIEVFhBCSn08kEkIISU4mGRkkJYWMGEGSk9XVrkZhwkJN36pVqwCgV69eAODk5CSTyeQsGBQUBABCodDW1hYAZs6cWff1EokkJCSEYRiBQECT3aNHj5QOX0FTphAA0rs3qaxs6KbVT65pDblVuS24LfgMX239PITUpbKysl27dpmZmc7OzpGRkbt37/7yyy/lLz59+vT9+/fb2dmlp6eXlZUdPHjw008/raioSE9Pf3vqaWpqalVVFQBwOByZTDZo0KCQkBC1vbJaFBRAjx6QlARffw0//tjQratZXQkrICfgeeVzGchacluONx5vLcCVUEj7HDp0yMfHx87OLj4+3sjI6Pnz5/r6+vIXLy0tdXd3j46O9vT0DA0N1dPT4/P5hYWF77yYw+GYmZmZmppGRkZWVVXNnj17586dKnodiggLA09PkEjg9Gl4/30NBKA+tXW9iqXFs1Jn0a+3vtyaIk5pmC4fQqrl7u4OAH369AGARYsWsaghMjLS0dHx1q1brVq1atOmDQDo6OjY2tp6e3v7+PgsXbo0ICAgODg4MjKyepDr2LFjACAUCh88eKDSVyO3TZvE7dvP7NkzKSlJMwGoR60J60Xli1Xpq+jXNGFJibSBgkJIRW7fvg0AJiYmQqGQw+EkJCSwq0cmk12+fBkA2rZtm56eLk+RGTNmAIC9vX0RHRpvYDLZlA8/pJlaQofkm4RapzWY8c2eVTxLFCdGlEWUy8pXZ6weGT+yIbp8CKnOvHnzAKBfv35VVVWjR4+mY+csMAxD553OnTu3bdu28hT56aefXFxcTEw+X7RIh12jSmGYbXv2tG/f/tatW99+++0bf5mdnR0REfHnn39u37594cKF48eP79WrV4sWLTw9PWu7220k6hrDyq3KPV943phnbMozfS/hvbyqvL86/DXSENNWk5KcnFxWVqavr9+iRQsAEAgECg3xNHLOzs4xMTG+vr7ffPNNeXm5vb09u3oSEhI6duzI5/NTU1NNTU3lLPXsWb6bm3FJCfz2G6hvMlYd7t696+npWVVVNXnyZD09vdTU1LS0tOTk5PLy8tqKzJo1a9euXQ0ZpGLk7IltfrkZIsAxylEiazrdS7RkyZLatnzS1dU1NjY2Nja2srKytbVt3br1xo0bNR2vwvbt28flcjkcTkhIiDL1zJ8/HwA+//xzRQsGBREAIhSShw+VaZ89Pz8/Q0PDN/5xdXR0LCwsunTp0qdPn379+rm5uTk4OAQFBenq6gLAkSNHNBOrHORNWGKZuENkB4iAfTn71BoQajA5OTktW7YEgFatWllbW9P0VNsqXw6Hw+Vynz17pumoFfbNN98AgJmZWUZGBrsaiouL6Xv+IausM306ASAdOxKNjGVNnToVAHr16jV06NAePXrY2NjQrPS2xMREettraGjIerBP3RSYOHo49zBEgPlj81KpXPN9USM3c+ZMAPDy8nrnRMrS0tK8vLy8vLyUlJSEhIQPPvgAAD788MOGj1NJUql00KBBADB8+HCplM2DI/o2HjBgALsASktJ585k1CiSl1f/xfn5+Y8fP/7777/ln91ah6ysrOqnDXS+PmViYtKtW7fRo0fPnTt306ZNx44du3XrVkVFBSFk8uTJAODm5kb/t7FRIGHJiMwzxnPAoQEbtm1QX0CoYYSFhXE4HIFAEB0dLc/1L168oGNbN27cUHdsKpeRkUEX5axfv17RsjKZzMHBAQBOnTqlaNlz58i9e4QQsngxiY4mH31ECCGbNpHiYpKaSkJDyeHDZP164udXOmrUKGdnZzqMCACmpqaurq6KNve2NWvWAMDYsWMJIVeuXLlw4UJUVFRxcXEdRfLz8+mjiXnz5ikfgMoptjSHTts1NDTMzs5WU0CoAVRVVXXv3h0AvvnmG/lL0YdNvXv3VsmHfwO7ePEih8Ph8XihoaEKFbxw4QIAWFtbs5gcEBRELlwgeXnE15c8ekQ+/pgcPUpWrCC+vgTg//1XfScuEok6derE4/EAYNeuXYq2WFNlZaWlpSUAXL16VaGC9+7d09HRYRjmjz/+UCYAdVB4LeGIESMAwM/PTx3RoIZBty6wtrYuKSmRv1RxcTGdNnn69Gn1xaY+y5YtAwBLS8s6Pm5lMll6evqdO3eOHz9+7tw58voXfsMGNncVQUFk4UKyaxcZOJA8ekT27yezZ5O5c8n//kfMzYmHB5k0iSxeTH76ifz115WHDx/m5ubSgidOnKBD4xEREexeLCHkyJEjANC5c2cWHzD0N8TIyCgxMZF1AOqgcMJ6/Pgxl8vl8/lxcXHqCAipW0ZGhpGREQCcPXtW0bJ0NKdTp06VWriwViKR0G2wRowYIZPJSktL//777717965atWrq1KkDBw60s7PT0flvzlSfPn1iY2M5HI6urm5OTg6LFoOCCO3PzZnzKmGlpBAzMyLPpg9fffUVANjZ2RUWFrJomhDSu3dvAPj1119ZlJXJZHTUsmfPnmKxmF0A6sBmt4bp06cDwJAhQ4KDg2/evBkeHh4eHv706dOEhISEhIScnBw6WKvyWElWFtm+nQQGkiY0c7fh0VHV999/n0XZyspKOpVp9+7dKg+sAaSlpbVq1QoANm7cmJyc/M6HZa1atXJ0dHR3dx82bFjXrl0BYMaMGeyaS0wkL18SQsidOyQ3l9BHrCEhcv3+VlRU9OjRAwAmTpzIounw8HAAMDY2VqgTXVN+fr6NjQ0AfP311+xqUAc2CSsxMVFHR4c+Ea+XoaFhUFCQaoKdOpXk5JDwcLJypWoqbH6uX7/OMIyuri7rrv7x48fpqLBmVpwo7cKFCwzD8Hi8Xbt2de/evU+fPl5eXn369Onatau1tXXNHhZlZGT01VdfaSTUuLg4OgzPopf06aefAsDSpUuVCSAsLEwgEDAMs2nTJmXqUSE2Ccvf358+GfX29u7Tp4+rq6urq2vHjh3p6SMtW7Y0NjY2en10B4fDcXR0ZPc4+f8pLibVmf6LL5StrVkSi8WOjo4A8MMPPyhTD11I/P3336sqsAb29ddf1/ER26ZNGzc3t3Hjxs2bN2/OnDl03qmce/6pHLtF1NUbFiozAvXkyZPY2Ni5c+dyOBwnJyfW9aiWwgkrNTVVJBIBwLhx46Kiouq++M6dOxYWFgBw8OBBthG+JpMR2jOvqCCzZilbW7O0bt06AOjYsaOSU2z+/fdfABCJRKynYmpWaWnpyJEjW7VqNWjQoGnTpq1atWrfvn3BwcFPnz4tLy9/42K6+V+bNm3kXPOscnS6nEKLqGnMSk6aGzlyJIfDGTVqFAD07dtXmapUSOGENXbsWACg43kWFhZ1DL7u2bOHw+HQK9u1a6fUm2TbNvLkCTl7lqxcSZYsITjer7jU1FT6rFrRh9zv9P777wPA1KlTla+qkZNKpd7e3gAwcODAqqqqhg+gvLy8W7duAPARncdVJ4lEEh8fTyedXb9+nfU+DdVPG4yNjQHgHp1O1ggolrAuXrxIP1rp+s/AwMA6Lk5OThYKhQzDdOrUCQB+/PFHljHevUs4HKKnR775htQ55w3V4eHDhzwej8/nq2QO3cOHDxmG4XK5GnkPN7DMzEy6Q8PatWs1EkD17vK//fYb/U55eXlCQkJwcHBAQMCqVat8fX29vb1tbW3pBC5zc/PWrVvfuXOnU6dO7CZG0JPN6ENVT09Plb4apSiQsMrKyugUWDrHv1+/fvXO71i0aBEA0INzjY2Nq6eZKEAqJe7uBID0708AyNChCteAXqOHI6hkBvP69esBoHXr1spXpRWuXr1KB7OuXLmikQDoOWMCgcDR0fHtxczVuFyuubk5XZNAT8Gwt7dXdGJEUVERHeynx80eP35cTS+KBQUSFp3obGdnx+VyeTyePLvr5+fn04eJdF714sWLFQ7wp58IADE3J3p6hGGIKm5nmi1VzaFLSUmhb4mLFy+qKrbGj/7+t2nTRlMjd/b29nTmOrw+F+ONLU8TEhLoEM25c+cYhuHz+fTmRtGJEXTWKL0PrXvYp+HJm7BiY2NR1LyDAAAgAElEQVTp/V3nzp0VSj2bNm2iaZ6uXFNoFXh5RgYxMiIAxM2NAJApU+Qvi96JzqGbNGmSMpXQAazJkyerKiqtIJVKBw8eDACDBg1q+Bvh5ORkLpcrEAiuXLkizyxWek9nZWVF7yUDAgLkbEgmk9E05+bmpvwDZZWTN2ENHz68+mbQ0tKy7vWTNYnFYnojSUfffXx85A/uk08+WeHqWjBwIAEgRkYkM1P+suidnj9/rqenxzDMrVu32NVAxzENDAyeP3+u2tgav8zMTDqe3fBvYzoVY9q0aXJeX1lZSd9x9E+hUHj//n15Cp4/f552rDgcjo6Ozks687XRkCth0UVJdL8kADh58qRCbRw8eBAAzMzMdHR0OByOnKOA//zzD53i2Kl9+2sDBkh+/lmhRlFt6JK6/v37syhbPY65bds2lQemFUJCQugiaiV3BFRIaWmpiYmJok/r4uPj6WgXHTuXczBr2LBh1eNfLDYsVLf6E1ZBQQGdS0WnCw5VfNhbKpW6urpW/+AGDhxYb5HqKY70B+fq6tocnkY1jKKiIvqQl8VaQroZnouLS1M610B+YrG4qqpq+fLlDfzA4VpgII/D6dOnj6IFqxdR07u8eocC6GwGPT09OujObsNCtao/Yfn4+HA4nE6dOrVs2VIoFMbHx7No5urVqwDQokUL2kf75ptv6Gr44ODg4ODg27dv0wWJcXFxCQkJiYmJK1eupLO3+Hw+h8O5ffs2i0ZRbbZu3QoADg4OCuWd2NhY2kdmfTup7Xbt2tWuXbsVK1YAgJGRUQO1KpORzp0lVlZRrDbJmDVrFn0r0cGsvXv31nHxoUOHhEIhHfnx8vJiGbA61Z+wJk2axOFw3NzcsrKyzpw5w7ql0aNHz58/f+LEia1bt67toewb6JR6Ta3kasLEYjF9Yr1nzx75S9Eh53qPa2+qZDIZ7fXTgw7XrFnTQA3//ferB+WsntZVL6Lu1asX7TTk5+fXcX1MTIyVlRWLkZ+GUf9R9S9fvuzYsWNRUdGVK1foryw7hJCSkhJHR8cXL1707Nmzffv2ZWVlYrEYAIqLi+kB3wUFBYQQmUxWWFhYWFgok8kMDAxSUlJov6y5k0ph8WJo2RIyMmDdOni9WpOdo0ePTp482dzcPDY2Vp5jcoKCgj7++GMTE5Nnz57RDQ+am8uXLw8fPtzc3Pzly5c8Hi8lJYXuDqZ2Y8bAuXPwv//BihXsKoiPj3d1dS0qKho5cuS3337r4eEBAPn5+YmvpaenZ2RkJCYmJiQkFBQUMAxDN+mk01AbF3my2tq1awGgZ8+eSm41uXDhQlqPPGuhT58+DQDGxsas9wNqai5dInQK38OHZMcOJSuTyWT0F/eLL76g9+PPnj2jGwTl5ubm5eXRDw+qsLCQjmPWfUPRtL333nvwelC14dYkJSURLpfo6BDlntYFBQUBAJfLdXFxsbS0rO2oJAAwMDBo27Yt3bywEZIrYZWVldFeojIbxTx58oTP53O5XDkfrxJC6CD9t99+y7rRJuXkSfL334QQkpxMVPFY/ezZswKBgM/n1/2RxufzBQIBAPTq1UsbN0dWibi4uJpr68LCwhqo4UuXiJkZmT5d+ZroSRzVjI2NXV1dJ0yY4Ofn5+/vf/z48fDw8BcvXijfkFrJOw9rz549AGBjY8NuDbNMJvPy8gIF91a+c+cOndmQmprKotGmJjubfPYZefSIfP01efKElJUpWd+XX34JAK1bt6YbBNnb29MNguj8leoDESgjI6NGuMN3g6EnSNPRaDVuXUAX5758SS5dIqWlZONGsnYt+ftvwmq/0zfIZLJjx46dOXMmKSmpUU1eV4i8CauqqorOcd+6dSuLZvbt2wcAbdq0qXvA720+Pn5eXve+/BLnNBBCCMnKImfPkqdPyfr1pGVLEhPDuqZ79+7RJVaPHz+u+0qxWJyRkVGmdH7UXkVFRXRCE91t9ejRo+pqafZsQgiJjydbt5I1a15tUTprFsFRkdcUWEt49uxZ2pNUdPvj3Nxc+mTw8OHDCoZHEhKIQEC4XBIZqWjRJur0aWJpSfr2JQBk7Fh2dUilUvqoa9myZaqNrkn66aefAIBul2xubq7G7snQoWTdOrJwIdm69b9dKnfuJPV9qDQfim0vQ2+Dly9frlApX19fAOjfvz+7EZDZswkAGT2aRdGm6PRpAkBMTIhIRACIgodWUfv3X+NwOIqemtM8VZ9L2LNnTwBYt26dGhur2cP64YdXn9JffYW7KlWrf1pDTffu3evVq5eOjs6zZ89MTEwuXrxoYGBAn30aGRkxDMPhcGjnmc/nGxkZGRgYhIeH9+rVi8fjPXz4kE5jUVR2NtjZQVERhITA/x83bK48PeHGDfD0hNBQcHeHO3eAYeQv/fIlODiAhcXd9etLR4/GH2g9Ll68OHLkSAsLi8zMTLXPZggKgsmTITsbHj+Gvn3h55+hpAQGDYJ+/dTVotZRNMNNmjQJAKZPnx4dHV13zR4eHtW3Hop2yt6wZg0BICtWKFNHE3L3LmEYoqtLWrWSiUSxCj6B9vEhAGTYMDUF19TUnM3w2WefaTqc5k6xHhYAJCUlOTo6SiQSX1/fR48elZeXczgcACgtLeVwOFKptKysjGEYiUTi4uLi7e29dOlSa2vr6OhoeWYnvuH6dejSBUxM4MgRYBgQiWD0aDh3DkaPVrSmxq2wEHbvhspKmDQJOnWSq8iECXDmzM3hw31v364yMYmMjKx3dgIVGgpeXiAUQmQk2NoqFXUzkZycvGPHjl9++aWsrOz+/ft0ZzekMSyS3Pvvv0+TVL1okvrzzz/ZZdPNmwk99WP2bHLhAunfn7x4QebNI//8Qw4eJMePk+PHycWLJDhYFhwcTGc/PnjwICEhISkpiV2LmrFgAcnMJJWV8m/4VRkXN8LOjsvldujQAQB27twpTymJhLi4EADSYKtKmgapVEqP/9q/f7+mY2nu2Ey9P3DgwIIFC9LS0oyMjKqqqoqLiwFALBaXlZUBQM0FN+Xl5QAglUpZtELt2gXGxhAfDwAwdy5s2AAMA7//Dvv3/3eNUCiuqBhSs5SVldWIESMCAgJYt1vT3bt3d+zY4eLiAgB03iCXy6XTlAQCAU3Kurq65eXlHTp0oGdPKqa8HOiwiIkJlJeDrm69Jfh2dh2GD5fu3EnjWb16tY+Pzxszp2qqqAAeD7hcmDsX9u+HRYteNStHUwg4HM6WLVtmz549e/bsnj17Ojk5aTqiZkyt6XDnzp0A0LFjR3ZPgt/oYQUHkwMHiLs72bePfPIJmTCBTJhAhg0jI0eWeXt709mPXbt2NTc3ZxhGX18/UxUb/t27d4+eJSnPD1NHR+fQoUMKt+HnRwoKiFRK5N6ejRCSlZVFMxR9hjVjxozw8PAnT54kJCQkJuZlZJC8PJKX9+qQYX9/QicwzJ9Pdu4k0dGEEDJnjsKRNmdTp04FgM6dO5fKc9I8Ug+Fx7AUUlVV1aVLl5iYmF27dtFtLhRy7hz06gWmprBnD/TsCVwuODvDihWwfn09BceMGXPu3LlZs2bt2rWLZegAAEAIGThw4D///GNjY2Nvby8WiysrK3k8nkwmk0gkXC5XIpFIpVKGYcRicXp6en5+vqenJz22TwFZWbB7N0il8MEHoMgQydq1a7/77js+ny+RSGp+f8CA4OvXvWt+Z/lyYBgYPx4OHAA7O9DXB2tr+PVXOHpUsUibs9LSUnd39+jo6BkzZtCFH0gD1J0RT548CQCtW7duyDXMMTExPB6Px+NF074EW3v37gUAMzOz/Pz86v3/a5ORkcFyY7wuXYitLenRg7i6krcO8qxDSUmJUCgEABMTE9rBdHZ2trW1HTfunzZtiLExMTYmXC4BIN9+S54/JzNnknnzyM6dJCiI3LpFPv5YsTBRZGSknp4eABw4cEDTsTRT6u1h0YQ4+f33R+Xlfeztzfn+e7W2VZOvr++ePXs+/PBDmjFZyMvLc3BwyM7OPnLkyOTJk9etW1dSUvLOoTq6N86FCxd+/vnn+fPnOzg4PHnyRIGtOXR1Xw0yVVWBRAJyFzx16tT48eMNDQ1jYmLowXm12bABpk2DZ89g9WoYNw4GDQJHR5g7F3bskDdGRO3du3fmzJkikejevXv0Zhw1qIbIirdvE4Yh+vqkAQ/7Tk9Pp8PhN27cYFcDPSLcy8tL/gn6lZWVdGO8X3/9VYGWOBwCQAAIhyN/odLS0vbt2wPAz3Lsdp+R8Wr3t6QkkpND6AL2Rr8yv5Hy8fEBABcXl+a8vlJTGiRhEULGjiUA/y2PahB0n+XevXuzWBIUFhZGzyVT9Kby6NGjANC2bVt5V71UVhIAwuMRACIUyt/QDz8cAgA3Nzd5NhdDKlRcXEz7Vl807O8zIg2XsJ4+JXw+4XJJVFQDtUhIcXExXUWh6L4oVVVVdH7gN998o2ij1RvjyXmsubSq9NlFq7hLdoknHJP+6CFnK5GRhM8nrq7B9+7Ju7kYUqHHjx/r6uoCwDsfCmdlZYWHh//xxx/btm1bsGDBhx9+2K5duzn4UFYVGiphEUK+/JLw+USRTcSVt2PHDlB8XgU9+Zb12uB//vkHAEQikTzzKqqq8sLD4cEDw/BwePiwlTz1y2SEHtU4axaL6JBq7N69GwD09fX9/f1Xr149Y8aMoUOHOjg46L5rbhudaK3QDvrondQ+6P6frCzIyoLr16GgAMaOBWfnBmizel7Fzz///NVXX8lT5OXLlw4ODgUFBWfOnBkzZgy7dkePHn3+/Pk5c+bsqG9YWyJ5+fixGY/Xqqoqh88379LlRb2VBwbCtGnQpg3ExABudq9Bw4YNCwsLKygoeOP7JiYmVlZW1tbW7du3t7a2trKyCg4O3rdvn1AovHPnDt2mBrHUoOlx9WoSGUkkEjJ1KhGLG6ZNejSbqampnPMqPv74YwAYMWKEMo3SeRV8Pj82NrbuK8Xi1PBwePTILDwcHj9uX2/NeXnE1JQAvNqcEmnQBx98AABdu3ZdsWLFL7/8cuHChcjIyLcPRQ8KChKJRPRYT3qei0aibRoa9lSM9HTo3BkAwNERXrwAFqtYFDd+/Pi+ffvevHmzd+/edLKynp4eXRr29t44CQkJQUFBurq6Ss44dXBwmDp16r59+1asWEEzZm34/LbOznFFRZcAuCKRZx1XlpWBUAgtWsCSJXDtGvj4AACUloLii8qRCrx48eL8+fN8Pt/GxqZ///5Dhw6tbTkEh8MpKSm5f/9+x44dY2Njv/jiC3qUOmKhYROWoSFkZoKZGaSkgJlZgzW7aNGiO3fuxMTE0FPa6yYUCmfPnp2Xl5eQkODt7V3v9e8kFotXr14dFBR06tQpHx8fCwsLhmGMjIwAYPToFqamXABgGB0ORw8AZLJShtHT0+vK57ctK4sAAC7XCIApKDATCPQAgMcDAwNYsQJsbcHPD9LSwMUFSktBJIKlS2HnTnYxIqXs3LlTIpF4eHj8+eefKSkp9IT3d5o4ceLVq1cDAgLEYrFIJAoKCho2bBj97ESKasAxrMxMYBjYvRs4HOjdG4YObaB2AQDgwoULJ06coA8NS0tLKysrAaCoqIguzM7PzwcAqVQaHR398uXLgQMHXr9+3dra+unTp3QquUIKCwu7des2ZcqUc+fO5eTkpKWl1fzbmzd76ujcq/kdB4d7WVlbWracWlmZlpIys/r7K1dmXLz4Kq0zDCxcCPr68PnnsGUL6OqChwcIhXDwIBw8qPBPAympvLzcysoqNzfXyckpOjr6999/nzZtWh3XV1RU9OnT58GDBx4eHrdv39bX1w8LC8NF1Cw0VA+LEPjoI8jKgpMnQRP/TiNHjhw5cmS9l7148aJjx47Xr1/v2LHjs2fPduzYsXjxYkXbWrlyZXJy8unTpyMjIwUCwdKlS42NjQkhdHTW0FBfJOoOAIRUyGTlAIy+vlv79gfT0mbr6fXU03MFAKk0HwCMjBg6pi6RQGUlAMCiRfDNN0C39jEyAl1d+WfFI1U6fPhwbm5up06doqOjW7du/dFHH9V9vVAoPH78uKur6+3bt/v06XPr1q2JEyeGhYXRhT5IAQ00VhYYSACIqSlR8ACLhrdkyRIAoJvJGBkZ5Sh4wtKjR4/oMka6z4w8W4AXFV1PT1+blDRdJqvrCLWvvyaEkKNHiY8PWbbs1TbfdBNw1MDok77evXuDIudm0knFQqHQ1tYWAD7//HO1BtkkNUjCKiwkbdtqy5Ot/Pz8li1bAgCdO/o1zRPykUqldNYo3VHX3t6+vL7FzGVlkcnJnz1/viQ52Tc7u655Omlpr75ISiKZmYTOb2/AxU7olWvXrgGAqakpn8/n8Xhp1f8wcvj8888BoF27dnS6VqA2vCMalQZJWLNmEQDSrx/RknODN2/eDAA2NjZ0dU5CQoKcBX/55Rf6q0yXMV64cKHeIoWFl8PDITq6R3g4xMWNVC5w1BDGjRsHAP379weAjz76SKGy5eXl3bp1AwB61oG+vv61a9fUE2bTpPaEFR4e7te9e7mDA3n0SN1tqYpYLKZbD9Pu0qeffipPqZycnFatWsHr86Dk/FUuKDgXHg7R0W7h4RAfz/KcQdRgUlJSeDyeQCCgR23evHlT0Rro+QZGRkZ9+vThcrlDhgxRR5xNlVxbs7Mmk8m++uqrnx48+G70aOjSRa1tqZBAIFi9ejUAJCYmCoXCw4cPR0RE1Ftq8eLFOTk5PXr0uHfvnoGBwY8//ihPW4RUAgDDcACAYQTKBY7UbteuXVVVVW5ubtnZ2T169KDTQRXi6Oh47Nix+/fv29nZSaVSZTYQb47Umg7p9EsrK6u3p/82cjKZzNXVFV6PRg0YMKDu62/cuMEwjI6OjpWVFQBs3bpVzoYqr/0hntC3eNmo8imeZbsXKx04UqOioiI6vklP2FRmG7/8/Hx9fX2GYWJiYlQYYZOnxoT18uVLekTCqVOn1NeK+tCxVZFIRCd8Xrx4sbYrJRIJfWxExzVcXFwUWGu9fz8BIH36EACCx941btu2bePz+a1bt/7f//7Xo0ePioq6nurWbePGjQAwfPhwFYbXHKjxljAhIUFXV3fEiBF0kFLrDBgwYMSIESUlJV27dl28eHGvXr1qu7K0tNTJycna2josLIxhmF9++UXOUwIB4NUMK7qqQ4C3hI1at27dCCF5eXkeHh4RERF0gRcLUqmUbvYwd+5clQbY9Klx3qGHh0dMTExpaan6mlA3f3//y5cvh4aGtm7desOGDQAgEoloMjI0NORwONULbiZMmBAZGZmamjpjxgzFxjVqJiy2bwDUMLy8vFasWLFmzZrJkyc/fPjQjO3ysrNnzyYlJdnZ2Q0fPly1ETZ5Dbg0Rzv169fv5s2b8lzJMIyurm5KSgp9ViivuDi4dw9evAB9fejRA3r3ZhkoahAymWzYsGFXrlwZOHBgcHAwl8tlUcmgQYOuXbu2fft2Pz8/lUfYtGHCqkdVVdX69et1dHToD6r6yImCggJCiEwmKywsBACJRPL06dMtW7aMGDFCsQZycmDpUhg6FC5dgs2bwcREDS8CqdLLly+7deuWmZn5v//9b8WKFYoWj4qKcnFxEYlEaWlphoaG6oiwKdPoCBoiZO9eEhZGCCG3bpHff9dwMEg+V69e5XK5XC43JCRE0bL0cBM/Pz91BNbkqXceFqofhwN0Jo5M9mpZM2r0Bg4cuHTpUqlUOmXKlJycHPkL5ufnHzlyhGEYFucKI2jo/bDQ28aOhUWLICEBrl6FLVs0HQ2S15o1a+7cuXP16tUpU6acP3+eU+PDpqqq6sWLF2lpacnJyampqampqWlpaSkpKWfPnj1x4kRpaenIkSM7deqkweC1mKa7eIiQykqSmEgUOSYDNQbPnz+nD1j8/f0JIevWrevbt6+VlVVtI/F///03PUqyjjl9qG446I4QexcvXhw1ahSHw7l27dqePXsOHDgAABwOp02bNqampiKRiMfjMQxTVVWVl5eXmprKMIy+vn56enpt+ymjumHCQkgpy5Yt27Bhg76+vru7e05OTnZ2dnZ2dm0rBPX09CoqKi5dujRkyJAGjrNpwISFkFKqqqo6duyYlJRU85vGxsa2tra2trZt27Y1Nzev/nrfvn3fffedqanpgwcPzM3NNRWz9sKEhZCy8vPzN23aZGlp6eLiYmVlZWFhUdvaLJlMNnz48ODgYC8vr5CQEHbzTpszTFgINSg675Qjk/y+fe3Qj+Q63BdVw4k/CDWoNm3anDp+dOHwdneCfkh+LNeqL1QNExZCDa2Pp5frsI+JTHpy06ySvJeaDkebYMJCSAO8Ji+w7eZZWpB9avMcIsNNR+WFCQshDWAYzgcLftI3ap0e9yg7NVbT4WgNHHRHSGNSo8P0DVs+vnaK4XA79RratoOLpiNq7LCHhZDGWDu5t7ToIC4v8Zq84PafARkJT55c/6OsMFfTcTVe2MNCSMMOfDOxpWUHw1bm5cUFriN8jM2s6SlK6G34c0FIw0z/j707j4uq3v84/pkFGBCQVQEBFXEB3FATRcENd9xSLC0s06g00DLDpa5X2yhNKbPCpdLMBStzNwH3XBFFRRERUQQFlVWQZZjv74+vcf1l4izAzBfez8d93EcXz/Kd2/jizDnfc6ZFu+FvfZZz8woRWTVxRq2qgcfLAOiZVCo7tPFLr94jy0oKcVN09fCREACEgYNPABAGggUAwkCwAEAYCBYACAPBAgBhIFgAIAwECwCEgWABgDAQLAAQBoIFAMJAsABAGAgWAAgDwQIAYSBYACAMBAsAhIFgAYAwECwAEAaCBQDCQLAAQBgIFgAIA8ECAGEgWAAgDAQLAISBYAGAMBAsABAGggUAwkCwAEAYCBYACAPBAgBhIFgAIAwECwCEgWABgDAQLAAQBoIFAMJAsABAGAgWAAgDwQIAYSBYACAMBAsAhIFgAYAwECwAEAaCBQDCQLAAQBgIFgAIA8ECAGEgWAAgDAQLAISBYAGAMBAsABAGggUAwkCwAEAYCBYACAPBAgBhIFgAIAwECwCEgWABgDAQLAAQBoIFAMJAsABAGAgWAAgDwQIAYSBYACAMBAsAhIFgAYAwECwAEAaCBQDCQLAAQBgIFgAIA8ECAGEgWAAgDAQLAISBYAGAMBAsABAGggUAwkCwAEAYCBYACAPBAgBhIFgAIAwECwCEgWABgDAQLAAQBoIFAMJAsABAGAgWAAgDwQIAYSBYACAMBAsAhIFgAYAwECwAEAaCBQDCQLAAQBgIFgAIA8ECAGEgWAAgDAQLAISBYAGAMBAsABAGggUAwkCwAEAYCBYACAPBAgBhIFgAIAwECwCEgWABgDAQLAAQBoIFAMJAsABAGAgWAAgDwQIAYSBYACAMBAsAhIFgAYAw5PoeAABo69IlWrOGLC2pWTOaOlXfo6kLCBaAsL75hiIjydiYQkPp4UMyNdX3gGodPhICCEulImNjIiJrayoq0vdo6gKCBSAsLy/6/Xe6epUyMqhJE32Ppi5IGGP6HgMAaO7YMbp8mSQSUihoxAiysND3gOoCzmEBiGn9evruO/L3p8REqqyk4GB9D6gu4CMhgJiOHyciun+fCgrIwUHfo6kj+EgIIKDiYrKyIomEpFKqqKDcXGrcWN9jqgs4wgIQ0KlTpFSSuzuVlZGnZwOpFSFYACIqOHuWSSRka0tE1LOnvodTdxAsAPFMOnTIzspqhoXFR3373urTR9/DqTs4hwUgHgcHh+zsbEdHx9u3b1+6dMnDw0PfI6ojCBaAYK5du+bu7m5nZ3fv3j0rK6v79+9LpQ3lo1JDeZ0A9cbx48eJyM3NjYh8fHwaTq0IwQIQS0FBwc8//0xEly9fJqIePXroe0R1CsGqzuLFRERXrtDOnY9+smcPLV1KRLRkid5GBQ1QTk7xypUrhw4d2qRJk3379hFRSUmJRCIx5jc/Nxi4Nac6N24QERUX0927j36Sm0unTtHVq3Trlh7HBQ1Fejpt20Y7d9LZs2aFhe9WVBTLZLK+ffuOGjXq2LFjW7ZsWbhwoZub24svvqjvkdYRBKs6Fy7QJ5/Q7dvUtev/fhgaSl9+SQqF/oYF9ZeHB+3eTRkZFBtL27bR+fOPfq5QSF599YuePU1HjBhhZ2dHRDNmzHBxcVm6dOlLL72Ul5f/1ltv6nPcdQXBqk6HDjR/PiUkUGIi3bv36IlDpqY0YgT99796HhvUS/360eLF9OKLZGpK589To0bUrx8FBdHo0WRpOe3xJSUSyZdffunq6vree+/9/LPNjRsUEaGvUdcdBKs6Y8YQETk7k4kJZWXR/v0UEED29tSlCyUm0q1b5Oys7yFC/WJqSn5+9Mcf1KsX7dtHffuSkVF1y8+YMaNJkyHBwW2PH6eiIlq+nOr3NcN6/eJ0NmAAEVGTJuTlRa6u1LgxtW9PTZvS/Pk0fz59+62+xwf10ejRlJ5OEgkNHPiMWnETJrTdupVMTenbb2ncOCotrf0h6g+Cpa4tW6hRo0fvhmHDiIjWraPKSv0OCuobW1s6eJC+/pr699dgrREjaM8eatyYtm6lJUsevS1LSqi0lPjE8JKSWhlt3as/M93z8/O/+OKL5OTkESNGeHl5tWvXztLSsvZ25+FBycm0Zw8NGVJ7O4GGJS+PbG1JoSCVijp2pBMnNPt8d+4cLV1KTk5kZUVz5tA775C9Pb36Kjk5UWgoLV9ea+OuQ/XnHNbUqVO3bdumVCq3bt3Kf2Jtbe3p6enl5cX/283NjU8OrhGTJtG8efTjjwgW1Jjjx4kxcnenCxeISOOzUZ0707p1NH8+lZZSSsqjHx45Qra2lJtbw0PVl3oSrCVLlvz222+mpqbjx49XqVTJycnJycl5eXl//fXXX3/9VbWYnZ2dp6enXC5fsWJFu3btdNnjK6/Qp59SdnZqbq6NjY2Nzq8AgE6cICKytiYi0mFd46kAACAASURBVGUG+8yZNHfuo5k35uZkYUEyWU2MzwDUh2DFxMTMmTNHIpF4enqam5t/8803RkZGRJSVlXXp0qWkpKRLly6lpaUlJibevXv38OHDMpmsR48e9+/fl+nwr9HJiQYMmLBt26Zffvk6NDS05l4NNFw8WA8fEukWLFNTCgyk1avJ3p68vcnJidavr5kR6h8T3JUrV6ysrIjI39+fiGxtbW/evPm0hTMyMvbt22dra0tEu3bt0nHX0dHRRNSlSxcdtwPiKiws3LRpU9++fd3c3ObNm6fLpiorK/384szNCwcMWN2mzbnUVJV221m7lq1axTIy2PXrLCeHVVQwxlhWli5DMyBiB6uwsNDLy4uIfHx8JBKJXC6Pi4urZvmDBw927drVz8+PiMaNG6fj3svKyvic47Nnz+q4KRDLvXv31q5dGxgYaGJiwn/xS6VSqVS6fPlyrbd58eJFInJ2diaiJk2aaL2dwEBGxDZs0HoDBk3gYFVWVgYGBhKRm5ubmZkZET3z7XLy5Ekisre3l8vlxsbGd+/e1XEM/MPghAkTcnNzddwUGL60tLSlS5f6+flVnUyQyWT+/v7Lli2bNGmSRCIhovDwcO02vmrVKvr76QujR4/WbiMqFbO3Z0Ts+nXtNmDoBA7WnDlziMja2pr/UnrllVfUWatjx45E1LVrVyL6+uuvdRzDzz//bG5uzh9I5Ojo2L9//2nTpv3447G4OHb79v8WO3OGFRQwxhgOxUR0/vz5iIiIXr168SQRkUKhCAgIiIyMzMrKYoydPHnS3Ny8Z8+e/OTpq6++WsE/iWliypQpRNS7d28iioiI0G6oV68yIqbD8ZmhEzVYv/76K/8M2KlTJyLq2bNnaWmpOisuWbKEiLp3705EHTt21GUMWVlZzZo1I6JmzZrxQzyub99jRIyIWVszX182dSp78032wQeMMTZjhi47hLpWVFTUoUOHqn+zjRs3njBhwubNmwsLCx9fLC4uzsLCgv8iNDU15YdIDx8+1Ghfnp6eRNS2bVsiOnTokHYDXreOETFtj88EIGSwzp49ywPBfx05OTllZmaquW52draRkZFcLuen3rU+/VReXs7PhfXu3fvMmTNE5ODg4O3t3bt372HDvm/fnllZMZ4tMzP27rts+XJ26hSCJZhNmzZJpVK5XB4SErJnz56ysrKnLRkfH9+kSRMi8vDw4NNc+vXrV8CPq6tVVlb2559/Tp061cTERC6Xx8bGRkZGPnjwQLsB//e/V9q0efj555XarW74xAvWhQsXmjZtWvVpX6FQnDp1SqMtjBo1ioh4bsLCwrQbxtSpU4moefPm2dnZe/bs4b9XuS5d3q86wurYkb34Ips1i1VUsJAQFhqq3d5APz766CMiGjNmzKpVq27cuFH9wteuXWvVqhU/qerg4MAPuLKzs/914ZKSku3btwcHB/Nr3EQkl8v5u/revXtaD7hLly66HKAZPvGC9eGHH0qlUkdHx+7du0skkl9++UXTLfzxxx9ExN9btra2an6WfNyyZcuIyNTUND4+nv+ksrLy2rVrO3fu/OKLL+bOjfPxYY0bPzrCeumlR58Hjx1j06ZpuivQp+HDh/Nr0ET0448/PnP5rKwsfo6iWbNmzZs35/FKTU2tWuD+/ftr164NCgoyNzev+g3n6ekZHh6+efNmd3d3foxWzdScahQXF8vlcrlcrvUBmuETL1ifffYZ/5daUlKyadMmLbZQUVHBfwHy8wVbtmzRaPXY2Fi5XC6RSJ6594wMFhPDTp9+9D+//ZZ17sy0eiuCHqhUKj5txdHRkYiSk5PVWSsvL4+fqbCysmrTpg1ffe/evVFRUYGBgUZ/P35BKpV27dp1wYIFj2/29u3bnTt35mc5zp8/r+mADx48yA/rNF1RIOIFq6yszN7enogSEhK03sisWbOqToENGzZM/RWvX7/O38Qffvihpjt98UVGxD7+WNP1QD9SUlL4lCheH5VK3ZmcxcXF/NDMzMyMX5VW/P2AWmNj4yFDhkRFRd25c+df163qnY2NzbFjxzQaMP9dPn36dI3WEot4wWKMzZgxg4hCdTghxCfpWVpampiYyGSya9euqbNWUVFR+/btiWjUqFGVlRqf1/zzT0bEWrZkar/zQZ/Wrl1bdUF56NChGq2rVCpfe+01Y2Pj7du3W1hYKBSKwMDADRs25OfnP3Pd0tLS559/nogaNWq0Z88edXZ38eLFBQsW2NraymSyuXPnajRUsQgZrPPnz/NfQVqcfqryxhtvrFmzplOnTtbW1vy4PSAgICwsLCoq6siRI/+4bs0YU6lU48aNI6J27dqp87Z7UmUlc3VlRKz+nhKtV956662qizMLFy7UdHWVSpWQkHDjxg3+XlX/AI0xplQq+bQsY2PjjRs3/usyFRUVsbGx06dPd37subdyudzExOS3337TdLSiEDJY7O+rIdHR0bpsZPv27VKplM9yoCe4uroOGjRo5syZUVFRhw8f5p8ibWxsrl69qvUeP/iAEbHJk+vtVef6xNvbm4j4vV/79u3TbiObN2/W9LQDp1Kp3n//fSKSSCRLly6t+jm/vBgSEsKvlXMuLi4hISHbtm0bM2YMEclksu+//167ARs4UYO1fPlyLQ7UH3f58uXGjRsT0eeff15eXn7t2rXt27dHREQEBwd37dr18YmgnKWlpUwmi4mJ0WXYqalKf/9pTk7OTx7BgUF58OCBXC43MjJSKBQSiSQvL0+77cycOZOIFi1apN3qkZGRfHr9jBkzoqOjg4OD+QxVzs3NLSws7MiRI/zwbe7cuUTUp08f/qda3yRkyEQN1v37901MTKRSqXYXgHNzc/kl5HHjxv3rsbpSqbx69eq2bdsiIiJeeeWV9u3bGxkZOTg4zJ49u3Xr1rpcNubvpzVr1mi9BagDBw4c4B//+UGW1tvhswV1+T23Zs0auVz++G9QT0/PBQsWXLp06R9L/vLLL/wqZK9evfiHhrfffluLk62GTNRgMcbGjx9PRJ9++qmmKyqVyqFDhxKRt7d3cXGxOqtUVlbyaTX8pPtPP/2k+Xgf+emnn/gFSq23AHWAX3HjJ7CmTp2q3UZKS0v5r1XtTnpWGTdunEQiadOmzbffflv9TR2xsbH8EOy5557jlyYnTpxYXl6uy94NisBfQjF58mT6ezqfRiu+9957e/bsadq06bZt25786PevpFLppEmTiIg/J/7HH3/UfLyPjBs3zsLC4ujRo8nJyVpvBGrbiRMniKiiooL+vqdCCwkJCWVlZZ6envzkg9b4Y0V8fHwePnxY/XfTDxgwIC4uzs7O7vTp023atLGwsNiwYcPQoUOL+Hdq1gN6DqYOKisrXVxciOjo0aOxsbEvvPDCwoULo6OjL1y4UM09X+vWrSMiIyMjTW9fSEtLk0gkZmZmjRo1kkgkj09fVt+iRYvOnj3Lv1i8bdu2s2fPXrNmzYkTJ3T8DQw1jidm7dq169aty8jI0G4jS5cuJaLXX39dl5EolUpzc3OJRMIvZ6szmEuXLvG/Gq1ateLTBrt37677w5QMgcDBYozNmzePiKZMmbJo0aLHKyyXy9u0aTNmzJi5c+f+/PPP8fHx/KxTfHw8v+lv5cqVWuyub9++bm7t+vZ9vnv3kYsXJ2m6On/gkY2NTbt27R4/dcoNGbIzIICFhrLvvmMHDrCcHDZxIsvKYlevsj/+YJ98whhjxcXsq6+0GDhojD+kwcXF5clTReoLCgoinc9XJiQkEBE/I+Hk5KTmWunp6fxGDhcXF1dXVyLy8PDQYva8oRE7WElJSRKJxNzc3N3dvXv37j169PD29nZxcXnyYe1ff/111dNgtJ5xumHDfSLWoQMjYi4uTKOzmX/99Rd/OiW/Mc3V1fXHH3/8+OOPJ0yY4O3tbWpq2rJlMr/3kP+nSxcWEsJmzGDnz7PVq9m0aaysjN2/z+r1rEADcufOHX4Cy9ra+q+//tJuI/wwR5fkMcZWrFhBRL6+vkQUFBSk/op379597rnniMje3r5169b8oF6XkRgCsb+EIjIykjFWWlqampr6+M/lcrmzs3OTJk1MTU1LS0vz8vJcXFzGjBmTmZnp5+fHH4mlhZEjbSwt6cIFcnWlmzcpLo4GDlRrxYyMykmT3i4rK+vdu/fRo0ctLCx27drFz99zKpUqPV1y+TJdukTJyZSURF26kJkZde5MMTHUuDHdvk1ffUVlZdoNHDTWtGnTmJiYl1566bfffhs0aNCWLVv4hZpnKisr279/v5mZWevWrTMyMqysrPiRjtb42TQ+uUGjs2l2dnYHDhwYN25cRkbGZ599NnLkyDt37ugyEoOg72Jqj0/FUigU+/fvP3HixJo1a2bPnj18+HA3NzfpE9/oxv99t2jRQpdndzDGpkxhRMzfnxGxCRPUWqWkhHXpwlq1Ku3X731HR2+pVLpt2zZ1Vpw1i6lUbNQotno14/eHFRayuXNZXh7T4TZK0IBSqeTPETI2Nt5Q7WPSi4uL+eNi+MmvgQMHbtmyhYgGDx6s4xj4wRGfhaPp3YWMsbKysjt37qxevZqIXnjhBR0Ho3eiBuvIkSPGxsYSieRf30ZlZWUXL16Mjo6umgjKp7MvWLBAx/0ePcqIWNOmTCplzZuzZ14vVqnYhAmMiDk7M0tL5uCgXLpU3dn5x48zxlhaGktOZocPM8ZYeTk7fpxducI2b2banggGzahUqvDwcP4778svv/zHn+bk5KxevXr48OFVtzcTUbt27QYMGODq6mpiYhIYGKjL3u/du8cv9chkMmNjY02fYlqFZ3fZsmW6DMYQCBms9PR0/sAG9e/z5BMRfH19dd97+/Zs5Ei2Y8eza8UY+/RTRsTMzVmrVoyIPf98Ddz5XFLCvv9eszNooKPIyEh+2M6nj6tUqsjISH9//8e/jaJDhw5+fn78WTQcP2v50Ucfab3fHTt2EBF/xpaPj4/W2+HnH47z34EiEy9YRZVFAy4MaDeq3fDhw9WfxVtSUsIf7ajjGVDG2L59jx4Rs2TJsxf+6Sdmasq6dWNErFMnViMPVtuxg23YwOrFRWqRrFu37vHvmOjWrRtPUpcuXfz9/flvUK5JkybBwcHbt29fvXo1n3E+ffp07Wacz58/n/7+zs2ZM2dqN/KCggKZTGZiYqLLwwIMhGDBUjHV2Gtj6Qx5J3nnF2g2d+n111+nmrjB6vffWVAQO3+ezZzJLl9m58+zp8/6YoyxkyeZoyOzt2fp6TruGfRsx44dfFrMoEGDQkND/fz8Hn9w6D/u7ON+/fVXfpw1ZcaUcpXGM8779+9Pf3/Jk3aPq2SM7du3j4h69uyp3eoGRbBgLchaQGfI+px1SmmKpuseO3aMiLoEdqlQafwVTI/7/Xe2fz97/XU2YwYLDmZETC5nbm4sIICFhbGoKHbkCCssZBcuMP41iT/+yG7dYidP6rJPMBSHDx+2srJ6/KoOv7MvKemp8/IOHDjQ1LVpx9MdB6QMKFRqcNN7ZWUlv7OCf6vFMx8q/zQLFy4konfeeUe71Q2KMMEqV5VvzdsqPSOVnpHuytfyW+ZHnhwpPSPdmb9Tl5H8/js7coTt38+8vNh777HWrZlMxh6fQkXEJBIWHs4GDmQXLzJtD+TBQO3cubN9+/bu7u7Lly9XcxJ8Ql5Ck8QmdIZ6JPe4V6HudeqjR48aGxsbGxtfuXJlx44dWg+YT8jYvHmz1lswHBKm4Y14dWxd7rq0sjQzqdnNiptr7619oHqwpNmSWU1nabe1z7M/n5M5Z5zVuC1uW7QeUkoKmZmRszNt2UJBQUREFRWUkUFJSXTp0qP/vnyZPvmEXF1pzx5q1IgiI7XeG9QTaWVpg1MHp5aleig8/nT/08XY5ZmrVFRUNG3aNC8vr0OHDnv37nVyctJiv4wxe3v7+/fv37x5k09kFZu+i1mdrPKsWbdmMcZKVaVzMud8l/PdlPQpumzwdvlteYLcOME4pyKnhsb47yoqWEwM27GDxcYyd/da3RUII7M8s8OlDnSGvsz+slxVfqv8loqpjj2obmpVZmYmv0moRYsWV65c0WKn/B579e/pMXAG/bSGzIrM1iatichEYkJEr9m9trr5al026GDkMNhycDkr35i7sWaG+BRyObVsSe7uNGAAvfdere4KhOFk5HSozaFI58gJ1hOm3pi6t3DvhtwNv+b9Wt0qTk6HDh3y9fVNT0/39/fn9xWq48qVKxEREUlJScePHyeinj171sALMAAGfWtOG5M2y3OWT7GdUlBZUFPbnGw7eVfBrjMlZ2pqg0/TqtWjf3jjjdreFQjDWmY9o8mMb+5+M7PJTG8zbyJKKHlGg6ytrfft2xcUFLRnz54+ffrwW4WetnBSUtKWLVt27tzJv438wYMHWVlZpMMTcgyNQR9hWcos32n6zufZn/9R8Ed/8/4y+uctzVoY0XjEmXZnujfqvjh78Y2yGyvvrdR9mwAaYcT4vWJqatSo0fbt2ydPnvzgwYMRI0ZER0c//qdKpXL//v2hoaGurq7t27dfuHDhmTNnbGxs+I2ra9euNTIyatGiRQ2/Bj0x6CMsIups2rmzaeca3KCxxHhr/tax1mPdjN3Sy9PvVIh/OyiI5nmr5+dlzhveeHgjaSM1V5HL5WvWrLGxsfnyyy8nTpyYl5f3xhtv3L59e+7cuTt37rx//z5fzNHR0d3dvaCgICkp6ejRo0QklUr9/Pz4l1PUB/o+iaYHVWfu85R5C7M0/vomAN0VVxYnPUx6WPnwboVmtyxERETwv7nh4eHFxcX8kbnOzs69evXq0KFD1YGbiYlJQEBAZGRkVlZWLb0EvTD0I6zaYCo1zVXm2sht9D0QaLjMpGaeCk8iUkgVz1z4ceHh4U2bNn399dc///zz69evDxgwIDEx8ebNm7du3SIiS0vLYcOGjRkzZujQoU8+JLIeMPR5WLUhsyLz65yvZRLZmMZjksuSg22C9T0iAM38+uuvL730kqWl5b1794jI1tZ22LBhQUFBgwYN4ncC1VcNMVgA9UBAQEBcXNzAgQP/85//+Pr6PvkMuHoJwQIQUosWLW7cuHHx4kX+3dQNBIIFIJ7bt287OTlZWlrm5eU1kGMrrgG9VIB6g89f79GjR4OqFSFYACLKT0oyNzbm38DUoDTEaQ0AonstJuY1qfRB7976HkhdwzksANFUVJCVFT18SPfukU3Dmk6Ij4QAoklMpJISatu2odWKECwA8Rw/TkRUXx7AoBEEC0A08fFEDTRYOIcFIJTbt2nvXpJKaehQSk+n7t2JiE6fpuee0/fI6gKOsADEUVRE8+ZRQADl5lJ8PK1b9+jnVf9Q3+EIC0AcR45QRgZNnEjl5fTee3T/Pnl6EhFlZtK33+p7cHUB87AAxGFnR6dPExHdvk329qRS0fz5REShofodV53BR0IAcXh4UHk5ffwxff01vfXW/6Y1NJj5DfhICADCwBEWAAgDwQIAYSBYACAMBAsAhIFgAYAwECwAEAaCBQDCQLAAQBgIFgAIA8ECAGEgWAAgDAQLAISBYAGAMBAsABAGggUAwkCwAEAYCBYACAPBAgBhIFgAIAwECwCEgWABgDAQLAAQBoIFAMJAsABAGAgWAAgDwQIAYSBYACAMBAsAhIFgAYAwECwAEAaCBQDCQLAAQBgIFgAIA8ECAGEgWAAgDAQLAISBYAGAMBAsABAGggUAwkCwAEAYCBYACAPBAgBhIFgAIAwECwCEgWABgDAQLAAQBoIFAMJAsABAGAgWAAgDwQIAYSBYACAMBAsAhIFgAYAwECwAEAaCBQDCQLAAQBgIFgAIA8ECAGEgWAAgDAQLAISBYAGAMBAsABAGggUAwkCwAEAYCBYACAPBAgBhIFgAIAwECwCEgWABgDAQLAAQBoIFAMJAsABAGAgWAAgDwQIAYSBYACAMBAsAhIFgAYAwECwAEAaCBQDCQLAAQBgIFgAIA8ECAGEgWAAgDAQLAISBYAGAMBAsABAGggUAwkCwAEAYCBYACAPBAgBhIFgAIAwECwCEgWABgDAQLAAQBoIFAMJAsABAGAgWAAgDwQIAYSBYACAMBAsAhIFgAYAwECwAEAaCBQDCQLAAQBgIFgAIA8ECAGEgWAAgDAQLAISBYAGAMBAsABAGggUAwkCwAEAYCBYACAPBAgBhIFgAIAwECwCEgWABgDAQLAAQBoIFAMJAsABAGAgWAAgDwQIAYSBYACAMBAsAhIFgAYAwECwAEAaCBQDCQLAAQBgIFgAIA8ECAGEgWAAgDAQLAISBYAGAMBAsABAGggUAwkCwAEAYCBYACAPBAgBhIFgAIAwECwCEgWABgDAQLAAQBoIFAMJAsABAGAgWAAgDwQIAYSBYACAMub4HAFAfrFmzJjc3t/plcnNzra2t33vvPakUBwpakjDG9D0GAOG1bds2JSVFnSXHjx+/efNm3fe4d+/en3766YsvvnB1ddV9a6JAsGpecHCwhYXFZ5991rhxY32PBerI4sWLc3Jyql/m4sWLf/75p0KhuHTpUosWLXTZXUVFRceOHZOTk5csWTJr1ixdNiUWBKuGlZWVNWrUSCKRlJSUGBkZ6Xs4YFhefvnlX375JSgoKDo6WpftLFu27N1333V3d7948aKJiUlNDc/wIVg17PLly56enu7u7levXtX3WMDgZGZmtm3btri4+MCBA3379tVuI7m5ua1bt87Nzd25c+fw4cNrdICGDif/alhqaioRtW7dWt8DAUPUrFmz8PBwIpo5c2ZlZaV2G5k3b15ubm5AQEBDqxUhWDWOH1ghWPA0s2fPbtGiRWJi4urVq7VYna8ol8sjIyNrfGyGD8GqYfwIy93dXd8DAQOlUCi++OIL+vtASdPV+aFZaGiol5dXLYzO0CFYNQxHWPBMQUFBffv2zc3N/fjjjzVaccuWLQcPHrSxsfnggw9qaWwGDsGqYTxYOMKC6kVGRspksuXLlyclJam5Smlp6fvvv09En376qY2NTW2OznAhWDWprKzs1q1bcrm8efPm+h4LGLROnTpNmTJFqVS+8847aq6yZMmS9PR0Ly+vKVOm1OrYDBmCRUSUn58/f/78Pn36fPjhh7psJy0trbKysmXLlpiBBc/08ccfW1lZxcTE7N69+5kLZ2RkfP7550S0bNkyubwB31HHGrb4+PiQkJBGjRoRkUQiIaKQkJDy8nLttrZt2zYiGjZsWM0OEuqrxYsXq/9XVSKRBAYG6nvIetZAU11QULB+/fqoqKgLFy4QkUQiCQgIsLCw2LVr18qVKy9duhQdHe3o6KjpZnGJEGqPk5PT3Llz9T0KfdN3Meva44dURGRtbR0WFpaamlr1p/z0k5OT019//aXRlpVK5dChQ4loyZIltTBwqG+ys7OtrKyIaPfu3foeizAaSrAKCgqioqK8vb2rSt21a9eoqKiHDx/+Y8m7d+8GBAQQkVwuj4iIUGfjmZmZERERvHSOjo5t2rSpKiDA07z++utENHz4cH0PRCQNIlgqlarq5vgmTZq8//77V69erWZ5pVIZHh7OT2m99NJLxcXFT1tsx44dI0aMkMlkfONubm7NmjXjB267du2qnVcD9cHZs2dlMpmRkVFycrK+xyKSBhEsxtjs2bP5IVVJSYmaq/zxxx/8+TCdOnW6du3a43+UlZUVERFRFUFjY+OgoKCYmBiVSlVYWDhu3Dgikkgk4eHhlZWVtfBqQHh9+vQhonfffVffAxFMQwmWduFITk729PQkIktLy61bt1ZWVsbExAQFBVVdV3Z3d4+IiMjOzn58LZVKFRkZyZcZNmxYbm5uDb0IqCf4A/zs7e3z8vL0PRbBNJRgaa2goGDUqFFEJJVKLSwsqg6pXnjhhbi4OJVK9bQVDxw40LRpUx61xMTEuhwzGLKSkhJ+bB4VFaXvsYgHwXo2lUr1ySefGBsbGxkZ/esh1dNkZGT4+PgQkUKh+OGHH2p7nCCEhQsXElHnzp2VSqW+xyIePMBPXYmJiVevXh07diw/Ga+msrKy0NDQVatWEVFISMjy5cuNjY1rbYxg6Koe4Hfw4EF+Ggs0gmDVhaioqBkzZpSVlfn5+W3dutXW1lbfIwL9eOmllzZs2FBT30PRACFYdSQhIWHs2LEODg6HDh3CQVbDdPz48V69etXIl1A0WAhW3cnJyamsrNTijh+oHx48ePDpp5+amZk12KdZ6Q7BAgBh4PEyACAMBAsAhIFgAYAwECwAEAaCBQDCQLAAQBgIFgAIA8ECAGEgWAAgDAQLAISBYAGAMBAsABAGggUAwkCwAEAYCBYACAPBAgBhIFgAIAwECwCEgWABgDAQLAAQBoIFAMJAsABAGAgWAAgDwQIAYSBYACAMBAsAhIFgAYAwECwAEAaCBQDCQLAAQBgIFgAIA8ECAGEgWAAgDAQLAISBYAGAMBAsABAGggUAwkCwAEAYCBYACAPBAgBhIFgAIAwECwCEgWABgDAQLAAQBoIFAMJAsABAGAgWAAgDwQIAYSBYACAMBAsAhIFgAYAwECwAEAaCBQDCQLAAQBgIFgAIA8ECAGEgWAAgDAQLAISBYAGAMBAsABAGggUAwkCwAEAYCBYACAPBAgBhIFgAIAwECwCEgWABgDAQLAAQBoIFAMJAsABAGAgWAAgDwQIAYSBYACAMBAsAhIFgAYAwECwAEAaCBQDCQLAAQBgIFgAIA8ECAGEgWAAgDAQLAISBYAGAMBAsABAGggUAwkCwAEAYCBYACAPBAgBhIFgAIAwECwCEgWABgDAQLAAQBoIFAMJAsABAGAgWAAgDwQIAYSBYACAMBAsAhIFgAYAwECwAEAaCBQDCQLAAQBgIFgAIA8ECAGEgWAAgDAQLAISBYAGAMBAsABAGggUAwkCwAEAYCBYACAPBAgBhIFgAIAwECwCEgWABgDAQLAAQBoIFAMJAsABAGAgWAAgD+qiYSQAAIABJREFUwQIAYSBYACAMBAsAhIFgAYAwECwAEAaCBQDCQLAAQBgIFgAIA8ECAGEgWAAgDAQLAISBYAGAMBAsABAGggUAwkCwAEAYCBYACAPBAgBhIFgAIAwECwCEgWABgDAQLAAQBoIFAMJAsABAGAgWAAgDwQIAYSBYACAMBAsAhIFgAYAwECwAEAaCBQDCQLAAQBgIFgAIA8ECAGEgWAAgDAQLAISBYAGAMBAsABAGggUAwkCwAEAYCBYACAPBAgBhIFgAIAwECwCEgWABgDAQLAAQBoIFAMJAsABAGAgWAAgDwQIAYSBYACAMBAsAhIFgAYAwECwAEEbDDVZpKSmVREQlJVRRQSrVox8CgMFquMH65hv64AMiovnzaeVKSkkhInrvPf0OCkAb+fn5O3fuHDVq1Jtvvnnjxg19D6cWyfU9AH2SSCgh4dE/nzpFd+7Q3bs1vIu7d+/++uuvixcvNjc3X758eZ8+fWp4B9BQ5eTknDx58q+//oqNjT179qxKpSIiuVx+8uTJw4cPW1hY6HuAtaJBB+utt+jjj8nUlIjIyIiMjEhaQ0ecBQUF27Zt27Jly59//llRUUFEUql09OjRv/32W//+/WtmH9Dw3Lx589ChQ0eOHDly5EhycnLVz01MTLp37+7u7r579+5z586NGjVq165dpvydXc+whmrxYpaZyY4cYX37sm++YZcvM8bY9Ons4UO2ZQtLS9Nmmw8fPty+fXtwcHCjRo34/70ymSwgIOC7777jx1ZyuTwqKqpmXwjUezk5OT179mzevPnjf3PNzc0HDhz40UcfHTp06OHDh4yxlStXOjs7N23alIgGDRpUWlqq74HXvIYbrJgYtmIFu3yZpaWxu3cZ/5ebkcFKS1lpKdOoKkqlMiYmJjg42NLSkr+ZpFJpr169IiMjs7OzGWNRUVESiaTq82BYWJhKpaqdlwX1UJcuXfg7x8LCIiAgICIi4siRI2VlZY8vo1QqfX19iahFixb29vZENGbMmIqKCn2NuZY03GDNm8eI2Acf/PPnFRXsp5/Y3btqbUSpVA4aNMja2pq/nyQSiY+PT2RkZGZm5uOLLVu2TCqVElHv3r3lcjkRjR8/nv9WBKheeXl548aNiWj16tWVlZXVLJmfn9+1a1ciat26NX9PBgcHV7+KcBpusIYOZUTst9/++fM7d1h0NDt9Wq2NzJ8/XyKREJGnp+eCBQtSUlKetuTWrVvNzMyIyNvbm58Q9fX1vatmF6EBi42NJSJ3d3eZTBYUFFT9wnfv3vXy8iKiNm3amJubE9G0adPq0+F8ww2WgwMjYtev67SRsLAwInr++edzcnKeufDJkyf5+QV3d3dHR0f+D9U0DoAx9s477xCRn58fEYWEhDxz+Tt37rRt25aIvLy8FAoFEc2cObMOxlk3Gmiw7txhRMzKiun4u4e/jby9vYnozz//fObyaWlpHh4eRNSkSRP+rrK1tT169KhOg4B6rU2bNvwQnoi2bdumzio3b97kZ+i9vb1NTEyIaNGiRbU9zrrRQIMVE3OnTZuSgACdcqVSqfjJBX6+ICsrS521cnNz+/XrR0RmZmbdunUjIoVC8cknn+gyEjA0mZmZv//+e3FxsY7bSU1NJSIrKyupVGpiYlJUVKTmiikpKfwovnv37vy06YIFC3QcjCFooMH65JNPiOjdd9/VZSMpKSlE5ODgwI+Y1F+xrKwsODiYT3oYNGgQERkZGRUUFOgyGNC7zMzM6OjokJAQT09PiUTi4OBgb29/584dXba5bNkyIurRowcRDRkyRKN1z58/b2NjQ0QDBgyQSCRyufz8+fO6DMYQNNBbcxISEoio6mqxds6ePUtELi4uRMSvzqjJ2Nh47dq1CxYscHBw+P7772UymVKpLMV9jAbm2jXKzSUiOn36fz/csYNUKiospKQkIqK0NFq3jt54g1q2JH//gPHjx69cufLSpUvm5uaFhYV3794dOnRofn6+1mPYtWsXETHGiGj48OEarduhQ4e4uLi2bdsuXbrU1ta2srIyoerGDnHpu5j64ebmRkRJSUm6bGTOnDlE5O/vT0Tz5s3TYgsFBQX8PeTh4aHLSKA2rFnDzpxhjLG33/7fD0eOZN9/z1JT2bvvMnt7RvS//wwdGj569Ohly5bFx8crlcqcnBx+vtLHx6ewsFCLARQVFZmYmMhkMn7mITU1VYuNKJXKa9euEZG1tXU9mJbVEG/NKSgouH79uqmpKT+dqTV+hFVSUkJ/n3fXlKWlJd+IdqtDbfvhB9qzhy5c+N9PWremtDS6c4fs7OjePXJwID8/6tWLevcmb++Ix2/tsre337dvn7+//8mTJ0ePHr1z505N75XZt29fWVlZ+/btL1686Onp2apVKy1egkwm27FjBxENHjyYn8wSmvAvQAuHDx+WSCSNGjWSyWS6bOfcuXNElJGRQToUB8EyZK+9Rl260J07/++H779PISHUty+lp5Ora3WrOzs7x8TE+Pv779+/f/To0du3b+fX7NTEPw/ySzqafh58cju6bMFwNKxzWFlZWUTk7e0tk8nu3bv34osvan3mKDMzMzs729raOjs729LSkn/G1AL/SIhgGSBzczI2JiKysaGSEtqwgeLiyMaGbG1p5Ehq3PgZteJatWp14MCBpk2b7tu3b8KECUr+DDY1MMb27t1LRLdu3SIdclNcXHz48GGZTDZkyBDttmBY9P2ZtNaVlZVVTXT64YcflEolY+yPP/6wsrIioh49evDb/TTFD7N5aPr06aPd2CorK/l0ZEx5N3z5+WztWi3XTUxM5Bfs1LlXJjk5edWqVSNHjpRKpXZ2dp9//vnQoUPLy8u12/Xvv/9ORL6+vtqtbmjqbbCuX7++c+dOxlh+fv7YsWOfvDvh4sWLfHKdm5vbZf6sBk0sXLiQ/p5/rPVMYv6EkObNm2u3OtSZnBw2aRI7dkz7LRw/fpzfkjVt2rQn//TatWtRUVHBwcGujx22WVtbSySSFStWaL9XxqZMmUJE9WaiX30L1q5du3bv3s0YS0xMbNeuXfULZ2Vl8ambNjY2Bw8eVH8vWVlZ/NgqLCzs+eef37p1q3aj3bBhAxGNHj1au9VBLHFxcVX3ylRUVJw4cWLx4sUjRoyounmec3BwCAoK+vrrrz/66COJRCKRSFatWqXdHlUqVbNmzYjo3LlzNfta9KW+BWvz5s2DBw/m/6zOteQHDx6MHDmSiExMTNavX1/9wrm5uWvXrg0MDORXW6ytrbt27arLp7nZs2cT0cKFC7XeAohl586dxsbGRMT/u0rz5s2Dg4NXrVqVnJz8+PJfffUVEclkso0bN2qxuzNnzhCRs7Nzvbn/ub4Fq7i4WNPjHaVSGRoaSkQSieRfb18oKipav359YGBg1ZtMoVAMGDCAP3WoXbt2ado97o+xgIAAItq+fbt2q4OIvvrqK3552s3NLTg4OCoq6tq1a9Usz08+GBkZ7dixQ/298ELxdd944w1dB20w6luwtBYZGckfWTV58mR+grO0tJQ/PpSfF+e/6Phj+fhRVWZmJv9gaGtre+TIETV3VFxcvGnTpoiICMaYnZ0dEd26dav2XhcYoPz8fI0mLYeHh/ODsr1791azWEVFRXx8fERERGBgoLOzc0VFRffu3evZb0QE639+++03/sgqLy+voKAgPr2YiKRSqZ+f34oVK558hkxRURG/3qxQKKo/aK96Kik/82psbHzy5EkisrOzq83XBPUEf8iMmZnZ4cOHH/95UVHR3r1758+f7+fn949JXt98841UKlUoFLrfg204EKz/5+TJk3Z2dlUTSvlj+ao/YlcqlW+99dbTPlEqlcq4uLipU6fyq9p8sQ4dOvTp08fKykoikeCmHFCHSqWaOnUqETVu3Dg+Pp4x9tVXXz333HOPT16XSqVt27bt169fz549q95v9ewNhmD906FDhyZMmDBx4kSNHq1X9Yny9ddf53dsJSQkhIWF8Ud8cK1bt/bz83v8J02bNk1ISKi1lwL1ilKpfPHFF/lReVJS0owZM/hpirZt2/r6+np7e1edu+CcnZ19fHz+8bRu0SFYNWbLli38ZrHBgwcXFBR8+OGH/H3j5OTk4+Pz+FeeuLi4hIWFqX/aC4ArLy8PDAzkV6hHjBjRqVOnf9yf2Lp169dee+2nn37S+kKQgZMwxghqyIkTJ0aOHHn37t2OHTvOmTNn5cqVeXl5iYmJ/E9tbW3Hjh0bHBzcq1cv/iR4AE09fPgwICDg1KlTVXf5uLm5BQQE9OrVq0+fPv/4KrD6B8GqYSkpKcOHD09NTZVIHv1/a21t/fzzz7/44ov9+vXT8XZrACLKzs7++OOPU1NT33zzzd69e9va2up7RHUHwap59+7d6927982bN0eOHDlx4sQhQ4b8Y5YgAGgHwQIAYTSsx8sAgNAQLAAQBoIFAMJAsABAGAgWAAgDwQIAYSBYACAMBAsAhIFgAYAwECwAEAaCBQDCQLAAQBgIFgAIA8ECAGEgWAAgDAQLAISBYAGAMBAsABAGggUAwkCwAEAYCBYACAPBAgBhIFgAIAwECwCEgWABgDAQLAAQBoIFAMJAsABAGAgWAAgDwQIAYSBYACAMBAsAhIFgAYAwECwAEAaCBQDCQLAAQBgIFgAIA8ECAGEgWAAgDAQLAISBYAGAMBAsABAGggUAwkCwAEAYCBYACAPBAgBhIFgAIAwECwCEgWABgDAQLAAQBoIFAMJAsABAGAgWAAgDwQIAYSBYACAMBAsAhIFgAYAwECwAEAaCBQDCQLAAQBgIFgAIA8ECAGEgWAAgDAQLAISBYAGAMBAsABAGggUAwkCwAEAYCBYACAPBAgBhIFgAIAwECwCEgWABgDAQLAAQBoIFAMJAsABAGAgWAAgDwQIAYSBYACAMBAsAhIFgAYAwECwAEAaCBQDCQLAAQBgIFgAIA8ECAGEgWAAgDAQLAISBYAGAMBAsABAGggUAwkCwAEAYCBYACAPBAgBhIFgAIAwECwCEgWABgDAQLAAQBoIFAMJAsABAGAgWAAgDwQIAYSBYACAMBAsAhIFgAYAwECwAEAaCBQDCQLAAQBgIFgAIA8ECAGEgWAAgDAQLAISBYAGAMBAsABAGggUAwkCwAEAYCBYACAPBAgBhIFgAIAwECwCEgWABgDAQLAAQBoIFAMJAsABAGAgWAAgDwQIAYSBYACAMBAsAhIFgAYAwECwAEAaCBQDCQLAAQBgIFgAIA8ECAGEgWAAgDAQLAIQh1/cAAOq7o0fpwAEyN6e33iKFQt+jERuOsABqU2Eh/fILffghBQTQsmX6Ho3wECyA2nTjBrVvT0TUoQPduKHv0QgPwQKoTa6udPkyEdGVK+Tqqu/RCE/CGNP3GAAMRWFhYUZGRkJCQllZ2eTJk2UymU6bO36csrLI3JxOnSJjYwoNJTOzGhppA4VgQUOUl5eXlpaWlpaWlZV1+/btx/+5apmePXseO3ZMp90MGUJ//kkjRpCvL4WEkI2NruNu8BAsaEA2bdo0ffr0oqKiioqKf13AzMysRYsWlpaW8fHxSqXyxx9/fPXVV7XcWUoKtWtHCgUZGVFhIZ07R506aT1y4BAsaCgqKirs7OwePHigUqmsra3d3NwcHR2dnJzc3Nyq/rlly5YSiSQuLu7LL7/cs2ePQqE4efJkx44dtdnf9On07bfUuzcdPUp9+9KBAzX+eqiigszM6MEDMjUlmYzu3SO5nKysanhHhgTzsKCh2LJlS2FhYYsWLWJiYtzd3Z+2WH5+/tixYwsKCnx9fY8dOzZx4sRTp06ZaXruqbCQ1q8nIsrMJCIKDdVl5P/u7FlKTqZJk+jbb2nCBNq8mYyMqKiIXF1p0qSa351hwFVCaCiWL19ORM2aNfPw8Fi7du3TFrOysoqKiiKihIQENze3pKSkUM1zs2vTpsMtW5K3N12/Tq6uNHKkLiN/qrNnaft2unSJiCglhWbMoA8+oKNHa2VfhgHBggbhzJkzJ06csLKyOnPmjEql6t27dzULv/DCC1OnTi0tLa2srDQ1Nf3hhx/WrVun/r5UKtWML77ok5g43sZmjZ9faWgoyWvno4y9PbVs+ehcvkTy6IdV/1AfIVjQIERGRhJRx44dS0tLAwMDW7VqVf3yy5cv79y5840bNzp06EBE06ZNu8ynU6lh165d165da9as2W8HDoTGxxdPnqzj4J/K2Zk6dCAHByKiFi1o1SpaupR69Kit3RkCBlDfZWdnm5iYyGQyBwcHIoqJiVFnrZSUFAsLCyLq1asXEbVv3764uFidFQcOHEhEfn5+RBQSEqLb2J+utJQVFjLGWF4eq6hgjLH0dHb7Nrtxgw0dytLTa2u/eoVgQf23YMECIvLx8SEiT09PlUql5oobN24kIoVC4ebmRkSvv/569ctXVFTExcVJJBJjY2Meu8TERJ2Hr6FJkxgR69GDlZfX9a5rH6Y1QD1XXl7evHnzO3futG/f/uLFi999992bb76p/uqTJ0/+6aef3N3ds7KySkpKfv7555dffrm0tDQrK+vJqac3b95UKpVEJJVKVSpV//794+Liau2VPUV+PnXpQtev06xZtGRJXe+9tum7mAC16+effyYiPo/BysrqwYMHGq3+4MEDT09P+vsjnpmZWePGjZ/2t0kqlTo5OXXu3FkulxPR9OnTa+lFPcPJk8zYmEkk7I8/9DOAWoMjLKjnfHx8Tp06xSdVvffee4sXL9Z0C0lJSUFBQWvWrBk5cqRMJuNnxJo1a/bk1NOWLVvyGVvR0dEvvPCCQqE4fvx4586da+FlPcuSJeUrVrxtbz8vOrpFixZ6GEAt0XcxG4oZM2Z069Zt+vTpd+7c0fdYGpDjx48TkY2NjUKhkEql165d0247KpXqzz//JCJHR8esrCx1Vpk6dSoRtW7dupCfGq9jKtWksWOJyNfXt4Kfkq8XEKxaV1JS8tprrxGRRCIhImNj46CgoJiYGPVP/YLWunfvTkQjR46Uy+WjRo3SZVOBgYFE9Omnn6q5fElJSYcOHXx8IkJCynTZr9Zyc3P5sVV4ePg//ignJyc+Pn7r1q2RkZHvvPPO2LFju3fvbmFh0bt37/z8fL2MVk0IVu26cePGc889R0QKhSI4OLhHjx7yv+cQenh4fP311wb+/hCdl5eXVCp98803MzIyUlJStN5OamqqVCo1MTHJzs5Wf63k5Fxzc0bEfvhB6z3r5MSJE0ZGRhKJZOLEiVOnTh00aJCHh4epqWk1H7mmTZumn7GqB8GqRTt37rS2tuafCxITE7dv305ETZo06dOnj5OTE39/KBSKoKCgo0eP6nuw9dOaNWtkMplUKo2Li9NlOzNnziSiKVOmaLrixo2MiCkU7Nw5XfavvbCwsCevEvBzcB07dvT19e3du3e3bt3atWu3ceNG3rINGzboZ6xqQLBqhVKpXLBggVQqJaIRI0bk5eUxxnbu3Onl5cXfMTKZzNfX18fHR/L3jRRdu3aNiorS9BoWPNP8+fOJyMHB4fbt29ptoaioiP+dP6dVdSZPZkSsTRuml3NZr7zyChH5+PgMGjSoS5cuLVu2fNoRVlpaGr/dsnHjxlqf7KttCFbNu3v37qBBg3iVFixYUFlZ+fifxsfHh4SEVL1pHBwcevbsyQ/EiKhRo0YHDhzQ08Drp8rKyv79+xPRkCFD/vHvQk38r3Hfvn21G0BxMfPyYoGBLDf32Qvn5eWdP39+3759NXKKMycnp+pqA5+vz9nY2HTu3HnEiBGhoaGLFy/evHnzsWPHSktLGWMTJkwgom7duvH/aWgQrBp2+vRpfqbT3t6+mltAsrOzP/vss5YtW1Ydovv5+Xl4eEilUk9Pz7occENw+/ZtflPOZ599pum6KpWqXbt2RPTbb79puu6OHez0acYYmz2bXbrEXnyRMcYWL2ZFRezmTXbkCPvlF/bZZywsrDgwMLB9+/aWlpb8/dCkSZOuXbtqursnLVq0iIhGjx7NGIuNjd29e3dSUlJRUVE1q+Tl5fFp/TNmzNB9ADUOwapJUVFRxsbGRNS7d+/MzMxnLl9ZWRkTExMUFCSXy11dXc+fP09Ebdq0qYOhNjR79uyRSqVyufzIkSMarbh7924icnV11WJywMaNbPdulpvLQkJYYiKbOJFt2sTmzWMhIYzo//2n6nlb5ubmbdu25VdmVqxYoekeH1deXu7s7ExE+/fv12jF06dPm5iYSCSS33//XZcB1AYEq8YMGDCAiCQSybvvvqvpmzs9Pf3gwYMlJSX8NjSlUllLg2zI5syZQ0TOzs5379592jIqlSorK+vEiRPR0dE7duxgjA0dOpSIPv/8cy32uHEje/ddtmIF69ePJSayn35i06ez0FD2ySfMyYn17MleeIHNns2+/prt2hV77ty5+/fv8xW3bNnCj7vPnDmj3YtljG3YsIGIvLy8tPh0yR9uYWVllZaWpvUAagOCVTOUSqVcLpdKpevXr9dlO/zqYXo9vdVevyoqKvhjsIYOHapSqYqLi/ft27d69eoFCxa88sor/fr1c3d3NzExqTrR4+vrm5KSIpVKTU1N7927p8UeN25k/Hju7bcfBevGDebgwNR56MNbb71FRO7u7gUFBVrsmjHWo0cPIlq5cqUW66pUqjFjxhDRc889V1amn3lk/wrBqjH88Lt///7W1tZaX2Thf6N0vAYPT5ORkWFnZ0dEX3zxRXp6+r9eLLOzs/Pw8OjevfvgwYM7depERFOnTtVud2lpjE/bOnGC3b/PrlxhjLG4OKbO8XdpaWmXLl2IaPz48VrsOj4+noisra21vu6cl5fHz7HOmjVLuy3UBgSrxvj7+xMR/8ICNZ+49CR+EXrVqlU1Ozaosnv3bolEIpfLV6xY4e3t7evr26dPH19f306dOrm6uj5+hMVZWVm99dZbehnq1atX+Wl4LY6SXn75Zfq3Oe4aOXXqlLGxsUQiWbx4sS7bqUEIVo2ZPHky/f2wt++//167jfDLOnPmzKnZscHjZs2a9a/HVlzTpk27dev2/PPPz5gx4+233+bzTrX+DaSjzZs3E5FCoTh79qz6a1U9sFCXM1AXLlxISUkJDQ01qCvX+NacGsMvBvPJoteuXdNlI1qvDupYtGjR5cuXT5061bFjR1dX1+bNm7u6urq6urq4uDRv3lyhUDy+sK2t7cKFC19++eWzZ886OjrW8VDHjx8fGxu7atWq8ePHnzlzhj8U8Jm+/fbbsrKysWPHVs2b0UJ4ePjevXuHDRvGvxVN6+3UMH0Xs/7gF2X4Yy3Hjh2r3Ub40wVqZA4O1IjKysqAgAAi6tevn16u3j58+JA/oOZFPo+rWhUVFampqXzS2cGDB7V+TkPV1QaeqtN8OpkBwJdQ1Bj+vQb5+fmkwyES3wiOsAwHv/Lr6Oh44MCBzz77rO4HoFAooqOjLSwsNm3a9OOPP/IflpaWpqWlxcbGrly58r///e8bb7wxcODAVq1amZqauru7S6VSe3t7hULRvn37hIQELXa6fPlylUrVtWvXvLw8Pz+/bt261ehr0oG+i1l/3Lt3j4j4QbuFhYXW2+HnWaum5IAh2L9/Pz+ZFRsbq5cB8O8ZMzY29vDwqOaRpzKZzMnJqVGjRvT3I1Jbt26t6cSIwsJC/ibkj2mNjo6upRelBQSrJllZWRERfz/l5ORouvrVq1cZY/xS+qlTp2phgKC9Dz74gIiaNm2q9U3UOmrdujWfOkN/fy9GQEBAcHBweHh4VFRUTEzMtWvXysvLGWM7duyQSCRGRkZt27YlzSdG8Fmj/HNos2bNyg3pyywQrJrk7e1NRPxdcuLECY3W5bf1rFmzpk+fPkT09ttvG+bdpw1WZWUlv5mhf//+dX8yKz09XSaTGRsbx8bGqjOLlX9btYuLCz/kj4qKUnNHKpWKv4H5x0D1H1hYNwwuWP/5z39Gjx6t0UVcwzFu3Dj6+7z7L7/8ouZahYWF48ePJyKJRDJw4EC5XM7nu1tZWYWEhCQlJdXqmEF9d+7c4eez6/6vMZ+K8eqrr6q5fHl5OZ/pzv9boVAkJCSos+LOnTv5gZUWDyysA4YVrPLycv539a+//tL3WLQRHh5ORP7+/gqF4ptvvlFnleTk5Pbt2xORubk5/50mlUpHjRrFZznz/zlkyJA//vgDNxgagri4OH4TdV3ejVBcXGxjY0MaXq1LTU3lZyf47RNqnswaPHhw1fkvLR5YWNsMK1ibNm0ioo4dO+p7IFpaunQpEfn6+qr5vQNbt27lb6mWLVu6uLjw819Vt8jzJ2fxE6hE5OjoGB4efuPGjdp8BVCdsrIypVI5d+5cIrK3t6+z/R5Yu1Yulfr6+mq6YtVN1PxT3gsvvFD98nw2g5mZGT/prt0DC2uVYQWLn7759ttv9T0QbSQkJLi4uNja2vKrhCEhIdV8629FRQU/HOOB408X8fb2fvImxPz8/KioKH4Uxi8DBQQEbN++Hd9hUfdWrFjRvHnzefPm8Q/sdbRXlYp5eVW4uCRt3arF2tOmTSOi5s2b85NZq1evrmbh9evXKxQKfrdGnz59tBxwbTKgYF26dEkikZibm2t9e7oerVy5ks+Q9vDw4OewOH9//w0bNvzjfvdbt275+voSkVwur3oOZHBwcElJydO2r1KpYmNjx40bZ2RkxJe3t7dX86wE1AiVSuXh4UFE/Jt4Fi1aVEc73rePETEnJ+2+er7qJmr+trS0tOQP7H6ay5cv84P9X3/9VdsR1yIDCha/rvHmm2/qawCrV69evHhxrjoPsn1cSUnY3199Pn36dN6m5OTk8PBwft6BiKytrcPCwqqOnvgXRjk5OfFHvCsUCvXvdr59+3ZERESTJk0kEomHh4dmQwUd7N27l/9bk8lkJiYmdff9kiNGMCL2ySdab6DqJuphw4YdO3aM/zA3Nzc+Pj46OjoiIiKHrKqKAAAgAElEQVQsLCwoKKhr1658Xo5EIrGysjLMbzOs9WBlZWVVX3SupKSE3wSgl6OGhw8fTp48WS6XKxQKExMT/r2Baq2Zns6ee27Hc8+ZmZmtWbPmyc2uXbuWz3Xgp88DAgKio6PT0tL8/f35623evLkWU67Onj3LT6NquiJobfjw4VVno1955ZU62uv160wmYyYmTLerdRs3buTnEzp06ODs7CyTyegpLCwsHB0d+cMLDVCtB2vq1KnqJGD16tX8bE5tj+dJV65c6dChAxGZmpq2bt2a371MRF27dr29fj2r5nFC27YxKyv+jSg51U4+OHbs2KRJk6ruqrWzs+N7GTlypDo1f9LDhw/5zEBcOqwbV69effzeurqb1rt3L3NwYJMn674l/k0cVaytrbt27RoUFBQWFhYREREdHR0fH6/Oc731q9aDNWbMmKoEdOvWbfXq1cX/9rxFfkX/559/1m4v586dW7ZsmRbflLlt2zZ+GNy2bdsLFy4wxlJTU8PDw+3t7dvZ2jITE2Zp+eiJ3P/w4YdMImFEbOxYpt5JN3763MvLy8zMzNzc/MMPP9TuS1w4Pv/j+vXrWm8B1Ddjxgz6+9lBvXr1qq3drF3LGGPZ2WzvXlZczL74gn30Edu3j2n1vNN/UKlUmzdv3rZt2/Xr1w1q8rpG6uIcVlUCeLYsLS1DQkLOnz9ftcCpU6eIyNbW9uHDh1psf+vWrZaWlkZGRhp9C3xFRcWCBQv41wKOHj36H9/AXFpaennLFubr+7/vCejTh924wRYvZosWsf372bJlTC5nERFMw6t1KpWKP6VEx69+459N8GzS/2PvzuNqTPs/gH/POe2bIpFESFpEyr5nHSaGGZmxZBnrGBrLM8wqjCHMkhnGxMNPHmPJOo21kHWE7EsiSptCpX095/r9cZnz9Fhylup08Xm/ntfzMrrv+3wPx+dc93VfSzXIycnho0+aN29ORNu2bauqV/r0U8YYi4tjP//MFi16tkTptGkqfiO+Daqv072oqCg0NJSv1KG85woJCSkuLuZL333++efqXrOkpIR/9fG8U+4C7+rqWvEu8I8ePeLTLPT09AIDAyt6jZgYNm8es7JiTZuy775jMTGMMTZtGnv6lN24oW7BXM+ePYkoPDxcs9O5cePGkaYrdoNafvnlFyLiczwbNGhQhc2Tfv3Y4sVs9mz2889sypRnv7lqFSv37f6W08FTwitXrkyZMsXMzIyHi42Njb6+vkQiieXfJypLTk7mTXRl6KSmpgYGBjZq1Ihf+VW7wJ88eZK3cezs7FTdIz4nh12+zJRPMFevfslNosomTJhARGvWrNH4Cgxrk1YX5b6E7dq1I6LFixdX4YuVb2EtWfLsG/GTT1iFOwm+VXQ2rCEnJyc4OJh/a1lYWEgkEv4ETcWHqSdOsHbtbpubWzRs2FD5pJbjm/35+Pi8dBf44OBgPpSpR48eak+7X7r0v58hLfYd//777zVrUZb3xx9/EJGvr682F4HX4vsS2tnZVcdohi1bGGPs0SN25AgrLGQ//sgWLmRqbqT4ZtP9OCy+T7JyPGSTJk2WLl2alvbKh18KBVu6lMlkjIhNnHi0glVcYmNjZ8+eXX4wlKurKxFJJJIvvvhCk+dr/DO0aBE7eVLtc8vhM5Def/99bS4SFRVFRJ6entpcBF6r/GiGjz/+WNflvO10HFhHjx7l/QKPHj0KCgri6222bDnJwID5+rKIiOd7tLOz2QcfMCImkbB585gqmVO+76xx48bGxsY6H8LLHzK0bt1am4s8evSIiGrVqlVZVcFLxcfHz549m8+dwtQCndNxYPn6+hLRwoUL+X/K5fKDBw9++ukd3oAiYm5ubNUqtno1y89n2dls6lRGxGrXZvv3q/1aK1asIKK+fftW8ntQX0ZGBhGZmZlpeR0+fFmzPT5BdXK5nG//tXHjRl3X8rbTZWA9fPhQX19fT08vOTn5uR+lprLAQGZvz4iYrS0bMYItWsSSk1lgIPvsM6bZ2CO+uLWbm5v2lWuPjz/UYFXS8viakFibtBqsXr2aiExNTbE8mW7pchOKf//736Wlpe+9956dnd1zP7K1pXnz6N492rGDli+nBg1IX59u3iSplIKCyMFBk5fj95t8pzata9dWpWznxVtYfKMdqFLTpk0bO3Zsfn7+8OHDCwoKdF3O20tngSWXy/l0nKn/zBx+kb4+DRtGo0cTEc2aRcHBWr2ihYWFtbV1YWFhWlqaVheqDNrvjvPnn3+eO3eOiLZs2XL8+HG5XF5pxcHLrF692tXV9ebNm8qhf1D9dBZY+/fvf/DgQbNmzZ6b4vRSzZuToSFNm6Zh20qpb5s2U9zdC+LjtbpKZeAtrPv372twbmlp6axZs4YMGVJcXNylS5cvvvhi/PjxDRo0GDx48M2AAMrJqexigYjI1NQ0NDTUxMTk3//+93/+8x9dl/O20tW96DvvvENEP/74oyoH88F62dns11+1e9WRIxkRqwFdp8HBwUTUoUMHdacTpqen84h/boz+pk2bBjg7lxgYMAMD1rUrmzuXabFNObzKunXriMjMzCyGz3mA6qWbwLp37x6f+67iE65p01hxMUtPZ99+q90Lf/MNI2Lz52t3lUrAt4kmombNmgUGBqrY+37ixAnlGP2XLHsvl7OVK5mtLTM0fPYwdfVqFhbGFi1iS5awggKmXABnw4ZKfTdvFz8/PyJyd3evYMFFqCK6CSy+OrDqiwoNGcKWL2cLF2odWP/3f4yIjRql3VUqx9SpU/nSjkRkaGg4evToCuYJKRSKoKAglcboFxezL79kZmbM2prdusXmzGGMsevX2bJlz2Z+MMamT6/c9/JWyc3N5ZN1piin+0F10UFgFRcX29jYkDo79/F/aJmZWgfWyZOMiHXsqN1VKg2fReTr66uctu3s7BwYGPjcqqfZ2dl8AzGJROLv76/S7KWcHPb77+z8+f+2qqZMYWPHssWL2eLFbOLEKng3b5Fr164ZGxsT0ebNm1/86aNHj6Kjo3fv3h0UFDRr1qwPPvigcePG0/ElURl0EFhxcXEeHh5t2rRR/RQ+E6aoiJ07p91rp6Q8G9lVw6SkpAQGBir39eV7WPDNGW/dusWXErewsNi1a5d6183MfBb2Z8+yX35BC6sSrVmzhohMTU0DAwMXLlw4ceLEfv36OTs78yB7Dl8STvWFsOFVJExHg5IyMzOVs/yqD2O0cSNlZNDgweTgQBcuUJcudO8e6evTP2s86FBJScmePXt+//3348eP89+xt7d/9OhRcXFxmzZtdu7cyZ8tqufUKTp+nCwt6ZNPaPduGj6ciGjHDvL1rczS30r9+/c/f/7806dPn/v92rVr29vbN2rUyMHBoVGjRvb29hEREevXrzcyMoqKiuIT/kFDuk7M6rV9O9u0iRUUsAkTWGIi++orxhjbu5dptzRVpYuNjZ03b16dOnVkMpment6oUaNeukwr6NbQoUOJqHXr1l999dXvv/9+4MCBGzdu5L6wFMzWrVvNzMz4PklOTk4q7lkJL/WWBdannzLeAbRlCztwgPXowRYvZqNG1bTA4vLy8iZNmtSvXz9dFwIvkZycrK+vr6+vP2TIkEOHDlWwyO327duJyMjIyMnJiYhGjBhRnXW+YXQ5NUcHGjakhAQiooQEsrOjLl3o669r7M2Rqanp9OnTU1JSdF0IvMSqVatKS0vbtm27d+/eL7/8Urn42ouGDx8+ZcqUoqKi4uJiMzOzrVu3hoSEVGepb5K3LLA++YTWr6fvviMLC2rWjPgcRktLsrDQdWUvZ2JikpycjGk3NU1hYSEfQZqdnU1E/v7+FR8fFBTUpk2bBw8e8P2ZPv3001u3blVDnW8gXTfxoCLJycm1atWKjo7WdSHwP3hatWjRgojq1q2ryuYpyt1MeWeWm5sb+iU18Ja1sERjYWR0uKzM4scfdV0I/I9Vq1YREV8jaMqUKcodJyvg6Oi4du1aIrp06VLTpk1v3rz52nYZvEhnwxpAJUVFZGNDtrYUG6vrUuCZ48ePe3t729jY8E1w4+PjlQPoXmvixInr169v3Ljxo0eP+MbgY8aMqdJq3zBoYdVsRkZUXEyFhbquA/7r119/JSJnZ+fS0tJhw4apnlZEtGrVKg8PD2Vn1rRp05Rj7kAVaGHVePr6ZG5OFy5Qs2a6LgUoMTGxWbNmUqm0Vq1ajx8/PnPmDO+TUl1MTEy7du309fVdXV3PnTvXq1ev8PDwKqr2zYMWVo1nYkJZWfTnn7quA4iIVq9eXVZW1rZt28ePH3t6eqqbVkTk4uKyffv2S5cuOTo6yuVyPAJWi56uC4DXsbKiFi2orEzXdQDl5uauX7+eiLKysoho5syZml3n3Xffffr06a5duyQSCV8tHlSEFlaNFxlJw4aRnR0pFKS8d8BNhC5s2LAhJyenbt26o0eP9vT0HM4nZmpk3bp1+fn5/fv35yvVgIoQWDVbSQktXEgzZlDDhhQURH/99ez3w8J0WtZbysPDgzGWmZnZqVOnixcv8r2/NCCXy/liDzNmzKjUAt98CKyaLTGRWrYkY2Pq0YPu3qWyMlqyhJYsoRdWCIBq0KNHj6+++koul48YMUKbrUzCwsLi4+MdHR35QuGgOgRWzWZjQ3wuYUYGmZuTnh599RV99RVZWuq6srdUQEBAnz590tPTR44cqXF/OR8YMWPGDL5OFqgOf141m4UFdexICxfSDz/QnDmkXA9Lg4WxoDJIpdLNmzfXr18/MjJy2bJlGlzh5s2bx48fNzc3Hzt2bKWX98bDOCwAtUVGRvbt25eIwsPDVdmnrrzJkyevW7fO399/5cqVVVPdmwyBBaCJr7/+esmSJXZ2dleuXLG2tlbxrKysLHt7+4KCgpiYGD53GtSCcVgAmli0aFFUVNSxY8fGjBmzb9++8r1RZWVlKSkpSUlJCQkJiYmJiYmJSUlJDx48CAsL27FjR35+/sCBA5FWGtLlUhEAIktOTuZtK76j7eLFi7t06WJvby+TyV76by08PNzBwYGIDh48qOvaRYVbQgDNHTx40MfHRyqVRkZGrlu3btOmTUQklUrr1atnY2NjZmamp6cnkUjKysoyMzMTExMlEompqWlqamoFK5RCBRBYAFr54osvli1bZmpq2r59+ydPnjx+/Pjx48evGvFgYmJSVFR06NAh3mcP6kJgAWilrKzMyckpPj6+/G9aWVk1bdq0adOmtra2DRo0UP56/fr18+fPt7GxuXz5coMGDXRVs7gQWADaysrKWrFiRcOGDd3d3e3t7e3s7PT19V96pEKheOeddyIiInr06HH06NFX9XbBqyCwAKpVenq6h4eHVFH6fyu/6/fRJ7ouRzAY6Q5QrerVq7crdNvsdxpHbV2ScO2MrssRDAILoLp17tbDq/9IppDvXDEtLzNd1+WIBIEFoAM9Rsxq6tEt/+njXT9OZwosOqoqBBaADkgk0qGzfjG1rJt69+rjxDu6LkcY6HQH0JnEW+dNa9W5FrlLIpW16NDPtpm7riuq6dDCAtCZRq7t69g1Ky7M6zFi1tm9wQ/vXb9+fHdBdoau66q50MIC0LFNXw+v07BZLesGhblPvQb4WdVvJJGgJfFy+HMB0DEbB+d3P1n6KDGWiCxtGiKtKoDlZQB0TCqVndj6o1vXwcUFOZgUXTHcEgKAMND4BABhILAAQBgILAAQBgILAISBwAIAYSCwAEAYCCwAEAYCCwCEgcACAGEgsABAGAgsABAGAgsAhIHAAgBhILAAQBgILAAQBgILAISBwAIAYSCwAEAYCCwAEAYCCwCEgcACAGEgsABAGAgsABAGAgsAhIHAAgBhILAAQBgILAAQBgILAISBwAIAYSCwAEAYCCwAEAYCCwCEgcACAGEgsABAGAgsABAGAgsAhIHAAgBhILAAQBgILAAQBgILAISBwAIAYSCwAEAYCCwAEAYCCwCEgcACAGEgsABAGAgsABAGAgsAhIHAAgBhILAAQBgILAAQBgILAISBwAIAYSCwAEAYCCwAEAYCCwCEgcACAGEgsABAGAgsABAGAgsAhIHAAgBhILAAQBgILAAQBgILAISBwAIAYSCwAEAYCCwAEAYCCwCEgcACAGEgsABAGAgsABAGAgsAhIHAAgBhILAAQBgILAAQBgILAISBwAIAYSCwAEAYCCwAEAYCCwCEgcACAGEgsABAGAgsABAGAgsAhIHAAgBhILAAQBgILAAQBgILAISBwAIAYSCwAEAYCCwAEAYCCwCEgcACAGEgsABAGAgsABAGAgsAhIHAAgBhILAAQBgILAAQBgILAISBwAIAYSCwAEAYCCwAEAYCCwCEgcACAGEgsABAGAgsABAGAgsAhIHAAgBhILAAQBgILAAQBgILAISBwAIAYSCwAEAYCCzd27dv38yZM+Vyua4LAajp9HRdwNvu0qVLI0aMyMvLa9++/ciRI3VdDkCNJmGM6bqGt1dKSkrHjh2Tk5M/+uijLVu2SCQSXVcEUKMhsHSmLCfHq1u3a9eueXt7Hzp0yMDAQNcVAdR0CCwdKS0lH5892dmLi4uPHDtmZWWl64IABIDA0pGJE2n9eqpXT3H2rLRJE11XAyAGPCXUhe+/p/XrydiY9uxBWgGoDi2sapeURE5OVFJCu3bRkCG6rgZAJBjWUI0iIujRI/LxofBwunkTaQWgLrSwqsvKldS4MbVsSYsWUUgIYQQDgPrQh1VdYmJoyBBydKSmTSk9XdfVAAgJgVVdZDIqLiYiysykWrV0XQ2AkHBLWF1u36a1a8nCgho3pvHjdV0NgJDQwqouzs7000/UogWFhFB0dCVeOCEhoUePHiYmJm3btk1MTKzEKwPUNAis6nXuHJ04QVu3VsrFnj59Om/ePBcXl5MnTxYXF1+8eNHFxeX7778v5veeAG8cBFb1+ugjIqJt20i7xWRKS0vXrl3r7Oy8fPny4uLidu3abdu2zc/Pr7Cw8JtvvmnZsuX+/fsrp2AQweDBFB5O2dm0YIGuS6liCKzq1bEjOTpSaiqdPq3xNY4cOeLp6TllypT09HQXF5fmzZtfuHBhx44dmzZtioyMdHd3j4uL8/HxGTRoUHx8fCXWDs+5devW+++/37p169Na/G1WCicn2ruXiop0W0W1YFDNvvySEbGpUzU4NTo6umfPnvwvzsHBoU2bNvzXjRo1+uOPP/gxpaWlQUFBFhYWRGRsbBwQEFBYWFipbwBYZmbmvHnz+AIbEolEIpH4+vomJCRUfyXx8ezIETZnDouJYV98wQIC2I4dLDu7+gupJgis6lZ07dq27t27ODmVlJSoflZSUtLkyZNlMhkRWVlZdenSRU9Pj4jMzMwCAgIKCgqeOz41NdXPz48vsNWsWbO//vqrUt/EW6y09PfffqtTpw4RyWSycePGTZ8+3cjIiIhMTExe+ndRRfLzWUAAMzZmNjZs+nTGGAsIYFOmMJmM1anDgoJYWVn1FFKtEFg60LJlSyI6cOCAisf7+/sbGhoSkaGhYffu3XnrSU9Pb/LkyWlpaRWceOLECXd3d94K69WrV1RUVGWU/xY7doy1arWxWzci8vb2vnr1Kv/tpKQk5ddDw4YNQ0JCFApF1VWhULDNm1nDhoyISSSsUyfm788YY4WF7OhR1rUrI2JEzMuLnTpVdVXoBgJLB7777jsi8vPzU+XgwsJCqVQqlUo7d+5sa2vL02fQoEExMTGqnK68Q5TJZO7u7toV/haLi2NDhvAkKGnXbvfu3S8eEhkZ2bp1a/4X1KNHj8uXL1dFIefPnx8yZIyeXikRc3FhLi6MiBkYsPj4ZwcoFGzrVmZvz4iYrW3Z6NEfJyYmVkUlOlFTAos/9rK3t+/atWt+fr6uy6lacXFxEonE3NxclduH/Px8IjIyMkpOTjY1NXVzc1O9acYYKykpiY6O3rhxIxFZW1trUfXb5/59tmEDu3iRRUQwQ0NGxMzN2dKlrKjoVWfI5fKQkBAbGxsikkqlfn5+FTeB1ZKamjpu3DipVEpEffos8fZOkUgYEbOzY5s3s+eadPyGsWfPNcp71Tfjn5XuA0sul//xxx9OTk68/5KI+vbtW20dAZrJysqKjo4OCQmZN2+er69vkyZNjI2NZ8yYofoVWrRoQUTBwcGvPTI7O5uILCwsGGOXL1+Wy+VqlfrgwQMiatCgARE1bdpUrXPfamlpbNIklpLCvvuOHT3KHByYry9TramSlZU1c+ZMfX19IrK0tJwxY4a6f2vPKSkpCQgIMDc3590CPXr0MDMz69RpuIEB8/dnOTmvPPHBgwcffvgh/2dlb2//f//3f9qUURPoMrAUCkVYWJiHh4fysde8efPq169PRN27d8/Ly9NhbeUlJSWFh4evXLly6tSpPXv2rFu37osPWyUSiZ6eXmRkpCoXjI+PNzMzk8lk69ate+3BGRkZRFS7dm3Nir937x7/sBKRk5OTZhd5G+3dyw4eZIyx9HQWEFBRKrxCbGysj48Pb2qtWLFCm1rmz5/Pu/m9vLzs7Oz4R87X1zchQaXnNufOnevYsSP/FB06dEibSnROZ4EVERHh5eWlfCofHBxcWlr69ddfN27cuF69ejyzcnNzdVUet3PnTmNj4xfjydzcvG3btmPGjFm6dOmePXvu3Lkze/Zs/oGIi4ur+JrZ2dm8I7xDhw6qhHJ6ejoR2djYaPYWYmNj+ZcBEbm6ump2kbfRmTNs/XrGGLt0ia1erfFlBgwYQERff/21NrX4+voS0fDhw9u3b09ELi4uauXO48eP4+Li+E3MTz/9pE0lOqeDwIqIiOB/7vyRSlBQUFFREWMsLy+PR1jNyaz27dvr6+ubmpp6eXn5+fkFBgaGhYXdu3fvxRa+XC7nX6etWrWqIIZKSkr69OnDsyMrK0uVGlJSUvg9nWZv4ebNm/xmkNem2UXeUgEB7Lvv2Jw5TIsPIX/AomVg+fv7E1FQUFBUVFRwcHCZmgMW/Pz8iIg3spTj9QRVrSuOHj9+fNGiRZGRkURUt27dOXPm+Pv7K5swpqamR44c6d+///nz5+3s7OrXr3/y5MmBAwceOHDAzMysOuvkYmNjz58/X6tWrdTUVBMTk4oPlkqlW7Zs6dix47Vr1/z8/Hbt2vXiJoOMsUmTJh05csTW1vbAgQOWlpaqlFFWVkZEfNSVBvjpfACXxhd5S/XsSRs3krc36eLj91IdOnTo0KGDrqvQpeqbmjNz5kxvb+/IyEhra+sVK1YkJCTMmzfvuRsuS0vL8PDw9u3bp6SkSKXS+vXrnzp1auDAgXl5edVWp9K///1vIhoxYsRr04ozNzffvXu3paXlnj17Fi9e/OIBixYtCgkJMTEx2bNnT+PGjVUso3ziaICfzh8tIbDUExtLISH099+6rgP+q/oCa/v27UQ0bty4+Pj4f/3rX69KgVq1aoWHh3fo0CE1NVWZWQMGDKggsxhj8fHxhw4d+vHHH995550PP/zw1q1bWlZbVlb2xx9/ENF4ddauatGixbZt22QyWUBAwM6dO8v/aNu2bQsXLuQNMbW+JCuxhaVx6gHUENX3ldupU6c9e/YUFxd7enouWrToI75uwcvUqlXr8OHD/fv3P3fuXIMGDerXr3/69OkBAwYcOHDA3Ny8rKwsMTHx5s2bt27dun///s2bN69evVo+zmQy2Z07d6KiovjocM0cORJbXFzq5uam7G5TUf/+/RcvXvzll1+OHz/e2dmZD2o/efLkuHHjGGMrV65877331LqgXC4nrQMLLSxd0dP73Nx8hp6eka4LeUNU3yfY1dV1z549ycnJd+/evXHjRsUHvzSzWrdubWhoeO/evdLS0ueOt7W1dXFxcXZ2tra2Xrt27ZUrVyZPnhwSEqJxtcHBbnl5KdOna7Ie3rx5865du7Z169bBgwefP3/+yZMnQ4YMKS4unjVr1owZM9S9WqW0sBBYulJWZpiba1hWpus63hTV9wl2cXEhopKSEiKKiYl57fHKzLp///769euHDx9eWlrK10uxtbV1c3NzdXV1c3Nr2rSpu7s7f6rIDR06tGvXrps2bWrbtq0GAUFEjx7R/v3EmMGQIY4anC6RSNavXx8XF3fhwoVhw4YlJydnZWX5+PisWLFCg6uVD6wbN27wJpu6p/MnAAgstdw3MYnu2LFZ3bpeuq4ElKo7sJ48eUKqBRb9k1mpqamHDx8uKioyMzO7dOmSi4sLnxz/Kh4eHiEhIb6+vrNnz3Zzc+vVq5e6pW7aRKWlNGQI1a+v7qnPGBsb79y5s127didOnCAiLy+v7du3a9aFxJcPZYydOXOmW7du77777qpVq1Tvs7e0tOzTp4+pqenVq1cRWGqJKCiYGhU1uVWrYF1XAkrV1+nu7OwslUqTkpJkMllcXBxvar1WrVq1mjRpwtsmK1asaNOmTcVpxX3wwQfz5s0rKyvz9fXlQ73VsmkTEWm7U0SjRo1mzZrFH4MmJyfv3LmTqb/fx5EjR8aPH29jY3Pz5s1FixaZmJjs27fPzc1t6dKlKv4Benp6hoaG5ubmSqVSrPgOoqu+wDIxMbG3ty8pKWnQoEFpaanqObJ69erU1FQvL693331X9Zf7/vvvfXx8MjMzBw0alJOTo/qJGRlkaEj169PAgaqf9HLnzp0rLCxs3Lhxenr62LFjvb29X9t5p3TlypW+ffv27dv39u3bCoVCoVCEh4ebmZl17dq1oKDgq6++4rOgK75IaWnpL7/80rx582PHjslksn/961/aviVQR2kpeXrS2rXUvTtVyjr7GnznvWGqdYlkflfI57KreFeoUOTHxe0lou++++7FoZgV4AMI3NzcYmJixo4dq1AoVDlrzhwyNqYtW2j9etLy/unRo0f79+/X09M7e/bshg0bbGxsTpw48eGH42bPporzMyWFvvzypJeX15EjR2rXrv3jjz+mpKRER0d36ahEXYAAACAASURBVNIlPT399OnTrVq1cnR0jIuLe/fddwcNGpSQkPDS6xw5cqRNmzafffZZRkZGp06djh49Om7cOK3eEqgpI4NmzKD336dbtyg1tRIuGBwc3KdPn+vXr6t1loODg4eHB18fVXjVOayeT7jr1q0bES1evFiVU9LSlkdH099/j9TsFWNjY/mA8gULFlR85NOnLDWVDR/OFi5kUVFsyxbNXvC/fvjhByIaMmQI/8+srKzp06e3aXOKiNWvzzZten49EMZYfj4LDGTm5kwqlbds2WHy5MmPHj1S/lShUISEhPDHC3p6et27d+fT919cB/nChQs9evTgf79OTk6hoaHavpm3UmBgoIGBgbW19b179zS7wsOHbO5c9vnn7Oef2f37GpaRkJDg7OxsYGDQrVu3Zs2aEZG+vr6/v39mZqbqF7l9+3atWrVkMtn8+fM1rKNmqNbAWrduHRF16tSJiEaNGvXa4+XyvCtXbKKjKTs7XOMXPXz4sEwmk0gk5f/dpqWlHTt27PffS6dPZ336MDs7RsRGjWJz5rDAQLZhQyUEVqtWrYjozz//LP+bly+zLl2eLQjZrRu7cIHxdZJzcti//81sbZ/96IMPWFzcy+eLZWVl+fv78+5zGxubdu3a8YbnsmXL2D8rKfNBDHXq1AkMDCwuLtb2nbytEhISeIepoaHhF198oda01uJitnw5i4piy5ezNWvYiBHs77/ZkiVMreX18/Lyvv32W94NymenWVpa9ujRg//t165dOygoqLS0tOKLZGVlzZo1i691Y2JiUonrc+lEtQYW31zE2dmZiDw9PV97/MOHS6Kj6fbtzlq+7rJly/jHrl+/fp07d7aysuKtj6ZNY3hAEDFjYzZiBJszhxUVsZ49tQ2sc+fOEVG9evVeXLhdoWAhIax+fUbEJk1iH3/MGGOffvosrdq2ZSdOvP76V65c6dq1K38Xzs7OnTt3Tk9PDwgI4B9uAwMDf3//p0+favUegLGEhATlF4CtrW1wcLAqK1tFRDBXV0bEBg5ky5czuZy1b88GDWJEzN6ehYSo9NJhYWHKZ8E+Pj6RkZHKPlwHBwflSifOzs6vWtCRrybIm+R8NcE3YOnRag0svrSTqanpkiVLXrtsplyee+VK3ehoysk5qv1LDxw4sPyoAisrq06dOn3xxaUVK9j+/ezePcY/h/v2McbY2bPs3Dm2ciXTeNm1qVOnEtG//vWvVx3w9ClbuZKtXcu++YYdPsxmzmQ7drCtW19yn/gq/A6RLx8mlUp5W0AikYwcOVIn27e8wXgHIv/keHl5nXr1Sum3b7OBA599BbZowfbte9ak4qutt2797Ec9e7IrV175chcvXlR+G3l6epZ/uYiICFdXV/6j1q1bN2zYUJloz61rdPz4ceVKc1W3XnP1q+7lZfgGCr179/7qq6/+85//XLhwIecVS6OVlj558ODTO3f6VsrrZmdnL1u2bOXKlUePHn348OFrjx8wgBExzRYFKSws5B1n165dq/jIdevYrVts8mQ2bZomL8QYy8vLCwgI0NfX19PTa9u27enTpzW8EFRIoVCEhobyJs9LN/XiG3/16vUXEbOyYoGB7MV7cbmchYQwGxtGxLy9D/v5+aWnp5c/4PHjx/7+/vyb1draOigo6MWVZEpKSoKCgmrVqsU7szp37mxqakpERkZG169fZ9W+I0Y1q+7AGjt2LF87UalOndpXr9rFxvZ+8GBaevqv2dnhJSUPk5PnpqQE5OWdY0yrtWU1duQI09NjEgnbulXtczdv3kxEHTt2fO2RPLBu3mReXpoUqRQdHX348GGtLgEqyM/PV953Kzf1Ki0tXb16Nf9UGxtb/Otf+U+eVHSRzEw2d26hmZk1b+kHBQWVlJTwGOJf57xPPbvCzQWfPHmijDYrK6vOnTt37dqVf3s9V14l/xHoWnUHlkKhOHPmzJYtW7799tvhw4e3bt26Z0+v6Ggq/7/k5Llxce+Vlj6u5tqeExT0rG8rOlq9E3v37k2qrdeek8O2bWPBwSw2VsMiofrFx8cPGzaMf93Wq1ePr5fP7xte26ZWunXrVv/+/fmJtra29f+ZVPHee+/dvXtXxYtER0crbx4bNGhgbW3NG4CjRo1KTk7W9P3VaLrfhIIxeVHR/ezsg2lpPyUkTI6N7ZmRsbWwMDYpaXZGho5XRxw/nhkZsUGDQsoPL6hYQkKCVCo1NjZWcUFRNzdGxG7c0KJK0AXeSSSVSs3MzOzt7UNU7Ev/X4cOHVLeakgkkv3792twkbCwMAcHBz09PalUWnEX2xugJgTWixR5eefy8qKSkj7XbR1FRWzYsO94t+VrN2ouLS29c+cOXwF59OjRKr5EixaMiN2+rXWtUO3KysoWLVr0ww8/FL1646+K8XVHeH+ToaGhxpVkZmZ+880333//vZbb89R8ElYTB/srsrMPy+VZlpbvSaWmui0lLS2tXbt2ycnJn3zyyW+//ab8/ZKSkuTkZL4sF///mJiYgoICItLT09uwYQNfSPu1HB3p3j2Ki6NmzarqLUCNVVZWpq+vL5PJ5HK5oaFhUVGRriuq6WpmYNUsly5d6tq1a2Fh4TvvvOPu7h4TExMTE5OQkMCX1lOSSCSNGjWqW7euj49PQECAihd3cKAHDyghgVRefwHeHAgsdSGwVLJp06ZJkybJ5XJlSOnp6TVq1Khp06Z8WS5XV9fWrVvzuTJqcXGRp6VJr19nDRtW67xOqAkQWOrCAkkqGTNmTG5u7ubNm318fJydnV1cXJo3b86nO2gpK8vu6dN0ff00onqvPxreLFKJZELXrjKJRM5YpXyc3nhoYemYtbV1RkbGkydPnhueBm+FsjLS1yeZjORyMjQktLBeB7chOqblku0AbxUEli5duXKlsLCQEFgAqkFg6UZqauqUKVPatm3LVzp+/PixrisCEAACq7oV5OfPnz+/efPma9eulclkfPPENm3arFy5sgy7QQFUCJ3u1UihoM2bFYsWtcnNvfboUZs2bR49epSSkqL8eevWrVetWqWcHQZvhb//pkuXSCYjT09SZ0vwtxNaWNXl8GHy8KCxY6X37gV7erq6ul6+fDklJaVVq1bh4eFhYWFNmjS5evVq9+7dhw8fnpycrOtyobrs2UMuLuTgQPv26boUEeh0YtDbobT02fJafMXJbt2Ynt57jo4NGjQIDg5WLnhUUFAQEBDA1+EzNTUNCAjA6sZvhSlTnv8FvBpaWFXp8mX6/Xe6c4fq1iVTU+rQgdLT6dQpMjT87ZNP7ty5M3nyZOU6qMbGxgsWLLh7966fn19+fv7ChQtbtWoVERGh23cAVU7Zcfm/M73gpdCHVWUuXaK9e8nfn777jj78kD74gNLSSCqlcePou+/on0WUXuro0aPTp0+/ffs2Efn4+Pz888+Ojo7VVTdUr5076fJlksupe/dK2AvzTYfAqjI//kiDBpGTE509S3fu0N27FBVFP/xA/6y0XbGioqIVK1YEBgYWFBQYGxvfvXvXzs6uqksGqOFwS1hl6tcn3neelES2trRwIR05omJaEZGRkdG3335769YtKysrvghvFZYKIAgEVpXx9aWICFq8mG7epD59qNyePapr3LjxwIEDy8rK3NzcKr1AAOFgRkiVMTCgpUu1vwwmGwIooYVV0yGwAJQQWDUdAgtACYFV0yGwAJQQWDUdAgtACYFV0yGwAJQQWDUdAgtACYFV0yGwAJQQWDUdAgtACYFV0yGwAJQQWDUdDyyZRjN7AN4wWK2hpouKisrLy+vYsaOZmZmuawHQMQQWAAgDt4QAIAwEFgAIA4EFAMJAYAGAMBBYACAMBBYACAOBBQDCQGABgDAQWAAgDAQWAAgDgQUAwkBgAYAwEFgAIAwEFgAIA4EFAMJAYAGAMBBYACAMBBYACAOBBQDCQGABgDAQWAAgDAQWAAgDgQUAwkBgAYAwEFgAIAwEFgAIA4EFAMJAYAGAMBBYACAMBBYACAOBBQDCQGABgDAQWAAgDAQWAAgDgQUAwkBgAYAwEFgAIAwEFgAIA4EFAMJAYAGAMBBYACAMBBYACAOBBQDCQGABgDAQWAAgDAQWAAgDgQUAwkBgAYAwEFgAIAwEFgAIA4EFAMJAYAGAMBBYACAMBBYACAOBBQDCQGABgDAQWAAgDAQWAAgDgQUAwkBgAYAwEFgAIAwEFgAIA4EFAMJAYAGAMBBYACAMBBYACAOBBQDCQGABgDAQWAAgDAQWAAgDgQUAwkBgAYAwEFgAIAwEFgAIA4EFAMJAYAGAMBBYACAMBBYACAOBBQDCQGABgDAQWAAgDAQWAAgDgQUAwkBgAYAwEFgAIAwEFgAIA4EFAMJAYAGAMBBYACAMBBYACAOBBQDCQGABgDAQWAAgDAQWAAgDgQUAwkBgAYAwEFgAIAwEFgAIA4EFAMJAYAGAMBBYACAMBBYACAOBBQDCQGABgDAQWAAgDAQWAAgDgQUAwkBgAYAwEFgAIAwEFgAIA4EFAMJAYAGAMBBYACAMBBYACAOBBQDCQGABgDAQWAAgDAQWAAgDgQUAwkBgAYAwEFgAIAwEFgAIA4EFAMJAYAGAMBBYACAMBJbO5Ofn67oEAMEgsHSgsLDQ09PT3Nzc0dFxwYIFt2/f1nVFAGKQMMZ0XcPb5cmTJ4MHDz579qxUKlUoFPw3PTw8hg8f7uvr6+joqNvyAGoyBFa1io+PHzBgQGxsrIODw+7duz/77DMDA4MrV65kZGTwA1xdXX19fUeOHOnk5KTbUgFqIARW9blw4cKgQYPS09NbtWp14MCBS5cuDR48mIhkMpmTk5OZmVlsbGxOTg4/mCfXiBEjWrRoodOqAWoQBFY1CQ8PHzZsWG5ubt++fXfu3GlhYZGVlbVnz57Q0NCjR4+WlZURkYGBgbu7u76+/o0bN/Ly8ohIIpFMmDBh3bp1ui4foEZAYKmntJQYIwMDKiggExNVz9qwYcOUKVPKysrGjRu3du1afX398j/NyMjYvXt3aGhoZGSkXC4nIkNDQ3d3d0tLy2PHjhFRTk6OqalpZb8VqHxLly5NTEz09vbu2bOnjY2Nrst5EzFQx19/saFDGWNs5kyVjlcoFAEBAfyPet68eRUfnJGRERIS4uPjwxPt9OnTHh4eRHTmzBmtC4fX2buXzZ/P5s5l9+9rcHZBQcGECRMkEom5uTkRSSSSli1bzpgx488/IzIyKr3WtxcCSz1//cVmz2Y7d7KZM9l//sNmz2YrV7I9e1h0NEtPf/7g4uLi0aNHE5Genl5wcLDqr5KWlrZu3Tq5XD5hwgQiWrlyZWW+B3hRaSmbPJkxxvLz2aefMsaYOjFz48YNFxcXIjIzM/P29u7Xr5+yRdyt20Qi1rQpmzyZhYayzEwWGspSUhhjLCysKt7JG05PF606sfn40M6dVFpKf/1FoaH//X1jYyIytbdvaG9vb29v36BBg/Dw8OjoaHNz8x07dvTv31/1l6hXr97EiROJyMvLa/369RcvXqzsNwH/KyeHrK2JiExMqKyMTp+mPn1o7FhauJDq16/41M2bN0+dOjU/P9/Z2XnHjh0tW7YkopKSkvPnz0dGRsbHd7lwge7fp7Vrae1a0tOj8ePp7Fn66Sc6epQGDaqG9/ZGQR+WevbtI1NTatKE+vShDh0oKYmIqKiIsrPJ0DD5+nX78gc3atQoLy8vIiLC09NTs5e7cOFC+/btXV1db968qX3xUJExY+jXX+nuXTp4kO7epc2biTEyNyd/f5ozh6ysXjyjqKho3rx5v/zyCxH5+fmtWbPmpV2NZWV09SodOUJHjlBGBvXqRV5eZGlJhw9TUFAlFB4eHl5QUFCvXj0DAwMisrKyIiIDAwNejJmZ2XN9pmLTdRNPJKWlbMoUdvo0Y4zdv8/s7BjRs//JZExPz8jIyKhx48YeHh59+/blQxbee+89bV6xuLjYwMBAKpXm5ORUznuAV3n4kK1YwTZuZIcPMyLWrBnz9OR/uyVOTosWLszOzi5/+J07d1q3bk1ERkZGQUFBKr5IWRmbM4cxxj75hM2YUQlVjxo1SpV/5rxzbUalvKROvfmBdfv27aKiokq51B9/MCLm7MwUCsYY276dLV/OZsxggwczb+9ia35PQURE7du3v3r1KhE5Ojpq+aK8dXbq1KlKeAOgirAw1qjRsy8iZ2fWvv3W7t2JqHbt2gEBATy2du/ebWlpSUROTk5XrlxR6/K//84YYzExLDCQFRdrVen9+/eNjY2JyMXFxdXV1cXFxdnZuWHDhvb29vXq1bO0tLS0tNTTe9btI5VKpVLp9evXtXpJXXsDAysrK+vUqVNBQUF+fn6urq4SicTY2PjYsWPaX5l/465b98oDCgoKYmJiwsPD+dAqExMTiUSSod1TokmTJhHRzz//rM1FQD1FRezXX1mDBoyo1M6uXevWrVq14v/s69at27NnT/7roUOHZmVlaXD51FS2eDGzsmIbNmhV5qBBg4ho9OjRW7ZsqbiFNXnyZP4A591339XqJXXtTQisx48fHzx4cPHixUOHDrW3t3/ur4rfwNva2sbHx2vzKuHhjIjVq8cKC1U9pVOnTkR05MgRbV73999/5x9KbS4CmigoYD/+uPGdd/gHycPDQxlbhoaGq1ev1uyq27czAwPWqRMjYi1bPmuta2D37t1EZGFhkZqaGh4e3rNnTy8vLy8vLxcXl6ZNmzZt2rROnTpWVlZ8mMWMGTMeP35cq1Yt7T+QuiVwYJ08ebJNmzaNGzd+LqHMzc179Ogxe/bsLVu2xMbGRkVFeXl58WazNo2dfv0YEfv+ezVO8fef4+Tk+9tvWt3NRUdH8+K1uQhoLDc3d8mSJbVr11Z+/xkbG589e1bjCyYnMwMDJpPxBhw7eFCTi+Tn5zs4OBCRWrm5ePFiImrXrp1C45jUNVEDq7Cw0MTERCaTEZGZmVmXLl38/f1DQkJu3Lghl8uVh8XExJiZmZmZmfEZed26dStUvYFUzpUrV5o3b+ntvTUzU42zNm5kRMzXV4MX/K/i4mJDQ0OpVPpcpy9Up9zc3MDAQN5hNJmP2NKCnx8jYt27MyLWp48mV5g7dy4ReXl5lZWVqX5WQUEBvwXZtm2bJq9aA4gaWHv37iWiBg0aXL9+vXxCPUehUIwdO5aIbGxs7OzsiMjX17eC41+FP4uZNWuWWmddv874oEGNXb16VaFQtG3blohOnDih+YWgMvAWykwVZzm82pUrjIiZmzNz8zJHx6KrV9UbW3/jxg19fX2pVBoVFaXuS/N5qU2aNKmsJ1HVTNTAGjlyJG8x2dnZ7d69u4IjS0pK+vbtS0RNmzblT3Zmz56t1mslJSXp6+vr6eklJCSodWJZGTM1ZRIJe/JErfOeCQkJ0dfX/+qrr3r16iWRSNq0abN169bc3FxNrgWVITAwkFSYYqWKCRPi3dzG9+8/WiKR+vn5qX6iQqHw9vYmok/5iHw1lZWVubm5kbDTJ4QMrMLCQgsLCyLijaa///674uOzs7P5pLxWrVoZGhqq+9Bt5syZRDRq1CgNmmadOzMiFh6u7nnsu+++k0gkPJSVM9SIyMjIyMfHJyQkBCOzqt/ChQuJ6Ntvv9X+UgcPHiSi+vXr6+vr6+vrJyYmqnjixo0biahevXqZanVPlBMWFkZE1tbWT58+1ewKOiRkYO3atYv3QxORvb29Kj2IKSkpjRo1IqKOHTvyASk7duyo4Pjc3NxTp079/PPPo0aN4mFx/vz5Dz/80N/fX60OS39/JpM9G3qjorKysqlTpxKRTCbr2rUr/0VgYGBwcHCXLl2k0merWhsbG/PkQpur2ixffrBTp59+/vlQpVyNjzvlj5Lnzp2ryimZmZl8EYj//Oc/2rx0r169iOjrr7/W5iI6IWRgffTRR7zpQURz+MBhFdy8eZPPWuAnGhkZlR+NWVJScuPGjZCQEH9/fy8vL96dz/HWXO/evfnUh48//lj1ns5t29jFi4ypPNM1Ly/Px8eHl8cfbhoZGYWGhioPSEpKCgoK6tKlC29/lU+uvLw8FasCzXz+OSNiy5dXztU2bNhARM2bNyciU1PTPXv2REREREZGRkdHR0dH37p16969e/fu3cvIyMjMzORfS/ybrHv37lo+5jt37hwfn6h6y66GEC+w8vPzzczMeI87EanV73j8+HF+S9i9e3cisrS0/Pbbb8eNG+fu7q4cEKx8eu3p6Tlp0qTg4OCQkJA6derwkTj8pQcPHlxQUKDKK86dy6ZOZXI5++yz1x+clpbG+9etrKycnZ2JqE6dOqf5VKAXPHjw4Icffmjfvr0yuczNzbV53A6v9dlnjIipPA/nNYqKitzd3QMCAhwdHRs2bEgqMDU11dfXv3Xr1kX+NaiFYcOGEdH7779fKe+l2ogXWDt27CAiV1dX1e8Hy9u8ebNEIjE0NOzWrRtPH05PT8/V1dXPzy8oKOjUqVPP5dGNGzd4f5mLiwsfktOjR4/XdgEUF7O5c1lkJFu3jn32GVuzhu3axV4VdHFxcfzL1t7eng8ua9q0aWxs7GvfUWJiIm9zmZqaopFVpaZOZURszZrKvGZcXBx/5NetW7c+ffr06NGDj/90dnbm4z+trKysrKz4Z9XU1NTIyIg/s674WVMFDh06NGPGjMjISKlUqqenV5lvpuqJF1jDhw8nIt658/nnn2twhZ9++ungwYMLFiwgIkdHx1WrVkVFRb12fFZ8fDwPlKZNm/LGnaenZ/qLi2AxxhjLzGTz5jFnZzZnzrP5rh9/zGrXZkTM2Jj5+LCQEFY+Wy5dusQbcW5ubvwX7du3f9XFX+Xx48dqHQ/q+vhjRsTWr6/Ma44ZM4b3M6hy8Pvvv6/88Ds5OZWUlKj7coWFhXxnJj7BqEmTJuqXrEuCBVZ+fr6pqalEIqlfvz7vCNf4Unyaxb59+1Q/JS0trU2bNkRkY2PDxxk3bdo0Li6u/DElJWzlSlanDiNiUin77DMml7P0dPbNN2zFCtau3X8XeOjXb83o0aPDwsKKioqys7Nbt27dvn17PjTxvffey8/P1/itQRUZNYoRMe36u/9HbGysnp6evr7+vXv3VDxeX19fJpM1bdqUiNao39jj6986Ojrq6enp6eldvnxZ/ap1SbDA2r59O2+G8C8Hjbse+d6llpaWxWrOl8/Nze3Tpw8/l3cz2dnZ3bp1i/90374Tzs7P8qhXL/bSD8P9+2zZMublxdzc2vO70Vq1ao0ZM2bQoEH8CeCECRNKS0s1e19QucLDGX8Gu3s3u3aNHTrEGGN//llp1//www+JaOrUqaqf8sknn/AGOP/iVGt0y927d42MjCQSCf8XpO6AxJpAsMD64IMPlE1ibcbv8QE148eP1+DcoqIiXoaJiYmnp2ezZs0ePnx48+bNgQMHElGnTg+cnFi5x3qvlJCQUP55n6GhoUQiWbp0qQYlQRVZtIilpTHG2PTpbMcO1rs3e/JE1eX8X+vGjRtSqdTQ0FCtR3Xp6el8nI27uzsRLVy4UPVz+Ue0S5cuRGRra4txWJWvrKxMOdqgS5cu5ubmEolk06ZNY8aM0aY1y79hDhw4oHFVfLEOAwODpUuXTpgwgTeO6tSp8/vv29XtWLhz587ixYv79+8/f/58zeqBKrJoEfvyS7Z4MfPxYTt2sL172Zw5lRZYQ4cOJSJ/f391T+S3dW5ubhKJxMzM7OHDh6qcxe9OrKys+FOjisch1lg1LrDkcvnNmzc3bdr02Wef8Sdf5R/r8uFRQ4YMUWvO53NiYmL435y694PlKRSK2bNn88zi/z9r1iyNBx9DzfRcC+vMGbZmDfP2ZsnJTLvFitjFixf5SKjk5GR1z83NzeV9uO3atSOiadOmvfaUnJwc/pi7c+fORNSvXz+Nqta9mhJYKSkpM2fOfG6oAdekSZNhw4YFBgZGRERER0fXrVuXtJsxz7+gJk6cqH3Zffr0MTU1bd269d27d7W/GtQ027czftsUHMzOnmW3bzO5nH3+OWvfntWpw7SZjc7vzjR7zM0Y++2334jIwcGB950re1FfZdasWXxQDh/Tc/v2bc1eV+dqSmClpaUpE8rW1tbHxycgICAsLOzFR/tRUVEmJiZEtGzZMs1ei4/hOnz4sNZVP3smvUHLhSNBKNnZrH9/RsQMDTV8Ynj+/Hl+N6fuyBWlsrIyPjWNd0gNGzasgoOvXbvGny06OTmp2+1V09SUwGL/DI9SZTDRn3/+KZPJeGeWuq9y7do1IrK2tq6UJ3F83rzQSziCBkpL2fTpjIhJJOzrr5m6T6v5g2Ytp/LxGbXW1tZ169YNCAiooIaVK1fKZDI+I83R0VGzJeFqiBoUWGrhTWJ9ff2IiIjXHqxQKO7cucNHBn/zzTda3lGW16xZMyJSZTw6vHmCg5m+PuvZc8kHH3ygyri50tLSq1evfvHFF0RkYWGh5WL/jDHevOrRo0doaGhYWFhERERERERUVFR0dPTFixf5VMTk5OTMzMzNmzfz7uD9+/dr+aK6JWpgsX9uyy0sLK5evfriT1NSUsLCwgICAnx8fJT72Tx8+JAPnqqUNpFCoeBjEVScVwhvnmPHnvCHbl5eXi92nz/3jJt3ZfCxe82aNdN+Cb1Dhw6pvuegRCLRctO5mkDgjVQZY35+fn/88Yednd3Zs2ft7e3Dw8MjIyMvXrwYHR2dlZVV/uB69eo1atSoTp06hw4dql27dnp6+nOznTWQlpZma2tbt27dR48eaXkpENfdu3cHDRoUGxvboEGD3bt3W1hY8AZOdHT0lStX8vPzyx/s6Ojo4uLy999/Z2RkjB49etOmTcq565rZuHHjr7/+yuOvsLCQiHJycuRyuUKhyM7OJqLi4uKCgoLi4mJ7e/utW7fyqRoC03ViaqW4uJiv7NOyZcusrCxfX1/l+7KwsHBxcenQoYOHh0f5HQMr8Xvm/PnzROTlRNScKgAAIABJREFU5VUpVwNxPXnypEePHkTEl7Qtr0mTJr6+voGBgUeOHOF7gh07dqxNmzZ8zaIvv/xS17ULRuAWFpednd2tW7fr16936NChS5cuFy5cKCwsTEhIePLkSfnDrK2tvby82rZta2lpOWfOHC2/1rhdu3YNGzZsyJAhe/bs0f5qILSSkhIHB4fc3FwjI6OOHTvyFRc6dOjA19tTUigUXl5eV65c8fT0vHHjRklJya+//jp9+nRdlS0eXSdmJYiPj7exsSm/5B4RWVhYlN9Kpyr2Nfrpp59Io5HK8OZJTEzkA0E3bNhQ8RqwycnJfPWrTp06SSQSmUym8UIxb6E3IbAYY1u3bm3ZsqW7u/vcuXNDQ0NVnPuuJd7rv2LFimp4Lajhli9fTv+sd9y7d++KD7527Rrf05QvJGlsbPzafQmA07bjuYb46KOP+LrJ1SkpKYmIXtxrGt5CfF3JsrIyIuKTBCvg7u6+Z8+ed9555+TJk926dTt16tTgwYPPnDnDB3ZCBaS6LkBgiYmJRMT3toC32YMHmTExt01NTa9fvy6VSl8bWETk7e39f//3fxKJ5O+//27fvv2TJ08GDBiQnp5eDdUKDYGlOT6JWjm4Bt5aoaG15fL0rl3nFRUVde/enS9I+1ojR45csGCBXC6/fv26m5vb/fv3Bw0a9NwwCHgOAktzNjY2Eolk8ODBZ8+e1fASJSV0+jTdvVupdUF1Cw2lwkLjzMyv2rQ5Mm7cAtVPnD9//rRp0woLCx8+fNiwYcMLFy7wtd7glXTdiSawkydP8oUf9fT0AgIC1N5mVaFgEyeyY8fYDz+otOIf1Ej37zOJhJmZMQMDJpMxdaczl5aWDhgwwMTEJDg4mK+qhi1yK4AWlua6det25swZPu904cKFQ4YMycjIeP1pmZm0fDkNHUopKdS4MXl705w5dPRo1dcLVWL7dmKM3N2ppIS8vel/x129np6eXmho6KlTp+zs7BQKhZOTk3KXb3gRAksrenp6CxYs2Lt3b506df766y8PD4/Tp0+/8uibN2nqVLK3p3nzaO9eunqV8vKIiEpL6X8HkYFAoqKIiIqLiYjKTbVQg5mZmaenJ3/O6OfnV4m1vXmEH+leQyQlJY0cOfL06dN6enpff/31/PnzlXvKKxSKAwcOGO3b12ftWmKMJBLy8iKplBwcqHVrkkgoNZU+/phEn+T19jl3jhijjh3p558pLY127aKzZ6luXU0uVVJSUr9+/aysrJiYGD4/H15O1/ekb47S0tKAgACeU7169UpNTc3JyQkODuYLrdmamcnr12edO7NGjZ7tq2NpyXJymBbLNINurVnDBg9mhYUqbetdsbCwMCLy8PCojLreZG/IwNGagN8eduvWbfTo0ceOHXN2di4rKysoKCCihg0bOjg4XNLXbxsZSUTUpAl9+ilNnEjorRDcpEn000+VcJ3Q0FAi8tXslvJtgj6sSta7d++LFy/27NkzJyenoKCgYcOGnp6eqampp0+f/jI+nnr1oj17KC6O5syhWrV0XSxoq0ULUigoOVmrixQXF//111+EwFIB+rCqhFwu50tHKBQKIjI2Nh41atSMGTP4dtPwZti3j9q0ISsr+uYb6t2brKyoc2dNrrN3796hQ4d6eXlFR0dXdo1vGtwSVgmZTNarV69z586ZmZnNmTNn+vTp5dfkgjeDj8+zXwwdSr16Ua1adOYMtWih9nX480E0r1SBW8KqwqdG//LLLwsWLEBavdk6d6ZBgygjgwYMoHLbP6mkqKho3759RDRs2LAqKe7NghZWVeFTox0cHHRdCFQ5mYz++IP69KG//yYfHzp+nF7YXfO/8vPzr1y5wtdQnjZtGn+a3K5dO76hCVQMgVVVsJbDW8XYmPbupc6dqbAwf+LELzZv/lm5aUBpaemdO3cu/uPChQslJSX8R66urleuXCHcD6oMgVUlFApq2PBHB4d4vrYkvA3q1qVDh8p6926/ffstC4vitWvX/vXXX99+++3Nmzf5Olmcvr6+s7NzvXr1pFLpjh077t69K5FI3nnnHR1WLhA8JawSKSnUsCHVr08PH+q6FKhe0dHRPXv2zM/PX7RoUdu2bQcOHCiTyRo3bmxjYyOVSp88eRIfH19aWqo8XiqVKhQKb2/vQ4cOGRgY6LByISCwqkRUFHXqRO3a0fnzui4Fql1YWNj777+vUChatmxZVlZ2//79Yj7VkIiIZDJZixYt+JYoXl5eNjY2vXv3TkpK+vDDD7ds2aKc0QUvhVvCKpGURESE/qu30+DBg9esWfPll1/euHGDNwhsbW29/tG1a1crK6vyxx84cKBbt27bt293cHAIDAzUUdViQGBVicREIiKs9v7WmjRpUt26dffv3z969GjlLoSv0rJly927dw8YMGDZsmUNGjTw9/evtjqFg1vCKrFzJ4WE0PDhhMVCQEVbt24dNWqURCLZsWPH+++/r+tyaijcMFe+VasoO5v++osePNB1KSCOESNGLFq0SKFQjB49+u+//9Z1OTUUAqvyZWXRpUuUlkaqrD8KoPTNN998+umnhYWFgwcPjo2N1XU5NRECq9IwRhERNHMmEdGcObRsma4LAgGtXLmSr7U9cOBA7Pr1IgRWJSgqok2bqFUr6tePVq6kBw/Iyopat6aEBJowgRYsILlc1yWCIGQy2ZYtWzp16nT//n0fHx/s+vUcdLpr5cGDB3/8ceKHH8ZkZRERNWxI06ZRx47UuTMZGFBwMH36KSkU1Ls3bd5M9evrulwQxKNHjzp16lRSUnLs2LHmzZvrupwaBIGloYsXL65cuXLr1q2MsQYN7trYNPH3pxEjSF//fw47doxGj6aHD6luXdq0iTABA1QUFxdnZGSEqV3PQWCp7caNG2PGjLl8+TIRGRgYDB8+fNasRZ6eTV51/MOHNHo0HTtG7u657723IiBgvnJaLACoBYGltqdPn9rb25uYmIwfP3769OmqfAcqFLR0qXzdul4PHpzs3r37H3/8gW9OAA0gsDQRFRXVpk0bQ0NDtc46efLkyJEjU1JSrK2tN27c+O6771ZReQBvKgRWtXr8+PHYsWMPHjyor69/9+7dxo0b67oiAJEgsKobY+yHH35gjM2dO1fXtQAIBoEFAMLAwFEAEAYCCwCEgcACAGEgsABAGAgsABAGAgsAhIHAAgBhILAAQBgILAAQBgILAISBwAIAYSCwAEAYCCwAEAYCCwCEgcACAGEgsABAGAgsABAGAgsAhIHAAgBhILAAQBgILAAQBgILAISBwAIAYSCwAEAYCCwAEAYCCwCEgcACAGEgsABAGAgsABAGAgsAhIHAAgBhILAAQBgILAAQBgILAISBwAIAYSCwAEAYCCwAEAYCCwCEgcACAGEgsABAGAgsABAGAgsAhIHAAgBhILAAQBgILAAQBgILAISBwAIAYSCwAEAYCCwAEAYCCwCEgcACAGEgsABAGAgsABAGAgsAhIHAAgBhILAAQBgILAAQBgILAISBwAIAYSCwAEAYCCwAEAYCCwCEgcACAGEgsABAGAgsABAGAgsAhIHAAgBhILAAQBgILAAQBgILAISBwAIAYSCwAEAYCCwAEAYCCwCEgcACAGEgsABAGAgsABAGAgsAhIHAAgBhILAAQBgILAAQBgILAISBwAIAYSCwAEAYCCwAEAYCCwCEgcACAGEgsABAGAgsABAGAgsAhIHAAgBhILAAQBgILAAQBgILAISBwAIAYSCwAEAYCCwAEAYCCwCEgcACAGEgsABAGAgsABAGAgsAhIHAAgBhILAAQBgILAAQBgILAISBwAIAYSCwAEAYCCwAEAYCCwCEgcACAGEgsABAGAgsABAGAgsAhIHAAgBhILAAQBgILAAQBgILAISBwAIAYSCwAEAYCCwAEAYCCwCEgcACAGEgsABAGAgsABAGAgsAhIHAAgBhILDUxhg7ePCgi4uLnZ3d4sWLdV0OVIeLFy9u3749JiamsLBQ17W81SSMMV3XIIz8/PxNmzb98ssvt2/fJiKpVKpQKMaNG7dq1SpTU1NdVwdVoqCgYP78+b/88ktpaSn/HWtr60aNGnXpMkUimdyoETVqRPb21LgxBQdT48Y0fjx99RUtWaLbqt9YerouQAwPHz4MDg5etWpVRkYGEdnY2LRr187b2zsgIGDjxo1nz57dtm2bh4eHrsuESnb48OHJkycnJibKZLIWLVowxhITE588efLkyRNz8+wTJ/7n4BkzKDeXHj0iNMKqDlpYr3Hx4sWVK1du27aNf8G6uLjUrl373LlzZWVl165d09fX/+ijj65evWpkZBQYGPjZZ5/pul6oHNnZ2XPnzl23bh1jrHnz5mVlZb/99ts777xDRGlpaUlJSenpDeLi7BISKCmJEhPpyRP68EP67DP64QdSKOjnn3X9Bt5UDF6mpKQkNDS0c+fO/E9JJpN5eHg4OTnx/zQ0NBzz/+3deVxU5f4H8O9sDAwwgIBKLCKM5AJdAQVjCVHUn4ZLJb5wgdzCvBrgckPzCqappFZcFa5kuKReAyqN0jDISw4uiaIQigtC5IIIIgwjCMPM8/vjMSKvKXNmhpkD3/fLV6/EOc/5Tk6fec45zxIZWVZWRghpbm6Ojo6mP58yZcr9+/f1XTvS1JEjRxwcHADA2Ng4ICCAy+UCwLhx4559VFwcaW0lO3eS8HBy7x5pa+uaYnsWDKynOHz4sFgsphlkZWUVHBxsZ2dHf9u7d++4uLibN28+ccjXX39tZWUFAE5OTvn5+XopG2murq4uKiqK/l27u7s7OzsDAJ/Pj4uLe/To0bOPLS4mSiVRKsnXXxOJhLz5JlGpuqbqHgQD6yn69u3L4XDs7e19fX2FQiH9+P7tb3/btWvXMz61lZWVtEfG5/MTEhKUSmVX1ow0l5WV9cILLwCAiYlJUFAQ7Vh5eHgUFBSo1U5qKhGJCABZtkxHlfZcGFhPQbtXZWVlpqamXC43JCQkKytL1YmvS4VCkZCQQD/owcHBxcXFXVAt0tzly5enTp3a3rGisSUQCOLi4lpaWtRqKjubGBuToUOJUEgAyNq1Oiq5h8LAepJMJgMAMzMzQkh6ejq9UaWWo0eP2tracjicwYMH66BApGVVVVX0K8rc3DwwMJDD4dAOdWFhIYPWysrICy8QADJsGOHziVBIUlNztF5zj4UDR5/022+/AYCjoyMATJs2zdXVVa3D5XK5UChMSUkhhNCmkIE7cuSITCYzMzMzNTWVSqVCoTAxMfHcuXOenp4MWnN1hR9+AGtrOHcO/P1b3N3j3n577K5du7Reds+EgfWkmzdvAgB9SMTApUuXRo8eHR8fDwCDBg3SZmVIN/Ly8gAgJiZGLpe//PLLhYWFcXFxfD7zIYpDhkBuLkgkbXfuzBAIThBCoqKivvjiC61V3INhYD3p1q1b8HsPiwGad/QSg3EjqMsolcrs7GwAiIyMlEql+fn5WvmaGToUdu06e/t29pkzZwIDA5VKZWRk5Hfffad5yz0cBtaTaGAx7mHRwDIyMgIMLDY4depUbW2tRCJxc3MbOnQofWCiFYGBfocPHxYKhVKpNDAwUKFQLFmyZObMmWVlZdo6RQ+EgfUkmjiMs4bmHb1xyzj1UJehvZ7JkyfrovExY8YcPHhQIBC88cYb/fr1Kysr+89//jN48OAFCxZUVlbq4ozdHgbWkzTsYdHDW1tbAXtYbPDtt98CwMSJE3XU/muvvXbt2rWYmJh+/foBwNixY1Uq1aeffurm5hYf/yM+lVEXBtaTNOxh0cMbGxsBe1gGr7y8vLS01NLSsn0Oli7Q4fIWFhYAsGjRouvXr0dFRVlb996yxU8igchIKC/X3cm7GwysJ2nlHlZdXR1gD8vgZWVlAcCECRMEAoGuz0WfwzQ0NPTv3z81NTUv78rrr5uoVLBvHwweDIsWwbFjIJcDAFy8qOta/mTdunVLliyprq7u0rMyhcvL/El9fX1jY6O5uTn9PlSXUqm8e/cul8utqanh8XjtMxCRYaI3sEJDQ7vgXPQT1dDQQH/r5ma6fz+sXQsffghpabB7NzQ2wunTsGYN7N4NXl4gkz3+VV8PZmZFly+vaGhokMlkDQ0N9fX1ffv2TU9P9/Ly0rCq+/fvb968ubGxMTw8vE+fPpq+Sd3DwPqDQqGgX7l9+/Zl1kJVVVVbW1ufPn2qq6vt7e274HsbMSaTyaRSKY/HGzt2bBec7onAolxcIDUVYmPhwgUoLAQLC7h4ETgcmD8f2tr+eFlgoIlUmt3xwBs3bqxater777/XsKotW7Y0NjZOmDDB19dXw6a6BgYWXL58JSfnWG5ubl5enlwut7e3Ly8vX7NmTXx8vLoPuen1oLW1dXV1NV4PGrjs7OzW1taRI0daW1t3wenoJSGd+PUEQuDRIwCAxYshOhqMjGDePODzQSwGCwuwtITevS1WrDhiYWEhFostLCzkcnlAQEB2dvaBAwdmzpzJuKT79+8nJycDQEJCAuNGupq+5wZ1kRs3iEJBCCF0YZh790hGBomKIk5OZOjQ2Pb/GhKJJCAggA5KGDNmzN27d9U6S0lJSUREBJ1GO3XqVB28D6Q19Mngli1buuZ0KSkpALBgwYKOP1QoyPr1RCgkAgGZP58QQn76iSxf/vzW0tLSAMDa2lrdj2hH69enAsCrr77KuIWu11MCa/ZskpREVCoybx7x8CAcDgF4/Gvs2KOvvPJKcHAwvRLMzs7Ozc2lt59sbW2PHj2q1onOnj1Lpx9OmjRJR+8FaYWNjQ2Xy123bt306dNzcnQ+P/nAgQMAEB4e3v6T4mIybBgBIBwOiYgg6q78SJc/Zfwxu3ePmJmRl16Snj9fwqwFvegpgbV0KYmPJxUVJCaGiMVEJCJeXiQoiAwaRIYP/6M/7OTklJ6eTgiprq4eN24cAHA4nOjo6NbW1me3r1AoMjIy/P39aTsCgSA3N7dL3hliKDAwEADoPydMmKDr09Eb/PRELS0ta9asd3BoAyD9+xNmn5TKykpzc3MAyMzMZHD4P/5BAMjEiUxOrUc9KLBkMvLOO2TJEjJ3LuHz/+hhjRlTNGXKlO3bt1+9erXjISqVKikpid449/HxuXHjxlNbbmhoSEpKosMCAUAsFkdHR1+6dKlL3hZirrCwEAAsLCxEIhGHw7ly5YpOT3fixAkA8Pf3P3v2rIeHBwD4+q5/5x3S2Mi8TXqZaWNjc+/ePbUOrKkhZmYEgJw9y/zsetGDAosQ8sUXZMkSsnUr4fGItzeJiyM5OeTZC7SdOXOmf//+9JP9xRdfdPyj69evR0dHt2/wJZFIkpKS5HK5Lt8H0ibavaL94ujoaJ2eq6ioCAB69+5NvwJdXFyOHz+uYZsqlSokJAQAZs2apdaBy5YRAMLGmxY9IrCOHSNTppCTJx//ViYjMpkah9fX14eFhdFUioiIePjwoVQqDQsL4/F49If+/v4ZGRltuOsA22RkZACAs7Mzh8MxNzevr6/X3bl++eUX+mnh8XjLly9vamrSSrPl5eVmZmYAcOjQoc4ftXYtMTcn589rpYQu1SMC6//+jwCQxETmLdDLQ7q+O91sAgBMTEzeeuutkhI23bNEHSkUCjr6hO4pmZSUpLtzTZ06lcvl+vn5nTlzRrstf/zxxwBgZ2dXV1f33BeHhpKHD8mJE0Tj7p1+dP99Ca9dg0GDwNgYfvsNNBxwU1hYOGHCBD6f39TUFB0dvXjxYhsbGy2VifQjMTFx5cqV3t7e58+fl0gkV69e1eIKM+1SUlIWLVpkbm5+7ty59s3itEWlUgUFBeXn58+bN++zzz6Ty+V0TLxM1tjQ4NPQAPX10NAAMhkMGwb79oGHB3h5gVAIY8Zot5Auoe/E1LmFCwkA+fPwFyYOHjwYFhb26quvgo6/ilFXqqurozfdaVfru+++0/opiouLTUxMAODAgQNab5wqLS0VCoVcLveJtBUIFO0PlwDI3Llk2TKycSPZtIn88IOOatGtbj75ub6+9cABFYcD77yjaVNFRUWZmZl0pHJLS4sWikMGwMrKasaMGYQQuqbC1q1btdu+XC6fNm1ac3Pz3//+9xkzZmi38XYDBw6cPXu2o6OjSqUSiUR2dnYvvvji8OHDx417FBYG8+bB0qWwZg1MmQIAsGQJfPmljgrRuW4+Neezz7ZaWaWGh28ZMkTTFdrolyQdBN/U1KSF4pBhiImJSUtLu3DhgqmpaU5OTmlpqRYX41+4cOGVK1c8PDy2bNmirTafaseOHTKZTCQSPXs1elNTEAohORkqKuDHH2H0aJ0WpX3duYelVCpTUlIqK8smT9bCJGSRSAQAhBAAaG5u1rxBZCDc3d2DgoLkcrmnpychZPv27dpqeefOnfv37zczM8vIyKBfeDolFoufu3fGqFEAADIZhIfD7Nnw57nYLNCdA+vQoUMVFRUDBgygkxg01DGwsIfVzURHRwNARUUFh8MpKioi2ngSVVJSEhsbCwD//ve/Bw4cqHmDWjRyJPj5wa1bsHy5vktRE/suCZubm1evXu3k5CQSiSwsLAQCgZmZmbGxsYmJiampqZGRkVgs5vF4lpaW//rXvwAgJiZGK899aGCpVCrAHla3M2nSJCsrqzt37ri6usbFxdELf008fPhw2rRpTU1Nb7311qxZs7RSpBZxufDZZzB0KKSlwdSpMG6cvgvqPL3e8mdiyJAhnXxrRkZGZmZmjZrMfeggPT0dAEaMGAEA06dP10qbyHBkZma2T1oIDAzUcBh6ZGQkALi7uz98+FBbFWrdhg0EgAQEyLX1/0gXYNklYWZm5qVLl4RC4ZgxY/z9/X19fYcPH+7l5eXu7j5o0CBnZ2dHR0crKyu6WJqRkZFSqZTTdWc1Ru9BtLW1AV4SdkdTp06trq5OSkrq06ePVCodNWpUQEAA3aJCLc3NzWvXrv38889NTU0zMjJox9ww/eMfMHPm+XPnHFauXKnvWjpN34mphoaGBnt7ewBITU394IMPnv2+Pvzww9deew0AFi9erJWz5+bmwu9DoseMGaOVNpEBamxspLFFP0j+/v7PXXhDJpPl5OQkJCSEhIQIhUKhUCgQCJZ3Zl0rfSsuLjYyMuJyuT/99JO+a+kUNgXWwoULAcDX11epVH7zzTdRUVHh4eFhYWEhISHBwcHe3t4eHh4uLi52dnZWVlbJyclXrlzh8/kCgaCsrEzzs586dQoA6AVpQEAA43ZUKtXmzZsdHBwcHR337t373IVrkF40NjYmJib26tXrr2Lr119/3bdv34IFC4YMGdLxnhePx6Nfq2ZmZqdOndJX/Z1Hlxvt378/K+btsyawfv75Zy6Xa2RkpNbcvdmzZwNARESE5gVcvHgRAAYMGAAAXl5ezBqpra2lC122T5x2dHRMTEy8r+7qbahLNDQ0rF27tn32aHBw8MqVK2fMmPHEpkoikWjkyJGrV6/Ozs6WyWSHDx+m60BYWFicN/gZxi0tLXS5m9WrV+u7ludjR2ApFAp6LbZq1Sq1Dvz111/plIWLFy9qWMPt27fDwsLmz58PAM7OziqVSt0WOq5Us3fv3r1797q7u9NPvFAojIiI+OWXXzQsEukC7W3R2KJLs9N/CQkJSUhIyMnJefToUfuLr1+/LhAIuFzuyy+/DAC2traXL1/WY/GdUVBQMGvWrJqaGn0X8nzsCKwNGzYAgEQiYbAoR0xMDGhpweK2trZ58+bRpXUlEkliYuKDBw86c6BSST78sN7CwpJeXFRWVrb/Ea5UwxZnz54FAFNT05SUlJKSkmd8Y33yyScAIBAIhg0bBgAODg4VFRVdWGl3xoLAqqiooM+bmS28XVNTQ1eSPdm+IBYjMpmMDkAVCoXtd2QtLS2XL19eWVn7jAOrqsjo0fT58b6VK1cq6GYYf0bXAqQLGwGAq6tr59MQdY3NmzcDQGBg4KRJk44dO/bsF69YsQIAjIyM6NWWRCK5c+dO19TZvbEgsOgCCZrch4qPj6cfNcYt3L5929PTEwCsra2lUqlSqczKyqKLPYpEImvr+6Gh5Klx+uOPxM6OABBbW/Lc7SwePHiwadOm9tWWjY2Nn1jjFOnRK6+8AgA+Pj4AsGPHjue+fsmSJQBgYmJCh7l7eHjU1j7riw11hqEH1v79+wGgV69e1dXVjBtpbGzs3bs3AKi7BQ51/jyZOPFDABg0aFB5eXnHPzp37ty77+4xMnq8fIenJ9mzh5w6RRoaCCEkOZlwuQSAhISQqqrOno6moY+Pj5GR0bBhwxgUjLSurq6OPnE2MzPjcDg36W5xz6RSqebNm0dvWbq4uNCwk6m11i36HwYdWOXl5TRodu3apWFTdK78Sy+9pFQq1Trw22+JmRnhcFRz5yb+1YqOd++SxERib/94y6aZMwl93hIdTV55hSQkEAa3pGpra+klp9pHIh2gm3TRXnbnnxG3tbXRxbVtbGzoelvBwcHNzc06LbV7M+jAWr16NY/Hc3Jyun37dlpamiZNNTc3Ozk5AcCmTZueehfpqVJTH++v8+abz9mrghDy6BHZvZvExpKlS8m2baSggMTGMomqdnSQNH4nG4Lw8HA6/g4AEhISOn9gS0vL+PHjAcDOzo7e+qRrQiBmDDqwNm7cSL+devXqxeVyCwsLmbWzfv36HTt2/POf/6TPpIVCobe39/z587dt23b6dPlfBcJHHz3uMb3/PlFrDMPSpUShIFFRJCaGWb2P0bV0Df+heLenUCjomAY6IrSgoECtw+VyuZ+fn1gs/vTTT7lcLo/Hw6fAjBl0YBFC6GRjOgxv/PjxDFooLi6m42Loqmy9evXqOC45IOAqh0MkEhIWRtavJ0ePktdeIz//TKqryZo1xNWV7Nun9hnpWLGTJ8miRQzq/cPo0aMB4LkPpJCuHT9+HADofSg7OzsGQ/AePHhw4cKFL7/8EgBGjBihiyJ7CEOf/JydzdcEAAAKDElEQVSYmAgAxcXFlpaW33///X//+1+1DlepVG+//bZCofD39y8tLXVycqqsrKyvrz9x4sTWrVvnzp1rZdVHIICyMsjMhFWrYPFicHaGtDRQKMDICC5dAgZLg3zwAezbBykpMHWq2sd2NHx47MiRx2trDWsppR6IbtpMR7eHhoYyWHzG0tJy6NChdCo1neKKmDH09bCCgoJCQkJyc3MDAwOlUumKFSvOnDnT+U9MamrqqVOnevfufeHCBQDYtm0bHesUGBhIe20AoFBAaSlcvAgXL4JYDHI5zJsHO3aASARCIcOyCwrgwAEYNgxGjmTYAgAYGYXm5UFQEPMWkFbQwLp//z4AhIaGMmtEpVJlZ2cDAJ2bhRjSdxfv+QoKCjgcjomJia2tLQB88803nTywqqrK0tISfh87ExYW1pmjli0jhJDYWLJhA+OSyaZNBODxdtOM7dz5eKcTpEdXrlwBAEtLSy6Xa2JiwniGMJ087+Liot3yehpDvyQEgGHDhr3++uvNzc0vvvgiAKxatYou+/lc0dHR9fX1Xl5eZ8+eFYvFdMLEc9HN2uLj4eWXmdfs6AgAcPMm8xa01QjSUFJSEgB4enoOHjw4ODi4fZE/ddHrwUmTJmmzuJ6HBYEFABs2bODz+T///LOjo2NJSQkdFPNs2dnZmZmZJiYmd+7cAYCNGzfSRzzP9d13AAA8HvzwA/OCMbC6DZVKxeVyy8vLT58+/dVXXzFuhwYW4ytKRLEjsNzc3CIjIxUKBb3xGR8f/+ydAZuamhYtWgQA3t7ed+/e9fHxWbBgQSfPdfs2bNwIH3+sUcGOjm3Dh9fY2JRo1gg4O4Ozs0aVIA1FRUX17du3srJyCt3Vj5HKysqSkhKxWNx+5xQxpO9r0s66deuWiYkJl8ulo5O2bdv2jBcvX74cAAYMGMDj8fh8/oULFzp/osWLiVJJ6uvJypXMq1UoFDwej8fjabI+308/ke3bCSEkOZl5JUhzZWVlL7zwAgBMmjSJ2V8o3Z912rRpWq+tp2FHDwsA7O3tFy5cqFKpxGLxG2+8QSceP5VKpSoqKuLxeFwuV6lULl++nK6l1UkCAXC5wOWCQIPNDPl8vp2dnVKprKqqYtxIdTXk5kJZGVy7xrwSpDlXV9djx45ZW1tnZWXNmTOnk7dQO6LPGfH5oOY4RBtbsHWN2tpaV1dXmUw2ffp0Dw8PupcXn883NzcXCoUikUgkEgmFQnNzcx6P98EHH+zZs6dfv36XLl1ifKNUE35+fqdPn87Pz/f392fWQmYm2NhAejoYG8PkySCTwcSJoI0dyxATFy9eDA4Orq+vnzNnTlpa2rPH1igUisLCwvz8/L59+06ePNnGxqatre3u3bs2NjZdVnD3pO8unnp8fHzs7Ow6877oXoTZ2dn6KnXatGkAcPDgQQbH3rhB3niD7N5NTp8mWVnE05OMGEEAiIsLSUwkfzEFG+ncyZMn6ZdfbGzs//6pXC6XSqWJiYmhoaF03yYACAwMpAPcNVndCLUz9IGjHUml0oKCAoFAsHTpUrqFV0NDg0KhkMvljx49am5ufvjwYWtrq0wmUyqVNTU1YWFh4/S3RaSVlRWPx4uLi7O1taWTbDopMxPeegsaGoDPh1GjYMQIqK4GuRxqauDGDVixAtavh9jY2sjIeolEorv60f/y8/M7dOjQxIkTk5KSbG1t33vvvZaWliNHjkil0pMnT164cIHuAgcAHA5HIpE4ODjweLwFCxbw+XxD2/yZrfSdmJ3V0tIyePBgAFizZo2+a+mUM2fOCH8fKe/h4bFz587nru/c3Eyiox8vrTVlypM9KaWS5OSQ0FDC4RA/v21cLjckJCQrK4vB1Dakia+++orP5wPARx991Nzc3P63zOPxnJ2dfX19vb296Yjldnw+39TU9PTp0/qunfVYE1jvv/8+ALi5ubFoOaG7d+8mJSXRhZAAwMLCIjo6uuOC7h1dvnx5+vR/AxBjY5KS8qxmi4pIVNQiY2Pj9jRMT0/XyRtAf2HPnj0cDofD4XzyySevv/76yJEjvby86Fa77ezs7MLCwpKSkgoKCubOnUs/AIxXHEEUOwLr6rWrxsbGHA4nLy9P37WorbW1NSMjw8/Pr/17ODQ0ND8/v+Nrdu/ebWpqyuVyJ078qZP7+zx48KA9DTdoMo0IMfLxxx8DwBO33l1cXCIiIlJTU2/cuNHxxW1tbfSepq2tbWlpqb5q7gZYEFgqohp/dXzg/sD5f5+v71o0cu7cuYiICMHvwyW8vb337t1bV1c36/cVISIiIhobG9Vqs6Wl5cCBA6zYoKn7mT59urm5uaen57vvvvvtt9/+1YK0FF3Jz3GEo0+RT0VLRVfV2N2wYFjDnvt75lTOseHblA4uteGz/qnwzZs3k5OTd+7cWVdXBwACgUChUJiZmSUnJ0dGRuq7OqRDTU1NYZVhR5uPugndTrid6CPoo++K2MfQA+t+2/1BlwfVtNXsc943q5f6a1MZqpaWlvT09HXr1lVUVLi5uWVkZLRvqoq6MZlSNur6qPNN5z1MPPIG5PXi99J3RSxj6IH15q9vfl73+UjzkccHHOeA2gunGTiVSlVeXt6vXz+BJsPqEavUtNUEXQsqfVQ62nx07oBcfZfDMoYYWL+1/lbYVOhr6rujdse6qnVGHKOiQUUvGr+o77oQ0o7bitsTb0zc7rjdXmD/Y+OP3iLvwqbCOdZz9F0XCxjcRI+brTffr3pfIpQUNBVUK6pn9ZqVYJeAaYW6E3uB/fmB592N3d+7895Y8dgqRVVJs0YLe/QcBjfSPU+e96b1m+4m7u4m7nmNeTucdhAwuD4gQhriAKeouWiceJyDwMFB4JAjy9F3RexgcD0sC55FTVtNx590v1tXCAGALd/2duttfVfBMgbXwxovHr/s1rJfmn/pb9RfxBXpuxyEdGWg8UACZE3VGgueRTcYr9M1DPGmO0IIPZXBXRIihNBfwcBCCLEGBhZCiDUwsBBCrIGBhRBiDQwshBBrYGAhhFgDAwshxBoYWAgh1sDAQgixBgYWQog1MLAQQqyBgYUQYg0MLIQQa2BgIYRYAwMLIcQaGFgIIdbAwEIIsQYGFkKINTCwEEKsgYGFEGINDCyEEGtgYCGEWAMDCyHEGhhYCCHWwMBCCLEGBhZCiDUwsBBCrIGBhRBiDQwshBBrYGAhhFgDAwshxBoYWAgh1sDAQgixBgYWQog1MLAQQqyBgYUQYg0MLIQQa2BgIYRYAwMLIcQaGFgIIdbAwEIIsQYGFkKINTCwEEKsgYGFEGINDCyEEGtgYCGEWAMDCyHEGhhYCCHWwMBCCLEGBhZCiDUwsBBCrIGBhRBiDQwshBBrYGAhhFgDAwshxBoYWAgh1sDAQgixBgYWQog1MLAQQqyBgYUQYg0MLIQQa2BgIYRYAwMLIcQa/w9S8GwyUcaObQAAAYZ6VFh0cmRraXRQS0wgcmRraXQgMjAyMi4wOS41AAB4nHu/b+09BiDgZYAAJiAWgeIGRkGFBiDNyMaQAKKYITQznM8OppmgfCYmmDwHRB4uzsGgARJnYnMA0yxsDhkgGmgQFgYRStDUcjMyMTAxMzCxMLCwMrCyMbCxM7BxMHBwMnByKXBxZzBx8yTw8GYw8fIl8PFnMPELJAgIZjAJCiUICWcwCXMlCPMliIC8zcYlzMfLw83GLyAoJMwn/gvkBWiogIODwfpAhAOIVn3z8cD0+Q72IPafVScPePu17AWx7+idORDPeGI/iP3p6bwDp47KgtVM8Mw9ENnnuw/ErtkvfuD39a92IPae7UIHKo3+gtUEVvXtP161Bqxm17kUu0SVDWA1dfP22ifofQKL/+vbbC/k8Qds/mVPLYfEPKMDIPazy/UONbfYwOzLuU0Ofz9Ig9XcNVrrsOXLJFsQe++29Q5HX58A2zWltN3B+oAE2C/CiZYOayJugcWDI00c+h6GgO0VAwAaw2ldIdg4OQAAAgZ6VFh0TU9MIHJka2l0IDIwMjIuMDkuNQAAeJx9lEtuGzEMhvc+BS9ggS+R4qILP4KiaGMDbZo7FOiy90dJO84oqFB5AI80n0kO/5/eQa3v56+//sD74vNuB4D/uSICXgURd89QN3B8+vzlAqeXw/Fxcrr+vLz8AMa6bp+P7OHl+vw4ITj9Bmx4WyBNhrnIdoLwevj2aU8PnuEEe2/dEN0S884qfeIfoBRoTZCJGfYJmBrygtQ3cqBnvXvK4Nx1RXa4wF5bWO8W+dzIOGIBWoWU5lkj9UrOWa6MBelFchMntEqpA8lkAQ64FsjBagrUwgfhCoyKSI1ICEflFrHhuiAJM2bWxqJaLcwv5FWRlCplSh0k+boZUl0wf70g+U5mHKQqIxxDVy2iEoibGXq3ejMfHsNXZAkkLSKTjiIJHcdK8+z1CbRlxECrOg2D1FZkKdSbEmu/VedUZSxAv4NB2B3KG2GxzD1uuVmkZOF/jfwOxu3FR7kod2mSPoQWYJrxBpJHL2sw+oiVLZ8u5w8zdZ+y4/Vy3qaMcnJkGyLK+dBtVGrbt3mgdLptpqf0s2/WpjTt2Pxb29hcSmlAmsxIZTOiyXNafiKezKXlG5LJRFr+IJ3MouUD6pMpaptCTuJr6Uo+iawlII1JTS2lKCbZtCThWR+t3m81M76d9Lnjc39r//gHzPvdXwEM/vGrZVIpAAABB3pUWHRTTUlMRVMgcmRraXQgMjAyMi4wOS41AAB4nC2PMW7EMAwEv5LSBmSCS0qkGJfqcw8IksZtnnCPD+k7FRIw4i5319rW/rXW9tjX48KVR+q6IPS9/n4+ntvhNIx5NiYf0nW08zBSFkg7mNi6sbzhZE+IFMjoiTqFjeEpNZhEJFJydkNJhdl1JhNSB1uO9ckwvZGEdGug8IkEIEBx61Rtetqng2jvI3X5sKQV0gG9hror4wb1cZQPR8YUMssALTf49IqkFOGKIuAcamcn9hH3LuNAxjgHdVSeLOzwMeaNolJX3fBSiaZNlpnmWptmtc9/5zFfAB4VV9hnSDZo+p7e2y8+Ec9/toNSv/HR3FMAAAIIelRYdHJka2l0UEtMMSByZGtpdCAyMDIyLjA5LjUAAHice79v7T0GIOBlgAAmIJYBYjkgbmDkYNAA0sxMbBCahZ0hA8xnZGNIAClmgtDMQIUgmpGRzQGikM0BrJCZES8DopYDYih5mtkYYAIM6DI49SgzKIAci6mAm4FRg4mRSYGJGaiKgYWVAWg8G3sGEztHAgdnBhMnVwIXdwYTN48CI68CL18GEx9/Ar9ABpOAYIKgUAaTkLCCsIgGk4iogqhYBpOYeIK4RAaThCSDhFSClDRQG1uCEG+CtGiCCDPQNjZ2Dk4ubjY2Pn4BQSFeNjFxCSlpUfEoRqC7oDHBICP6SnS/SXijA4jz/ti0/WeqtcBsz039+1qld9uD2Ov2z7Jfs+QimM16ls0hTem+HYitduKgvZNl4X4wWznNoWmxDFiN1ol+h8Ui4mBxq+L9DitYruwDsTenX3JQOFEGViOzcauD4AIusF08bG0Ov7f9A4u/mhfk0O7pAxafsVPrgIW5PJh9TC3lgKNqDphdvG/hgbUPEsDsN5u2HBBYxwFmh/6ZfkCGIR9sTteigAOmnH1gdoyp+IErunv3gth+crYHJCz2gN2msJH5gCiX9gEQW2iW5oHIeY1g9vHIB/vjRFeA2VLb2vaJFC8Cs1dHKtlLvjoBZpdPXGHXvTkHzP6bLbi/8ag8mC0GAO7ThskW5jxAAAACmnpUWHRNT0wxIHJka2l0IDIwMjIuMDkuNQAAeJx9VUtuGzEM3fsUuoAF/ikuuojjNCiK2ECb9g7dFr0/Ss40GQUQOrYISfMs8fMefWr1fLt+/fWnvT90PZ1ag/98I6L9ZAA4vbSatMvT85dbe3x9uLztPN5/3F6/NxotF9vnI/bh9f7ytoPt3s7QdagBN+kgOEIbdNie46fUHtsZO7qHWKNuxgNsAeR2qxMp36o37GL5G18AJU/ETjDCNSfGPngscJo46ghGxvlaWAfEAmcZCnZFDsLyIITSiQXQ80DuGrpHaojDV7iROOkSjEO2JAWgrm6OBGqPQQOtgIICsQoFszjNurruB4VxBK6AuB1p7uVaRm8GtPIRaXMSx6BMHqYTEUsfkTM93CkgJHKCgTGWPlZdzlVgVx95twx3WVECqzLnzKTJMMszLUvpskJaIbWDimRiuKrkyCuk70gTG4IVOavR8swqz1m6S6hSJZNZl9TF2P0kjaJGkhjCdMVdgj12Lq5RlRKC2FeOEu7QUCn+pjTEQYxWUNqhoG7Dttw6SazKSfwv+QpAUeGBgi5ZTLIr0pVcoHJGSgarktJWqNSkMSagCuGmsoRau/wuUXA2gpSRdfKRfq+gVSroTJkirfxaDNHloWO/X20kAyo+CRNeRfV0u37oT3vHutxv16NjUY2jL9UGH90Hc8jRYzCHHq0Ec9jRMWrpR1+QHOOQv+SIQ+SSA2ctSxnESbRSBmlSJ26GJxluAcgkNymDOsmqlimaST5SBn2SiZTBMclBymBMtMcyNNObNpPc/fz8iSYuYxmiibJShnhippQhmQgoZUgnnmEZsolOsu34xBopQ2Nih1SSDkilurx/v2qrZOIOB4snMytq/fYfmPPTXy0FXd/cIa91AAABVXpUWHRTTUlMRVMxIHJka2l0IDIwMjIuMDkuNQAAeJxFUUtOxUAMuwrL96TpKP+PKjZ0D4fgBqw5PE5BoqvUE8d28vF6Pd6v6/Hx/OTP+fi/ul6vu3y8fT3x+/L9OGh7eZAu22Tc6zx4c2b7kh2hxUBoS1F4Lt4WnLVO3kLVA4Rm2TplM4XEom3qRT0tztqywG4TAUm3tzdagrlynbatlWs6vInxdPrukrpJxkYNVmxP55ncod08TZGJAdCMIJlBXCUGN13dMUrShAi6ubkn1IRJL3CsMh0I3ARq9ASSwM7hm9yGBOPJNxAWSAch9YDQYTut3ceMKtLcc8QbObE26ohbS7EKnRDUoim/YLthY1ivJdkvRJ7Ra8yl2J9NJxwDQuQEv3OOdElbcCMu8XePUKYajDLg58RS1RjXOmJL1jBpq0DeFyxG1y2JTUch5Whah+l6fv8ArGhz+52TNtkAAAGlelRYdHJka2l0UEtMMiByZGtpdCAyMDIyLjA5LjUAAHice79v7T0GIOBlgAAmIBaH4gZGNgYNIM3MwgGhmWA0G4MCkGZhY0gAUozM2GkmJgzaAWIcm0MGiGZmRGLgkmGHWIlhpiDYCYw4hLkZGDWYGJgUmJiBhjIwszIA9TOwM7BzMHBwMnByMXBxZzBx8yTw8GYw8fIl8PEDKQEFAUEGQSEGIWEGAREGEVEGUTEGfq4EEUageWxc/Hy8PNzickAOIzSkGMRN4mYd4P+9fi+I03+j/8DlkA32IPZr/RMHjuVy7Aex/1S/PrB75nc7EHsFI9vBtZPlwOIrvpw6sEXsNFg9ewr7wYPMB8BsN5W8A8yyvWA1NxuEDiw8rQ5m516cvl+Z+RqYnbe62u7D6TlgNpuEsP18lxKw+fmZDA499fpgcyYyujsYlK3cB2K7fzN0ENj0FKx+89I19gtL+A+A2PVBEx3SZr21BbEnzNviEN6eBlbjXvDI4ZnhC7BenXtMjqc194DFVW7MdtDWOwU2//bKkw7rNjE6gNgN+lccPsbEg9liAAfmbcD3rVWoAAACK3pUWHRNT0wyIHJka2l0IDIwMjIuMDkuNQAAeJx9VFtuGzEM/PcpdAELfIrkZxwHRVHEBlq3dyjQz94fJRWkq6BC5RUhamcpUjP0qdX4ev3y83f7O+h6OrUG/3kiov1gADi9tlq0y8unz7f2/Hi6vO8837/fHt8acT1Qv4/Yp8f99X0H23M7S3eSDNnO0ME1yFsu5ji+pXYvpISia8POZuqxAXIBRydVl6iQyhSkG6TU4dZZ3b3ei7PGDqgF9DxSBbRCDgwR3CBHIUdnIR6VpfoYuf0v0N5CSkYiLCAA4u5sLyB3I4gh7YwdgUR2NxSFpE4eiDKzVBXdZYlQ0AzlAyxqNQzDttBiCDqJWr5PJJGEyQ5JE6kmOm+T2FV4B+QEUm4P4QIOzzx3d4RFEGfBIXU2dGYI3yJ1hjSHoaOytOQnbIcshlI94g42r0tQYluPtVuTroJMdSbiANyGLIq0D8lyRqUZAArbyosi62CDYCJFWXO1UXsy9Kt5R4tMsCoSA9iqmIqhbCED5Ck5C+VdQVQEpTYBw6UIoKG84zzbNg8fPZVr4cmAZEVbyb3crh/a+a3BL/fb9Whwqnl0cYq98dGr6TQ5GhJz6tF25Y6jt8q1o4MqlB99kk6Loxmw5ip5nAYXZUsZpEXBUgZ5kaqUQVk0KWVQF+2Vm8paNIYTY4uWcBpfRIPTxCIOLEOrCOZXhAvXWIZoIbXc5GxhT2YKuLK0clL++x92rk9/AGrSHuwlyNWlAAABJnpUWHRTTUlMRVMyIHJka2l0IDIwMjIuMDkuNQAAeJwlUEmKxDAQ+8ocE3CK2hdCn3KffkSu84R+/FSlIZggS7Kk69quvb/3tb3e+3VdN933vf1u/fu3P8d9089nOxIkTNeB4FSqtM4jQCwzF4KmWFlDDqIssQgs3aWRBG0BD4JI9HDYLG2sTLh4dArJjzmmFSc9kJZRtVAirBoRCMbydRAQso6OgbPadWKZqY2wb9Mxh+ZBFetEaHYEDcSsX8hCJ0XfSZp2VAZEV23Es73WKf1MaYy5CFauU8GUhJtC5EjtY9AS8eEUomH7BGA4P5nUxNDXmUBRU5BAA4fUhQNJZpYoa6CXQ+o3OgX7F3DpFtIztPHEi0R/2kdN+R5Gs6eaEZS01v75B1IiXjUKMCLiAAABdXpUWHRyZGtpdFBLTDMgcmRraXQgMjAyMi4wOS41AAB4nHu/b+09BiDgZYAAJiAWBmIRIG5gZGNIANKMzOwMCkCaGcaF0ExMMJoDLA3lMjOyOWiAaBY2hwwQDRIghkGGJm4GRgZGJqCLgBoZWFgZWNkY2NgZ2DkymDg4Ezi5Mpi4uBO4eTKY2HgZePkymPj4E/gFMpgEBBMEhTKYeNgThHgTREA+ZuPg5OLmYWfj4xcQFOIVfwfyJTRAGITveGw9sMhY7ACI88lp4gHp5rX7QWyWnbMOXOt8bQtiv+11P7D61iuwuCnL//2sb8PB7D4Nof1CfivB7P1sfPYrlq/cB2L7fv5j/6XJHyx+OlXQYeY/QbD5h2JzHBJXGYDZp0xmOcwqeARWs2PfBIe2yzPAeqta3RyKRC3tQOzYNS125y5OtAex9zpttP8dxeEAYpdmddtfr0gDsx+LrtoXMKkJzJafu2t/9yZXMPv6kSn74zTPg/WKAQAXcWUw2mImvAAAAep6VFh0TU9MMyByZGtpdCAyMDIyLjA5LjUAAHicfVRbbhsxDPz3KXQBCxw+JPEztoMiKGIDrds79D/3R8k1nFUAIVqLkFYjUjsz8qFk+3X5+e+jfDa+HA6l0Dc/dy9/hYgO7yUH5fT64+1azveX0/PN+fbnev9d4IWpbM9X7Mv99v58g3IuR6utGVTLkatoc0KhSlvb93K5lqNWE1fmckQVM2u6QErm1DrEaFisA0bkC6AmUGJ9kIxMOUS7jwXSEonqzoJWjlSHxkFpgWzlluvWyQXbMZmb2wLZI2cALUpSbhGBWF8ARwCjdm/ottUGmfMC6AHkyh0jPydGA1gyhBCpSG0eh+NE9kbiK4qQAgWXGJ76IJBObaUPeEMaS5TNY7IPHcucslUHRdL83qC/a1sBdaOIzcEjKIA4Y0UlbKNIoqCG6wJIZrICtg1IwzFaMkAAL0unOpsojHCExhaSpeAYD2+odQ+/SyYnXskDfyDRmENo1Iahtsr5er18uSWPe3O6XS/7vcmH98sRkyL7Dcip7j5HdNvNjOhtdyyi992WiD5282l03y2m0TE7STMAk2M0A3hyhmaATA7IItBJac0AmyTNaSg2aacZ0CeRNAPGJIZmgE+ka9b7hPB2Yp+KJ9sztzl//p/F+PAfN6v1OZ3bZ8MAAADyelRYdFNNSUxFUzMgcmRraXQgMjAyMi4wOS41AAB4nDWPTa7DIAyEr/KWiUSQx8bGVpbZt4foNXr4DkiPFfqYP57X8ZzP836ODz7r4Py//H2Py3uEY7RLu42odl+ju9XQdqGbu8dGaS7VpAMuslTGa8pYqrSRJOhVavRJz8EsIuk+pQw7S3W2m8THrCUygzkRfTMwtw/ipe3WrhO5R2kCjLIexYRFZrD25iRk7f4ZJbGIsz5XjlaOrOWCYM9OmWsRn7xAETqsmMd2o9abEoj7ApJFExsFsP0LM0VlG3wSi/3X4ZNLbYlFN0GoBoODy72d3x+8uk1JcC9V9gAAAf96VFh0cmRraXRQS0w0IHJka2l0IDIwMjIuMDkuNQAAeJx7v2/tPQYg4GWAACYglgJiWSBuYGRz0ADSzCzoNDsDmGZmY0gA6WGC0ewMCiBxCJcRQxqmnROsDGh6BtgUnNawQaxh4WAAK2Rk5IAIMMF1sjsgOwRoEprNMA0wmpuBMYOJkSmBiVmBmYWBhZWBlY2BjZ2BjYOBg5OBiSuDiYubgYsngYc3g4mXL4GPP4FfQEFAUEFASIOJXziDSVgkQUSUQVSMQVScQVyCgU9Sg4mXIUGEIUGCUYGTmUGEBWgJGwsrGwcnMxsXDy8DIxMbH7+wCAMvm6i4BCODiLgTI9B10KBmkDosULr/5aqp+0Cc+lxW+18LufeD2NGpe+2XHpC2B7Htgmwd7F5stQOxG2fFObTMbQOr4Zw7z+E483Iwe4PHXoddk6XA5lTMeOPw6tE5MLtvyRoHmaMLwOb0rKxySNA+CGavWllq//k3gwOIXdj81X72FS8we8YVlv2i+oJg9nOJvftvrukDq2fRsT0gI7wezA5qrjoQzxcNdk/hxDUHbBTeg9mTTfceWHT/PViNhO3pA82X9MFu47eOPHBi6www+4/Z1/3cMjvB7LJlm/afn2l2AMTuXCV2wMayAcxe1bXS9sMZNzDbzb3VfsKLn2D17iVxByKmGoLdJgYAxmt/8cRDLLEAAAJ2elRYdE1PTDQgcmRraXQgMjAyMi4wOS41AAB4nH1VW24bMQz89yl0AS9Iis/PJE6LoogNtGnvkP/eHyW1sFdBha4tYkWPKGo4lE+tnh+X7x9/2uOhy+nUGvznGxHtdweA01url/b8+vXbtb28Pz3fPS+3X9f3n420UeSa/HzGPr3f3u4ebC/tDFuIkVu9UVCnXLLBeI61lEjYhJCACigszCtgTyBubKGi+bOCM/gCx+3aKHd2ZMmfu0il8C9OMl7PeI4O7YwbCKrTAqgJ5AyoqlHADuzQF0DLnWULFKReR0GBEF4APSPa1qMrjjMzMJgsgJFASaBAHgE3EgVc4RDGYQJVwhOYG2PXFRAH3SGhWQ3aMly3FYuZ2JcMFEmOcYZGDaJlxL6XWtA9+aGN1DnFtEByIauE1okyOCKrrEqNVZtzFTGrWMiuZoYrZBXnXCdn0mKGsGeiK6QVssgkG0VhNeBVGdHbrZCBZJHTzY0BlzGjkJoaS/V6saCuDiuaCPZEezD1oTeMFNJKmISpo3NxL8Y4GGNNba6gtFOaCjGQosylY19C+85pF0ZJHXMiNHyZKw+RgJM5V9IISrIMKklAtg6n4n3kLMS4bHMtqqrfxPPUtJmxLfv89Xr5dJXsl8vz7Xo5LhfOQccNwjn6cU9gDj6ug4LL0fWYQ4/exhx2dDDm8KNPaxpHN2KNueu4tsOpu3AYmtqIh6dP/cJlkKe+4DIok/5rmuqedI7D2KRnHMYn3dLwxKRPrlU0y5DLEE5qwzJEk6hqmoqZtLN7eJIIliGZpECVM+lU8v1cD4fV5jg5iuBa+HAUxUXrLIa59DW//yfl++kvo3NH/crYQ2MAAAFJelRYdFNNSUxFUzQgcmRraXQgMjAyMi4wOS41AAB4nB1ROW7EMAz8SkovIAkkxUOEkUpAyt1HuM8L8vgM1djUeDQHvTfvzyPPfK7nuX5ej7xl7/e1X3vL67m+P3jsemH4nfz1d3UZ05S9dR1EntnuzmOmBTd8WzZZ202DlsTS1udgcvF28yBlAcIjTZSLZMJC0jomNcU9TFCSFYVJypQjrxGYeDCr22EZr+XZZIgvK6m0dMGZ2OYqt+RF0WDvkClAI90bDaelBIrgzkJYQiEry3uCs3hVRDJ2cBQc9yhkkgIw6BqfyGyUhsyB9tO5ICWlsGJhIZRILOYoCOVkmPMAWvvpZQ53INMj4N3L3NBFRoSGHgRcCQQUnim1ihIWOMDKgxS9uiM+y7H35Yv80JIlyn+FEh+tmYo9oAjnJDtrRZU4P0TVOdrr7x+J12ty7XHTywAAAcN6VFh0cmRraXRQS0w1IHJka2l0IDIwMjIuMDkuNQAAeJx7v2/tPQYg4GWAACYgFgdiSSBuYGRjSADSjMwcDAogOQiXGSrMxASj2cHSzDDV6NJsDhogaRY2hwwQDdSPYEBkBMEGYIqzM4BpZnwm4GRwMzAyMDIxMDEDNTKwsDKwsjGwsjOwczBwcDJwcmUwcXEncPNkMPHwMvDwJfDxZzDxCygICCoICmUwCQknCItkMImIJoiKZTAJMDGICSbwcyaIMANN5mRiZmFl5+DkF2Dj4ubh4+dkExIWERUTFJdjBHoBGowM4hNbV+ybq9vtAOIsXlJkN7fEFsxmua63/67jY3sQe6sk+4FrLPxg8SCGhAObJ18Fi3tntB04LLfeDsQ+93XrAdnb3GDx+kkVB4ye9+8HsS/u0zmw5DLTARD754KZ+y/G/wOLz/RM2h/FHgsWN3fjtnfMrgKzb7y7bL/9uyWYnRDt6jAvOhzMXlO02r7bYQdY79HgrXurPlaB2eJcb20XVzGC7W2pP2X/uygIzPbZrOrw22PKPhA77mijg0/1LRuw+8snOFwz3AVWI1Wd4HDSTgXsr5WLmRw2MwiA2WIAQoNxNyquyM8AAAIxelRYdE1PTDUgcmRraXQgMjAyMi4wOS41AAB4nH1UW47bMAz8zyl0gQh8S/zcJIuiKNYB2rR3KLCfvT9Kys1aCwi1I0Kmx3xohjmVvL7fvv3+Uz4uup1OpcB/fu5efjEAnN5Kbsrl9cvXrVwfL5en53r/uT1+FOJCGt/E/Rn78ri/PT1YruUMlclRpEhlccZeoMK4jk+p3MNLbK5WqLoBCS1wvAe0Tm69YG1NRVYBJYFUEcEjM0VosQYLoCaQq4aTouBq1nUJtLKVs1QKHGO8ZyHgVY0tI2rUaBTNQFUxxhWw76l7ZxcsZ6wYTQsvkL53Yx7n2HIHImhtgURIKI4yg5/YeW8UrC6g/9jJ/GxZiShrkxWUApqdCAgk0pGa2wqZDMUpqjayrNQhQi5jBkXvhSt0bkAZlE183ZSOoBznxC17ktgtSULbe4LelT133kNKy6AtCIVQSNSX7GgU2lZSwj6yayfAbLkTwbrMpIkC6BDijNzU3XB19JQsSQVV3vkmW6uTcAAVRU2jCAkxyercKRlKGbfAZhFmvFQn8SgSBCkOKAYjlL/U3Ot2+zTL+3Rf7tvtmO686ZjheCh8jCrGkmMgMZYeY4ex7BgujNWOEcrHfgwKxvJjGjDXrHlJgzhJW9IgTQqWNMiTUnEYmRQpw6OT8CQN2iQwHKZNOsJh+iQYSYM+KUPS0KwASUM4US1piCZOJQ3xRN7IdTiy5PR+JKdRsk3Hk0TOtOXz8w899qe/jX8kTAqpGZgAAAEeelRYdFNNSUxFUzUgcmRraXQgMjAyMi4wOS41AAB4nB2Qu40DMAxDV7kyARxDf0tI6T43hNsbIcMfZVcGQT0S3L+b9/489nPvI+ecx/57niMfPnz68c/38aKpUmw2bKqVynjTFI3yGDIrSGy8YYqUihw813JzSDKZqQwmUYsFRacTkcATkd6KTYGgAxkm1OyXgxQSkNxCWe5dpoL04sliN09mVLEPfMiMm8WXJe2qXHpL9Z3GAMFcO7GpRtZKseR4o4s73AAV+QJbJ6WudmhYrbYo0m+84bMumTJdEzZCGja4bGYQpKsDtS7dU6iVFKEeQaAU3TvJCq7xtknuajCRRCzilpwNfZGIFbxLOS1njOkRqs0hwxi9Lka18fz+Aw00Xpz+eJiJAAABkHpUWHRyZGtpdFBLTDYgcmRraXQgMjAyMi4wOS41AAB4nHu/b+09BiDgZYAAJiAWBWIxIG5gZGNIAIkxodPsDApAmhmXNJuDBkiahc0hA0QzM2JjoCnhYAALYJoFtxKskAnoJohOVA2MzNwMjAyMTAxMzEA5BhZWkOvY2BnYOTKYODgTOLkymLi4E7h5Mpi4eRV4+Rj4+Bn4BRgEBBkEhRSEhDWYhEQYWBkYeNgTREAhwMbAygKyioOTi5uHXZyNEWgBNIAYRB9EfDyQGm+1H8RZW/HuAOsHF3sQ+2fn4QOzQneA2RXVsw/8EpMFs1dFzztQYJEEVh/ndfLAhZ/HwOwOycQDoplLwGpa/wgcuF/9yg7EfrVH7MBejlawmnP2vftvXXoHZnPeKLZz/joDzNZ+v9zu5MlZYPVlNTn7J9RMAJsza9tVexGFSjA74IeVQ7q+GFjNnawOB073QLB4bOUGB1sf4T0gtmDGbYf/uZpgcc/djI7vZ2jsA7ENvBkcL++6ArZrsZG445cpjGA1YgAWZWYjN8qfCwAAAgp6VFh0TU9MNiByZGtpdCAyMDIyLjA5LjUAAHicfVRbjlshDP3PKthAkF8Y+3OSjEZVNYnUpt1D/7t/1SbKwGhQucHicTDY5ziHku3H5fufv+Wj0eVwKAX+83P38psB4PBeclBOr2/fruV8fzk9V863X9f7z0JYiOJMfJ+xL/fb+3MFy7kce21C4bkcoXYyQCtQYbR5lh5IaUSMsd/VyfoGyAnUigjNuWAVAUTaAKVcy1GqNbN8aFVk5R2wpUepLqYO+Ugz1i4bpD7uJgcmK0esrYlEYF+RPZFcG3a0fCWZSNuFYwmkStoEOfYD5V03QH8AubVIYd4N7Ey7uxESihWBGw6oabMYbaBJEFRiw3CVZ1zc2g5JA8nU3TMOBmLCHXAQBNWJeyQxXJIF5zuklFvsq7pyXumdUXahYzJE4REFcj9QqttHJkESyWSQ5M+wi2/jTn5a0CMWzo8JMN8jLWSkoSKVlvyoBqHbu5Mgi6SH2iRdoopuwyGIuK1COtJMevj0tssQJT0eEnfTvLyBYt9R/nq9fKq7RyWebtfLrMT8aJZbTArPosLoMksHo7dZIBhdZxXkbp9Sx+g2BS3RfcpWouMqTkmDuGhQ0iAtWpM0yIuocKzIIh4cpi0qwWF0kQMO0xfecRhb+MVhfCGShlkJw7GCCzGYefiYjxfzzEISsqY/588/0Rgf/gGTzQrGjkheOgAAARJ6VFh0U01JTEVTNiByZGtpdCAyMDIyLjA5LjUAAHicHZBJboRQEEOvkmW39PmqeRDKin33IbhGDh8XsEFPtrHrul6/3/fnuq7vzff9uj5yzSPv+7755+/V26wrFm2n4Ox11mYqkXXQ5jC8g4hLYx28I7h9nbHLwxw2gFIQ385WPDai6ia1ddqWUDLIitMQLruFjQHYIgK+iewYSafy/I22SnYnkJKo8DoR2qKZtnizVIEIov1JMs9O+A5FheSCRsom6TDUrJKpyRoqQLGZyRsiM+LJTiSIKEQZLZUPcpNnS0ph++MTbNK5gTuWT3hbRY+qcB2Um1bqLjUq0ob8xBeTOg+qcFwIA0WLpQdx4/zr/fcPxelWl0IZqKQAAAD/elRYdHJka2l0UEtMNyByZGtpdCAyMDIyLjA5LjUAAHicZY89CsJAEIVnZ5PN5tdGtE0hEvAQSeUBPEHKIGpvZyXYWngD09nY2CU5gpVNQLC08grukgwJOjC8tx9vZ3Y/xeUJqnxoClUHqgeqd0xCpJSjaNQQCWmmlbN/YzUR3gFoAaR6PpJKCLX+YhdYhAxD5BlyIzXMDE2RCitDJkNpg+2A44LrgeeDhakvYajfLLhhCguF7bieL8dXhVj7JQhW9/x8W88qfTg99udNfSq1f83z+Laui8ZPE+KL5TYhrv1xcogpc5y8Y7rb8bzs5uRlL19RXs2piGvf21vR3tEXJmdJ+jfb4K8AAAE5elRYdE1PTDcgcmRraXQgMjAyMi4wOS41AAB4nI1TW26EMAz85xS+AFEmD5J8LrCqqmpBare9Q/97f9WmAgepIBJsBWti4xnTkKz38e37h7blxqYhsidPKYW+vLW2eZAcqL+/vE40PG/9Ghnmz+n5QQiEyHd477G35/xYI6CZWmvssqh1pks5JtAW2u46GmokDI6QnpEwrhTrs1wJ7gAYGOhMLNmm7jRjZKA3uSRwU2cZuxoIYxOCK//gEk1aGSa7A1yuWznJVzhfe6lnWOHxSk5AkFe+Ek5UvNI3RJv2EpUIu/Jn8tyncTdUf2PWz9OoY+bEdJYk4HVggpiOheyo4vMLdSpxYEuqZGDLKphkLqoLxGr2sThULGNxrmITi/MVa1hcqMgJXEsRURBBCwslNQHyvv6jfG5+AVmKvjdtU9+2AAAAkHpUWHRTTUlMRVM3IHJka2l0IDIwMjIuMDkuNQAAeJxtjjsOg0AMRK+SEqS15TFL1iuUyn04hHtOwOFBQRCkpRuN3nzmj3eBiFgC/RfuszteayeJlN/FxpKmXYNxaLDWKjmRcNbdQZqUx2piN2hgqwW4Q6cFloI8/FNg059xNl8EPWxRSzVF1GzRwyFqbvfrBv5iN0mhmYYXAAACRHpUWHRyZGtpdFBLTDggcmRraXQgMjAyMi4wOS41AAB4nH2RW2gTQRSGz0xmN3e7m627MdWwFYuLRRAUhNaSUcSioigNKCi6j6uIipeHFsQSrCAYLw8KPqgICYWCUlu8xNJkAkWKClKQIBQUVHxoRfugvhTB3bNJCj44cPi/OfufC7M/yg8/gHvi4B/qRtqNdjcGiQy2qyQgc8vVAAv5SoO+NvNL6mCe/Bd8rwqm17tZCvURUB8B6KdENjd5PsJkc40HTMFCKqOw5ooNbdiDUN/xn8ZLdxxASOMDQQUSBQKE2jRgB5hDmWRKskPloB0MOTQUtsMRh0aiwGJ2LG7Gl1k03mIqLYwoKqgJSGigtYK2HDQddAOMpJlcYVE9xWiqzUyttGiMuOWSnVTAcAtWMdrK3KESoQEWk+VgKByRpIRq6BpLKqphnCHuRvV/A+nQVeCVfZe4dync7ObR+S3Ir6p5vnUdR9bNe7xYe53x+PmV0/z97U7k79Nn+dyGbMXjHftX89TIW+QLNzr4n5e9wuNDvQO8beEccu5jke9cuw35a6bAHx+fQv/E4hueGutBTtN2Pp2tYv8jl/OZzc8uIid+H8hMVn+WPT4/tH6y/+Qi5iNzpcqeXyXkXfclEbkmejwunlDF9twY9rQenRJfFmrInU/7RN9ef7dj0YIY+aQgv1Oui9HhCew/eOuwqL3owp7d8xvFt4KE7zAznBWzn48i3x0viyf9XegvOTMinbuD/t0PZkVtaBRn5Qc6KuMHC+jR/wJSSpRvO0aOwgAAAst6VFh0TU9MOCByZGtpdCAyMDIyLjA5LjUAAHicfVVLbhsxDN37FLqAB/yLXHSR2GlaFLGBNu0dCnTZ+6OkBskogNAZi5GZpw/J9+hTq+f79dvvv+39oevp1Br85xMR7RcDwOml1aQ9Pj1/vbXL68Pjm+dy/3l7/dFyxpxr8v2IfXi9v7x5sF0abQCu0ptsyOLaG6SnnmMlDVwwdJOaKLrYAsftntsIRYA1zn+T9ljgpN0SF4KCveGmQeK+wGmey1tXF6jjrAN1WOBs4BwCOdoZNif3jgtgH4EoGyG2M25GxMsb+g50C5F25g0JlVZHxzg6EAy0gE4dVRdAzNI03dBZeWwJzCarqBF3JJOnO2+ZCxRW+cYszJ9mm4B2GpF3GRxZQHmPCLWrVM4RBFYBoSQQNwQ1SwJtEe6+3FGz2plrYY1xtnQHWWUdLeudABDKkHPzMGFY7lkFyohFSTKLY9JjmaSq0DnJ691lcDYEaHl6tB+FpE6kVrtziC1jp6pRlqZnvqucSZAeRKvUE+7Q1ETETpFksy6hJZ9zFpSMg8dVjD1JsIBWlc4poQ6Zy8oZmykuoSWiPFbEjIpwyQBBXiF1T5UjElMJ3h1jlaqM9D6CIurCyWuJlBKtkH2PKTQkV+VF0Sk5s4J6bWqbigBX9TGCfHnR2JFuLCXkrFQP8FX0+flSp5qYAI5EEcSSp0+364emt7fBx/vterTBeunodtnkGh9NTWocvatePVoU5rCjE0mOfvQbyeFHV5EccfQOyYFzi5AyiFMrwGFokrzUoTwJG4eRScFUBnWSKg6PTZLEUlv+vXx+/oSTAHe/T0LDYWISFJahWTdYhnCSx+6hSQW7hyeyYxmSidNYhnTiLg1jE0f3VX3cnCdGYhnyiXg0PDERTCpXNNFIKr/vu/O4d6brvYRM+52OjDDvGakf2/kGRbSZVvX97Zc556d/q5h5ThUlsB0AAAGGelRYdFNNSUxFUzggcmRraXQgMjAyMi4wOS41AAB4nCWRvWpjQQyFXyWlDeNB/yMlLARuilRJsWwVXLkNSZkmD79HY3PBmg+NztGZj9frx/F8Zfl7nI4zPpxer6fj9Of9/H5+411sJm+7vvENXd9fN76g7B8fnw+/pwvNsDDigUqFKms8XWRSrvRBk8oIdDNZIjEuPLUsQHQu8z7HKtENlFbVQMFs3D0+WUKBcD00u8umLcqtF+Fsu6u8TJtxCpODxcxQs623ChcauRnp4MlVklvRLEJgdEkZ6/aZzLDTOyTX3ZbIsoHmyn2Np7nA+/5vgEVNNDSAKkx5PEGEPAKjqzI7Fppp6r0fYYUkQ5dMZ189yZmsz4UMAurljAQBiNJ92GS1RCRYX6oYbojEswGcm/SIEoMOcvXEcDzNIlkNkgpBQRf+c911NYR3+iKam2SU7fCFXfpaMQU3SVkMM3iNVNcmpBp3okgAY1zNMTimka/9FMuosO15/Px7ZEz1n5dHnjRixu9/6RiEuDqfAacAAAEXelRYdHJka2l0UEtMOSByZGtpdCAyMDIyLjA5LjUAAHice79v7T0GIOBlgAAmKBuEGxjZGBKANCMzhGZiYmNQANIsHBBhoLQGkGYG8sE0E4xGF2eH0MwI41DluRkYGRiZGJiYGZhYGFhYNZhY2BTY2BXYOTSY2DkVOLkYOLkVuHk0mLiZGEQYgTrYmLg52dlYxJeBTIM6nIH3w6KwAzM+RO0HcXJOvt/PXNADZusW5+z/cqvJFsSecYPvQLiOjz2IvdD79r6+jL1g9hahLfvFytUdQOxJl1vtz8s+BIuv72R0SDKQB7Pf3Il3eDwrDczesOawfYyrN9h8uzIFBx+N72D2imMJtu/DO8Hsp40P96V7yh8AscUAcpQ+72X+ExYAAAFzelRYdE1PTDkgcmRraXQgMjAyMi4wOS41AAB4nH2TXW7DIAyA33MKX6DIP4DxY9tU0zQ1kbZud9j77q/ZqTpSCQ0CwubDln8yQYz3+e37B/4Gz9MEgP98ZgZfgojTFeIAp8vL6wLn2/H00JzXz+X2ASTxYcxn9nhbrw8NwRkOkqRItQIHTK0UlgyYcBv9LQdJqamI3/sJTam2ASlBYjKWKhz3VZqNTGZY4cCJhUxdndTUvQ/AcreYuQkRUMpBygCsYdHvsTYm4FSp1jwC1UEPIZdC5gctTXnkublnTsgZ2fy6MjUZceb2JGXTVoIzxIY04AhhcX+Fm6JGTGpuWkckba4LKpNGUCZoNCSjNK4uuelG+hOzOiIl8uOJzJhzjtzn1rziA/SyzE+Ncm+d07rMvXVicu8PF0B6E5Cv3EsdYukFZV+1l41c1F4c8tV6DdiX9VSTi7RPKW0b7VJ31/AuRRwbyS4VFBrZB7wPL+THX+Xn6Rcbk7AZz+F0ZAAAAMV6VFh0U01JTEVTOSByZGtpdCAyMDIyLjA5LjUAAHicJY47DsQwCESvsmUiOYifPaAolfvNhXL4xdkGoRHzeHNO2e59bte93+/8bnOfct2fZzuMrBvawRS9q3k7D6GAmbVaOCGoiCnVhmlj4mGRrhUqqUmiMiSq/N65hok0IV/hS3MeoU1pyBjFL6qvayH0QLWUWJ2tOEMl6slp5IkYlSRzsKxS14AsT6SzYtU6Q3VppnFWreS6B/Caw/4+zu7eStYjCrk/P6kONuYHa6UEAAADC3pUWHRyZGtpdFBLTDEwIHJka2l0IDIwMjIuMDkuNQAAeJyNkntIU1Ecx889u7vq3OZeTuemu3uot+UsXaQitTvS+qMHIlhqBdMkFkSUFFh/6EoowxeakaZSYiCSqYHYw8dO9MIMBEV6aQQiJEVBUlD9072/+YhK6MDh+/n9zjnf7+FwPo/eeouEoUDBgYXpFGaKMP0Ug7yCUpKgYhyCOEElK/XffVA6NKhC3wdKMewm0Yii/2MHaxeBViFW9F6NCh5c1rUiV2swpqjVhaDRsi+/5BNUyVq68gRL+xkefCXUb/BH4j+2rHnJYE2BIiocUYjCCEuENURLkZRhmRAOM6FsWCiNw2RIFs5hmZxVyGmsUCJlBIpQIZUaqTUc1mhZrY7VRQqkZ/VRrD6aw2oDMsSgGCMymnzYFOuNjfPhOLPXzKIwC7JYfdhq89rsPmyPZ+0J3oREH5ZyLLeOw5yDdaznsAOzOgXSKpHZ6E20eJVJNKWTChdlsIOT0hImQqXWaJW0TqHUSk1Gc1wsY7XZExItUQnCP6KWvhRy5izQD/jRMSIWIwuvSXRjALg+6zmRzjQAb6v6SFJuHACOnJslYekUsOtHLzkVeBUQWZp3nVxtqx4V+X4zIZFn97pFzn5ZTGaTM7aIvFCbTR53DEN/R9lE4FDuPHD9XFOgIHIPL/L7SVOgJC8Z+s6The5rgxXA1L4QfuCye6vIhu0uXvaoEXIDTRf5d0wb8HxdJ1/Y4YSsgiu1/LitH87u3pnJdxy+B9xvnXa3d6kgS1Pa4y4+fQy4oqGLfzPOAS+2NPCZieXAqZUv+OMOO3Czf4onpV+HRbaXLfDVNb2Q+2FA7imauAM8NWT0tB+pgncYTkr1dOXvgn4RneKp/66Bd8uZMXjuupKANYVqT9/Pc8DdskoyVBIPWd+e+cgJnx94Y3cTOfilE1jb+JBsftIC/HR6jlhzRoA9aZMkm80Hrlm8TY7K1cDlg3Xk0qIL/NNa3SSr1Qzcs7+dzPZdAP604QwZy7gZvNt5vzsjPRfurP8FfMDX2HdruAQAAAQLelRYdE1PTDEwIHJka2l0IDIwMjIuMDkuNQAAeJx9VstuHEcMvOsr+ge2wVezm4ccLMl2gsASEMv5h9zz/0hxxupZwURWWmp2toas5qOoh5avv57//Offtl/y/PDQGv3Pb0S0v5WIHr61vGiPn7/+8dKe3j49vt95ev3x8va92WgWeAY/H7Gf3l6/vd/h9tRuqyt5OLeb48psWqNOx+t6VhLpfRmTSruNHsvHqpDaXg5PS9Wj3ayPsZhWgbT0ObsGu1q7aUfsIVwgxxk9VGNSu0knDsIJf0V6Rh/dfJGBJ/dJzKNCzvQ54Il0rnajLlN8RoFc7TWjEy83xfdLZ9AsgJHBtQ8zG5TfG45TnYcpg2un5XN5425TfVUu+SgRdxdaYwE5g8cskZI0uSOZHKNpFyEaWiGPElF3lhEJQLIiqEJmiXDgoaqZw4i1VgnMCklnRuITyGtSVFlnb98BXFkVPeiae9kdnAWyLhGGZAMpvMLL4AvIgeDMx3FQea2PE4dLE5sykEudTiFVtxMyJD3EbXKWxxZqWgGzPKiOD8aldHESrUJLVgcREVkZxUGv8aiaTfQ4jChcpkfXaVZyNHjM6SJCV2qPieyXHAeA3idi+4DH4YPK9IgjtHfkBIOYDUJIvpexJ6o4UZuB2c3aqKt7GTxrs9C1xjm5SKU64ZkCmdMToIlWG8c8wqNW06NZHUbr6AjkFdAZS6RqIjx/QMl1pBqhQuG2qjNB1jK+swsmEUgP8lFNmmaJAsNrhjxC4ShUpJo0PSQuAYNGVhOSKbNEjlMRUG5dC3UllmlVg6ifPt1QSM2+F6SsyqjOUzYxF5Bg+FwEaSqRh8RNIGMBAHVnT50vkHH6RDbFUmUwQ6nJhbrTKbAD/QTNyNlwLIUKyeeJbMScR+oX8yyb3g6Rw2SGLjvqabgaJVRPrwFXdpRJjKAhFTRHCckPAtiTtA7CAqmgo/2OOcbMQTKz9RYUvjz/55fnD7v23L6Pry/P1/bNH7lWLD40vfYodKLZtSxRwTaujch4+7X2GO957TbBe10LjPExrjXFuYFQyS9ff9vxmM7bzHe7R9LwpsjJMe9cTyVNrAn8/ejNft7fjDkpp9mkOVmn2byh+XyYTR31kjS82fNBP6DRd2rNaWQzTy0+zJVc+fnUZijJHEZ2iqGoctzZnOXgDAqbsyRnGNmcJTnDyOYMJbI0sjlD2yyN3muYtUOg7qTK0ujmrMkZRq+e0LNGujlDYSyNbs5QkvwInbhTDEujm7MmZxjdnDU5553NWZNzmvuJzi6zTdkyzTC2KVtSzjubMsZQ0tjVyUcr69XpllmWbJd9x8+KXt2DhWSZiyvLloztPhcWZ4fBX/bippmTeD93+fn9P2ZcP/wHUE4iqJR8JtkAAAIeelRYdFNNSUxFUzEwIHJka2l0IDIwMjIuMDkuNQAAeJxFUrluW0EM/JWUErBaLG/SDwYCvBSu7MJIZbhSn9aNPz7DVYCokKjZGR5Dfrx8fpw/P4nfz/Nyvt/lDz5yXp/x7/L8dn27vtIOwHr55Nf/8eUR4/l8vZzndf87CV93ut/vF/ze6cf3heZaSuO2ZjJRjIMnkXqNNSljlTWSi8jGjSZenMahk6taRZMpy8dhUBG1ailLLR6HT1+l1qkX6I7XIyC04haKi0OYM5ApGlHx1tUMEfHWsbsK6hEqi1VDUcmcG1reLEZK12ydk3M14rU6d82VqkB0rhLmblxZQwbKB7rrvlncaEAjodpdh2g4AHNrhk4zWDRkVsCZtqPYNZBDNVtC05GCIWEMIA0gBQKZwehpHDDXMJPBnqpMNItJnNhKAHmuQiE44LzSkTiKLDdCLvBNJvNaWMVNMJJHdfEQr42Yqtp23pgWVnizuWhJbgvRQjTPgaUreClR/2iK2treBzbsm1UiFW3iotolY0qhjYFKqmG8WZIi0caaJdGGUlFzIGml7+5zynIcR9MXpIB0FrXNCFhXbwRZaxVlC8VWbpJaRXYPyB1wGFGVpDWkOzj2Tg0NYlGpHDsTdig18EIcD44r1jhwnSyiu02cKbpT3LTpYzzcbTYHU2KA5pgX98ZxJPUwynAtuTfs8PU6vn4/4QC/fj0xLJbBmCe+/wKEE8Gdxwl9BwAAAjh6VFh0cmRraXRQS0wxMSByZGtpdCAyMDIyLjA5LjUAAHice79v7T0GIOBlgAAmIJYHYiUgbmBkY0gA0ozMEJqJiY1BA0gzs3BAaCYYzeYAEWdzyADRzIxIDJgMmgp2iFYko1FpdgYFkDyRwhwQhzJimIbHYbicKgC2gombgZGBkYmBiVmDiYlFgYVVgZUtg4mNPYGdI4OJgzOBkyuDiZNbgZuHgYeXgZePgY+fgV+AQUCQQVCIQUiYQViEQUSUQUiMQUycgVtCQUIyg0lSKkFKOoNJWiZBRjaDSVaOgYs1QZyfQVYiQY6DQYQFaCcbKxcnBzsbm4CgkJg4P5uklLSMrASbHAcnt4SseB0j0IPQWGKQj5IuPNAxYZ0DiPNd3v+A8ppGMHvXwQf7jz0sBrOnlvjtZ5eaD2Z/OTVn/x8JKTCb6WyTXfUiLjB7g9Us+8NfQsDsojvaDk51rmD21eu+Dh+zrtuD2LIigg77e1jBbJ4QT/sjac5gdgO/sUP6tMT9IPbE6W/sH21nOgA2J3WP3aGmZ2Bx1Tsi+1dOtgWLq3xjPqAhqwdmt39UPbBvxQqwmoCIpgO7d3eC2Tq7FhxQM+AHq9kpeeGAV/F/sHi2+MMDeYfFwewaa46DVy5t3gdiV+/pP/DhRwZY/e2dDgcK8yvAbN/nHQ5mO/rB6v8/menwdIkiWLzH5aRDmrQhmJ2x7LmD9aSzYDXbVlxzsGUNAJup6bncIbpb1hbErvCe5vCudgfYv2IAc6yZxVgfxboAAALnelRYdE1PTDExIHJka2l0IDIwMjIuMDkuNQAAeJx9VVtuGzEM/PcpdAELfImUPpM4KIoiDtCkvUP/e390KDdaBxVqe4l9zFLD4Yg+lfx8v3z79busj1xOp1LoP78xRvmpRHR6KXlSHp+/fL2Wp/eHx487T68/ru9vRbmo4R18P2Mf3l9fPu5weSpnreEhw0qr1hqbFqo0P8ercgOKuooXq9REfAfUBHKN1gZL0dqZvLUN0MprOVPt5OaZcQQPiQ2wJZCriA2zItUoInYZHUtTldYsQLiyO/suYQCHfGSDHQxVwnRscB04qd6bZl2VeusQ9V/cAA7SsMvoSOxdRtvhmGZC8UyJ5w2vxG5h5llJdL8RC4jed5VA4SsyxoguPNXsLLRdW2fR3bpCu7NUMrHYNZBtLq6g5pzCd6LuO725Za9RR2frlkmHC2vfQR1Ec1XnDpFwFkINDzbQbA8AbUhH+0BAObxtodmhM8wY0GdypXAUtoOOJNAqiQQMjPyioah1Y/Vs09lrIzynzDpGC/IddO6fqKTGNKYWYC1bqKSNe8X+aqIJ1cbCO7FEb2XBn9F6bjs34rHlard9ScyKzYEzOKDTTgHJblkVWEVbVsUinXb2E59IPBTS2Qpp3rfI7JVX6bBKzK7mINk5VbJVAdEHYWxgdScn2blKxswZhPVb6iTZhx0yZx1mFjrqfXpeu+1nEpc3FOTDAzuGqxnU2gGfr5dP4/E2MB9fr5djYOZXjrGIi6LH8MNFsWPEYQaXdgwyxuHHuDIccUwlw9GP4WM4xjFjDAffzxLLwHw3NHjeWeSy1hkWP0wBnmFR5OSYYbHkpJlhEcXm5RkWVzSbZ1h0YWSeYTHGjuMMcr+xOIMszjLFxO8QVP6+tThLckaQxVnsVpcszjCSZZDFOf+kMsjiLCkwgizOkhojyOIsKTOC3nuMy7TQnZksxV5L6TSB3Qmm8ECZtNadaQU++plOu/dVXn/8ieP89AdkBoAGXGvnWgAAAW96VFh0U01JTEVTMTEgcmRraXQgMjAyMi4wOS41AAB4nB1RSWoDQRD7So42tJvaF0xOc48PecJ8I4+Pqg2GHiGVpKrruh7fn+fn5vu+5ffWe37687iu60fxx+PzvC593nLz19/jpTsjpZdvc2dbbyCiobpsk4sEEN7p3rx0F1MMQrsoDE/bndx6SCLWtmQbZeZ60xZ3SwAcwQDAIGvBGJU0WMmOcjjppvLCEFhz6GLg0r7etqMjGYAZKxQOk4xatEnLQH3HTirqhUhCygZVokBTLEQKCjokqQ5ZL5m2OoOhOd8uHj2AZImNhkWKJ1w2oBlcxUI8BcpKa2RkYqejRnbw6Iqo8uzGi61saDA9O4UguI+/kOtBvAV8CJUzEPuFhadKDUQZNDrfhMI6QtFUZHjF9uk5rG7PgRLbMOaJOkPPzWrjmn7iq7NwHQNreC2cOIyQZ45NPJvFAy1rakvgKtiw4xbZ0zErTBtQhk7m598/b4l9jADQp5AAAALLelRYdHJka2l0UEtMMTIgcmRraXQgMjAyMi4wOS41AAB4nHWSW0gUURjHzzkzOzPturuzuY170d1Zd8xBLB+yEGrdkwhiij0UWb20vS1JhKQ9RBclCKPowYqEMC0jKLBcKm1D3dkiS0EpxYgKgy4GhYUPGZRBM9+uhpQHDv/f+X/nfBc43wa7p5C+rCi1iL5VfRfquwlzKKIrZngk68osHDm52FDMcrJivGFTAUJSZ92HHMyiCihqKMYcTQfoPwEA5r+QfrOYPNWFkFL8twgoWWhq2fhyzfEpIHhhnCVj69Mtq0sLYFC9clotCCNM9AosZljEmpCJQxyPeEElwgpZMMtmS5RYMmSLNWK1RYnNHrGLUSI6kGMlix2ZiHfKzlUqcUpIymKx5EIut0pcHoXxeAsIIa5sb7bCenPkHB/y+ZFfRnIABXJRbhB5FFnJU4nCIIlFDg6J5kjQj9jVLObyWew06d1xjOJxSSxn4ninLoJZdHA8Z7Ha7KLZJPuDuYGsz1gfIv0/kHpR82o97+upcRiItyYOtlPgmUy1tGr7AeCTty4k4jQZNjh2djZ0OBoCzpvsDX8N9ANXja2hHwvWAX/aVkgbhqsTBnf0HaMbZp8CbwwdpbHGcs3gqS03qJmvBf/BkXGKxTHglsRzKpkq4M5w3TztKN8L/i/1N43f9kF+/48JuvNDDFgUbtKtMypw8YsmGmT6gF9fraH9zwqh/yHaSeskBfjcl55w3fgjyDky1x2unt4MtXLKHobeni4D/9T31pCtUwTf3XYp0XlnEPx3Zy4npneEwX9cJGuVNSUp39qgTZ6PA1e0NGrNTzbBndGSLu2uuBb8N/mjmuXQXeD7u+Y030QQ+HjYkdSq2oFf8oFk0b6RAYMre53JMbkNZnl15ac2f203cOSeTxOvVwC73fXaiT1DwF37xdL1tXaYsbk1SGOlGcDSHxNKvPi6kv5UAAADl3pUWHRNT0wxMiByZGtpdCAyMDIyLjA5LjUAAHicfVbLjtw4DLz3V+gH2hAfkshDDvPIZoMg3UAyyT/knv/HFuWM7F4Q8bQJt1xNFV+luZS4vr1++fW7rItfL5dS6l8+7l5+Sq318rXEQ3n++Onzrby8PT2/r7zcf9zevhetRRW/wd8j9unt/vV9hcpLufKmIh3fZBvDG3OpW53X8VMut3KljbSzC4C1eqeaAAUe60ZdSTwcChxmOI2d4bC7mBfaWvVhlgDb7pCGa7yGQxstwXXgaFM2sRoPHf4y3ACOt0FtUMfr7vAnCc4mrjt3pnLFxki9egJ0AGVzvG8jQmrdrVMCRL7ugWzdOpcrkti9W7Y3RV3axl4jOdjcBN5Tnwxk39oYg3vs3it2T30KdgeyaZQauxNKaD1DRm3GZmYUEWH3iC312SbSiXi+74TNsxxRnzQ7i+ORNoQ1LI1nzMiFRE3DY0N5UmDUR7fKndAXUXh4TDnu9WEGsxqVr5U160iO8jQsD68DwNbFetaRTLPVxJiiOqg4u7UsbIzSPZDNq+usOCPnWTi8zw1ghkxGuzW028iQCp9YHjSiOrxx85Emnds+Y0ytjUlUDURTpx1OA4qQh4ZXN+8j9Tp2zWiIBbUMqgSq2ahx1AhRG4nonA1VEEihHgQAla4qk4CCQMYVH2hRQ//Wjh4BARB1zVRLpr71TQnXHA/FeLQUOhVuYOBNAQivmLm0USRqdXWUwNBLM21sNjSD7jKHFwgL03KNEptJlgJpu1tGMqugbcis1axZJKYJXE2YZzmtabWU6p9i6XCbMgyBt5E1tdhegNFDGkOQFZKW+vTybyiyUkWl0H/iSFom8RVANEprRjFQ5CScCc7H2+vDqbSfU8/32+txTsUfH6cRvhQ5zhzCeQIl/OfTBzoOmFhsxzFCuPtxWhDucRwKhNsO7Wfcfig8xX0W8rmw9qLYCoYWQwqKYRZJ6K/OFT3prIahRRIdEl8hlyfh1DC0qFJwDbPYQgppGn/MAPm+zmeJowhuQTjyGOZI7cwtPos4R3phIDwP7ln/rC/6EByeZtHnyHOsLPqQD55m0eegD8Mr3+z7ipxnnsoc6NNoUxhZzCWYw8jRF8EcRlbKJTjDyOIs0RgwsjjL5DwwO6cp4jCyOEtwxsrh2PdkLL9a9+QvJzp7ZJy6RifhfgpBZXap/K+QqrM94fJhOcbmPCTx/f0fQTxf/gPff+08kEqsPAAAAel6VFh0U01JTEVTMTIgcmRraXQgMjAyMi4wOS41AAB4nC1Su47bMBD8lZQSwONxd7mvGAEOUOPKqlIZru4j0tzHZ7iyDIj0aGb2+by/nsfXi/jA8fWS7Xl/7bjeX9tjO3b8tj/n/on3sX2e++N4zAPPvPC35rz+HQTSuX/T93rjofrO8Dl//WzcVTW4cackkXbj7qTObXTLDAdCfXJINJyWnu02OpHnDHBcwNGCJo0p8GFJb7cP6mQpCZWOUi1kGmeTPkYaAeE+RUyAuKdy2dgkWRw4L2RxPGPlA054AMJHc7JlPS9rVDE4uX2ARZlTixUoSBvizpnxhsTmbODnTFte2mkM3KA0h3KFtD6JiEs5LqWjGwHbRRPQAGUfyAYc5oiqePRR7jgzQlSKxSsd1B5voxBmQzmhc0S1hQkjqGiRYRckYV55RuW5LGcoe5WoyMALdHL1Kog13dewJJhyuSmXGxDNAQR95zJjFMN2dSthhQ5KRyPTSmYlA6KGy5JZyRSlDMwGskAPFBO0ru7YEchslAyITowUMsKUYY2KIzCtJUOM1RXvif7q2jGCKpfMsDfcVvrpFUxIasVMMXbEmkjfaLVyclFkdR5ibOwYPJdmDE8CoCYYyd7+/f1NfWCbpGnXxpBoE4fDz38AoLNJ/Tj/QwAAAcR6VFh0cmRraXRQS0wxMyByZGtpdCAyMDIyLjA5LjUAAHice79v7T0GIOBlgAAmIBYHYkkgbmBkY0gA0ozMHAwKIDkIlxkqzMQEo9nB0sww1ejSbA4aIGkWNocMEA3Uj2BAZATBBmCKszOAaWZ8JuBkcDMwMjAyMTAxAzUysLAysLIxsLIzsHMwcHAycHJlMHFxJ3DzZDDx8DLw8CXw8Wcw8QsoCAgqCAplMAkJJwiLZDCJiCaIimUwCTAxiAkm8HMmiDADTeZkYmZhZefg5Bdg4+Lm4ePnZBMSFhEVExSXYwR6ARqMDOITW1fsm6vb7QDiLF5SZDe3xBbMZrmut/+u42N7EHurJPuBayz8YPEghoQDmydfBYt7Z7QdOCy33g7EPvd16wHZ29xg8fpJFQeMnvfvB7Ev7tM5sOQy0wEQ++eCmfsvxv8Di8/0TNofxR4LFjd347Z3zK4Cs2+8u2y//bslmJ0Q7eowLzoczF5TtNq+22EHWO/R4K17qz5WgdniXG9tF1cxgu1tqT9l/7soCMz22azq8Ntjyj4QO+5oo4NP9S0bsPvLJzhcM9wFViNVneBw0k4F7K+Vi5kcNjMIgNliAEKDcTcsMGw3AAACMnpUWHRNT0wxMyByZGtpdCAyMDIyLjA5LjUAAHicfVRbjtswDPzPKXSBCHxL/Nwki6Io1gHatHcosJ+9P0rKzVoLCLUjQqbHfGiGOZW8vt++/f5TPi66nU6lwH9+7l5+MQCc3kpuyuX1y9etXB8vl6fnev+5PX4U4kIa38T9GfvyuL89PViu5QyVyVGkSGVxxl6gwriOT6ncw0tsrlaougEJLXC8B7RObr1gbU1FVgElgVQRwSMzRWixBgugJpCrhpOi4GrWdQm0spWzVAocY7xnIeBVjS0jatRoFM1AVTHGFbDvqXtnFyxnrBhNCy+QvndjHufYcgciaG2BREgojjKDn9h5bxSsLqD/2Mn8bFmJKGuTFZQCmp0ICCTSkZrbCpkMxSmqNrKs1CFCLmMGRe+FK3RuQBmUTXzdlI6gHOfELXuS2C1JQtt7gt6VPXfeQ0rLoC0IhVBI1JfsaBTaVlLCPrJrJ8BsuRPBusykiQLoEOKM3NTdcHX0lCxJBVXe+SZbq5NwABVFTaMICTHJ6twpGUoZt8BmEWa8VCfxKBIEKQ4oBiOUv9Tc63b7NMv7dF/u2+2Y7rzpmOF4KHyMKsaSYyAxlh5jh7HsGC6M1Y4Rysd+DArG8mMaMNeseUmDOElb0iBNCpY0yJNScRiZFCnDo5PwJA3aJDAcpk06wmH6JBhJgz4pQ9LQrABJQzhRLWmIJk4lDfFE3sh1OLLk9H4kp1GyTceTRM605fPzDz32p7+NfyRMLJatZQAAAR96VFh0U01JTEVTMTMgcmRraXQgMjAyMi4wOS41AAB4nB2Qu40DMAxDV7kyARxDf0tI6T43hNsbIcMfZVcGQT0S3L+b9/489nPvI+ecx/57niMfPnz68c/38aKpUmw2bKqVynjTFI3yGDIrSGy8YYqUihw813JzSDKZqQwmUYsFRacTkcATkd6KTYGgAxkm1OyXgxQSkNxCWe5dpoL04sliN09mVLEPfMiMm8WXJe2qXHpL9Z3GAMFcO7GpRtZKseR4o4s73AAV+QJbJ6WudmhYrbYo0m+84bMumTJdEzZCGja4bGYQpKsDtS7dU6iVFKEeQaAU3TvJCq7xtknuajCRRCzilpwNfZGIFbxLOS1njOkRqs0hwxi9Lka18fz+Aw00XpxobBOHAAABuXpUWHRyZGtpdFBLTDE0IHJka2l0IDIwMjIuMDkuNQAAeJx7v2/tPQYg4GWAACYgFgNiSSBuYGRjSADSjMzsDhpAmpmZDUKzQMSZmFBpZkYYH6E+A0wzwhnYTWJkZmOA8DkgNBNcHk6jm4SNAVHLzcDIwMiUwMQMZDOwsDKwsjGwsTOwcyRwcGYwcXIlcHFnMHHzMLDyMvDyaTDx8ivwCyQICGYwCQolCAlnMAmLJIiIZjCJMibwMwEVsieICiSIsABNZmVk4hcQZWNmYeXlZ2LlYOfm4mQTFBIWERUQF2IEegIahAxiX8wtHFKWBDiAOB+uKzksl3pmD2L3KUy1/7NqFphdMcNj36y012B2t/i2/Z/OVYLZ2S+W7O9axrIfxC75pnAg7dIGMNtJoOLARF0HMDv969IDbhP3gtm/lU8emHPx9T4QW/jrlgO5dWlgc3R9Ww88mW4BZr/29jzgwPYSzNbePMX2Ed9ksN45l4LtLqhoHgCx1/svs2eznwQ258U+A4eJ8+XAatRr4h0esnwHs9fume/A8vonmL08ZoeDtIUWmM3xb4GDmJEq2Pw7/xIdov9pgdliAM52cfYy32NCAAACKXpUWHRNT0wxNCByZGtpdCAyMDIyLjA5LjUAAHicfVRRjhsxCP3PKXyBtQADhs9NsqpW1SZSm/YO/d/7q+AosVeydiagGecZA+8xh5LXr/PPf5/ledH5cCgFvvm5e/nbAODwUfKhHN9+vF/K6fZ6fKycrn8ut9+FqJDEnri/Yl9v14/HCpZToWrdGKW0SgrQuECFcc2dVC6BE2bOTbV7V7MNrkU8rKgCovFAYI3bBseBe4GKLuYcQGsO6hugJBArE4lnYt7FcJeh3oFk48SILWioukH2REYxKMCUe1pEJNwgLap+adEecaeM2SWylA3SM6ZUNCXQkbAFVbvTERKqkagoj6CsILYrCTHPl6rCjj2LD3a075CUQTkbrz0r6YSgO4IwGYqakCU6mp0nENhRhMlRLPcQRc+SkM2iDRuklGssR+Umlq2NwqxvkTr0Qe4tY8LoQttW1Icyu0ZJo0uKrrSNaYFsNVrk0jJPJ7e2bX2yxNWjmTaIdyG2HZ2UJEme3oKvPF0z/g6JAwmBg/xfo69bhRCNNKUhGiRQu/OO9bfL+cuI3of2eL2c59DmTXM2OazNEcQwnpOGYTLnCcN0Tg2G9TkaGGZT/xzmU+QchquUOR3iolhOh7QoE4driwLzTORFaJQOZREUjhVdhJOvIYtFIJwObRECp0NfCOd0tBLL6QgXAjkd0cIUj6/nc6HdD3+WQJwLNBsVH9qxZaaXLK6c5fvjIx3Ph/94wxxSqb0m1gAAARl6VFh0U01JTEVTMTQgcmRraXQgMjAyMi4wOS41AAB4nCWQy43DQAxDW9ljAowFUb+REOTkArYI31NBil/Ja/j0hiIpnRc+1/XBefZ/yfU48f59Xrjmw0fOn+/jUIK5xAKlsK/XYYTw2ItpCziykVO4lTQqZu231xEk6WHrYLJgT7tlyBCsA2SJBkq5vWpE2zlq7IUczjYiTZg0Qnul3l6ORMTNTMRrIre3rhETyrNsqmpxt8BU5ekuPAYNpEoxTlNPW8PEW4L3nQjLrGHSi3mubhMm2TKhHW02k4EK6V5KVp04cyU1GxpVYedNXKxP4zP2Hxgx8kGsYHTz6MPOzkquQA6JXWaT5mamXXzXjhqQO/sYSt2VdT2/f0UnW7h/0FmcAAABxHpUWHRyZGtpdFBLTDE1IHJka2l0IDIwMjIuMDkuNQAAeJx7v2/tPQYg4GWAACYgFgdiSSBuYGRjSADSjMwcDAogOQiXGSrMxASj2cHSzDDV6NJsDhogaRY2hwwQDdSPYEBkBMEGYIqzM4BpZnwm4GRwMzAyMDIxMDEDNTKwsDKwsjGwsjOwczBwcDJwcmUwcXEncPNkMPHwMvDwJfDxZzDxCygICCoICmUwCQknCItkMImIJoiKZTAJMDGICSbwcyaIMANN5mRiZmFl5+DkF2Dj4ubh4+dkExIWERUTFJdjBHoBGowM4hNbV+ybq9vtAOIsXlJkN7fEFsxmua63/67jY3sQe6sk+4FrLPxg8SCGhAObJ18Fi3tntB04LLfeDsQ+93XrAdnb3GDx+kkVB4ye9+8HsS/u0zmw5DLTARD754KZ+y/G/wOLz/RM2h/FHgsWN3fjtnfMrgKzb7y7bL/9uyWYnRDt6jAvOhzMXlO02r7bYQdY79HgrXurPlaB2eJcb20XVzGC7W2pP2X/uygIzPbZrOrw22PKPhA77mijg0/1LRuw+8snOFwz3AVWI1Wd4HDSTgXsr5WLmRw2MwiA2WIAQoNxNzcfklYAAAIyelRYdE1PTDE1IHJka2l0IDIwMjIuMDkuNQAAeJx9VFuO2zAM/M8pdIEIfEv83CSLoijWAdq0dyiwn70/SsrNWgsItSNCpsd8aIY5lby+3779/lM+LrqdTqXAf37uXn4xAJzeSm7K5fXL161cHy+Xp+d6/7k9fhTiQhrfxP0Z+/K4vz09WK7lDJXJUaRIZXHGXqDCuI5PqdzDS2yuVqi6AQktcLwHtE5uvWBtTUVWASWBVBHBIzNFaLEGC6AmkKuGk6LgatZ1CbSylbNUChxjvGch4FWNLSNq1GgUzUBVMcYVsO+pe2cXLGesGE0LL5C+d2Me59hyByJobYFESCiOMoOf2HlvFKwuoP/YyfxsWYkoa5MVlAKanQgIJNKRmtsKmQzFKao2sqzUIUIuYwZF74UrdG5AGZRNfN2UjqAc58Qte5LYLUlC23uC3pU9d95DSsugLQiFUEjUl+xoFNpWUsI+smsnwGy5E8G6zKSJAugQ4ozc1N1wdfSULEkFVd75Jlurk3AAFUVNowgJMcnq3CkZShm3wGYRZrxUJ/EoEgQpDigGI5S/1Nzrdvs0y/t0X+7b7ZjuvOmY4XgofIwqxpJjIDGWHmOHsewYLozVjhHKx34MCsbyYxow16x5SYM4SVvSIE0KljTIk1JxGJkUKcOjk/AkDdokMBymTTrCYfokGEmDPilD0tCsAElDOFEtaYgmTiUN8UTeyHU4suT0fiSnUbJNx5NEzrTl8/MPPfanv41/JExISE0jAAABH3pUWHRTTUlMRVMxNSByZGtpdCAyMDIyLjA5LjUAAHicHZC7jQMwDENXuTIBHEN/S0jpPjeE2xshwx9lVwZBPRLcv5v3/jz2c+8j55zH/nueIx8+fPrxz/fxoqlSbDZsqpXKeNMUjfIYMitIbLxhipSKHDzXcnNIMpmpDCZRiwVFpxORwBOR3opNgaADGSbU7JeDFBKQ3EJZ7l2mgvTiyWI3T2ZUsQ98yIybxZcl7apcekv1ncYAwVw7salG1kqx5HijizvcABX5Alsnpa52aFittijSb7zhsy6ZMl0TNkIaNrhsZhCkqwO1Lt1TqJUUoR5BoBTdO8kKrvG2Se5qMJFELOKWnA19kYgVvEs5LWeM6RGqzSHDGL0uRrXx/P4DDTRenJfiqBAAAAIfelRYdHJka2l0UEtMMTYgcmRraXQgMjAyMi4wOS41AAB4nHu/b+09BiDgZYAAJiCWBWJ5IG5gZGNIANKMzBwMGkCamYnNAUyzsDlkgGhmRiQGThkFE5C5jCwCDAogBj4zcJnKDrGfGeIeJiYYzQ42khnmTAQN0QZ3NswJcAGoAnT/cTMwMjAyKTAxZzAxsySwsGYwsbIlsLFnMHGwsjBycDJwcjFwcWcwcfMk8PBmMPHyJfDxZzDxCygICDIICjEICTMIizAIizIIiCmIiWswiUkwSEiyMEpKKUhJM0jJaDCxMyVIcDDwcyWIMAOtY2NiZ2NlYWbn5JAQE+DnYuPm4eXj5xJPYwS6CBobDLLKJf8OOBw6bQfiLOt6ciA8JnY/iM08Y8uB1yXeYPbdvnkHfqzntAexSy1iD6RMlwazq1M1DwgvUwerOV4eeqA69R+Y3bZu1oGZa5gPgNhZDJP3r9gnChZPfHRvn+PJz2D2c4dWe6t7XGA1xzassm9jywSzvewNHOI+NYPZjnkVDstmeYDZgdtSHTY/uQLWm3Wey8FDYzqYPSGUzUGgcxHY/W2nohzEXjWD3XbSdZqDvHYVWNyl4YBDjlQpRDzhpYO8iz5Y3PLWQYe7NrIOIPZntyT7X2YzwWrWik22t5HQBotbb+Hf3zXPGyzulXdsv7HuNzD73saO/Q1/Q8FqWBczH7AR6wezn1WdsyvYmgFmiwEAaS2KNVMsHW8AAAKvelRYdE1PTDE2IHJka2l0IDIwMjIuMDkuNQAAeJx9VdtOHDEMfd+vyA8Q+RZfHvoALEVVxSIV2n/oe/9ftbOFCSjqDGNNsmfs2D7HnFpdP87ff/9p7xedT6fW4D9/EdF+MQCcnlq9tLuHx2+Xdv96e/e2c//88/L60igaY36T90fs7evz09sOtvt2Yz0GqlmDzmGhmi8wr+NTas8FRMGg0W6gu4oGbJBcLkdX4TG0kBZigzdIKaRkcAkpT4PNBTfAUUDuMnRY/a5gZrEBagEpY6tjVGwd4uYbpF1dMg/hPCX2cBOjDdKvp3RmBynvMExgFz0KiVkjlwEVffi/zD4jEdpLAbJGTDjDg4xtSlgtwg6CIFzhUcNRdkiaSM6cCCo5zW9oV3isHlHPrrhyJYeUX+3ajtUj7u5oyaf0iSzC23OOiRye/ODKSJWJtkid0VE9sg5VMIdA2yGtXRIJ4TFbw2gydj1Cn8EFXbNeWS2G4TsmYfVIuoYC1tkos4Gx4ztkaO2Axbn8PbLpvKs6VX+sUzBoOUJDHDvGUbVHiz3ukVklm31LDqrupMCcPUYmg6GxVRpJirL4FlirrlZ03gGngJKPWu1rJcls/faQWjrHPgaQVCWDmPY+7cp2UAvyLD4nmWPXRfKrKiETzpNIF0PRrc/I6KkKYMruJYE5lb4DPlzOH8bYdbDdPV/Ox2Crm47xlYvGx4ySeo5BVPc4xk0umh5DRfKxY3JIPn6MB0zhJ6W/Pn7BYxLUJq56x2lwkbWUQVrkK2WQF5lKGZRFjlIGxyK7WqaoFnnhNLbICKfxRS84TSzCwDK0KgDLEC5Uv+7QwunpmXghL00jC0tx7oyFjliGPlWN6uRpyBaSYRnyhUw0d2IhjWQXjt7C1fs7gGepdSl+0WclS63f/oPm++kvgtNo+aIYJJQAAAF3elRYdFNNSUxFUzE2IHJka2l0IDIwMjIuMDkuNQAAeJwtUbuKHEEQ+xWHu9DX1PvhxXCwiSNvYBwZR/MRTu7jT9X2DAM96pJUpXq+Lr6u6/b7+f7+/Y/8vPSaR3/cnk98d7y3b6/7/+vXExB+r4u/fNzecrdz1KKtnR2xHoDYuGW90a6waEC+w9RjoGxLV2AGprWB6ZplDEi3eXgCCsrMYQqYUUcs3CoLGMOgzAfzGokHTtBX4YXLJnOU8SZjsgUJji4eRFUdWgpRJlkP2eil0JdtFlUo6a7i1KlhNTuIV4uPcoSKDgsT9/Hioj461NXTuHIaLMAyruCFLpSmHdvRAU/aYgZoPWITOxIjBJE25rmllQbhZB4Wajyrl0wyhRJkWlrtEOaO7pmKrVlREonxThge0/yatDHfv8zcSQy0FhU/CEW2Lt1qGidqgocu25ZsMV5GKkgOeSk2cjYECyhPzJWWZ4+lWuvQE2u8r7+/vsb2JYJRPz4BpjF9FvZq8RUAAAI4elRYdHJka2l0UEtMMTcgcmRraXQgMjAyMi4wOS41AAB4nHu/b+09BiDgZYAAJiCWB2IlIG5gZGNIANKMzBCaiYmNQQNIM7NwQGgmGM3mABFnc8gA0cyMSAyYDJoKdohWJKNRaXYGBZA8kcIcEIcyYpiGx2G4nCoAtoKJm4GRgZGJgYlZg4mJRYGFVYGVLYOJjT2BnSODiYMzgZMrg4mTW4Gbh4GHl4GXj4GPn4FfgEFAkEFQiEFImEFYhEFElEFIjEFMnIFbQkFCMoNJUipBSjqDSVomQUY2g0lWjoGLNUGcn0FWIkGOg0GEBWgnGysXJwc7G5uAoJCYOD+bpJS0jKwEmxwHJ7eErHgdI9CD0FhikI+SLjzQMWGdA4jzXd7/gPKaRjB718EH+489LAazp5b47WeXmg9mfzk1Z/8fCSkwm+lsk131Ii4we4PVLPvDX0LA7KI72g5Oda5g9tXrvg4fs67bg9iyIoIO+3tYwWyeEE/7I2nOYHYDv7FD+rTE/SD2xOlv7B9tZzoANid1j92hpmdgcdU7IvtXTrYFi6t8Yz6gIasHZrd/VD2wb8UKsJqAiKYDu3d3gtk6uxYcUDPgB6vZKXnhgFfxf7B4tvjDA3mHxcHsGmuOg1cubd4HYlfv6T/w4UcGWP3tnQ4HCvMrwGzf5x0OZjv6wer/P5np8HSJIli8x+WkQ5q0IZidsey5g/Wks2A121Zcc7BlDQCbqem53CG6W9YWxK7wnubwrnYH2L9iAHOsmcXHxP//AAAC53pUWHRNT0wxNyByZGtpdCAyMDIyLjA5LjUAAHicfVVbbhsxDPz3KXQBC3yJlD6TOCiKIg7QpL1D/3t/dCg3WgcVanuJfcxSw+GIPpX8fL98+/W7rI9cTqdS6D+/MUb5qUR0eil5Uh6fv3y9lqf3h8ePO0+vP67vb0W5qOEdfD9jH95fXz7ucHkqZ63hIcNKq9YamxaqND/Hq3IDirqKF6vURHwH1ARyjdYGS9Hamby1DdDKazlT7eTmmXEED4kNsCWQq4gNsyLVKCJ2GR1LU5XWLEC4sjv7LmEAh3xkgx0MVcJ0bHAdOKnem2ZdlXrrEPVf3AAO0rDL6EjsXUbb4ZhmQvFMiecNr8RuYeZZSXS/EQuI3neVQOErMsaILjzV7Cy0XVtn0d26QruzVDKx2DWQbS6uoOacwnei7ju9uWWvUUdn65ZJhwtr30EdRHNV5w6RcBZCDQ820GwPAG1IR/tAQDm8baHZoTPMGNBncqVwFLaDjiTQKokEDIz8oqGodWP1bNPZayM8p8w6RgvyHXTun6ikxjSmFmAtW6ikjXvF/mqiCdXGwjuxRG9lwZ/Rem47N+Kx5Wq3fUnMis2BMzig004ByW5ZFVhFW1bFIp129hOfSDwU0tkKad63yOyVV+mwSsyu5iDZOVWyVQHRB2FsYHUnJ9m5SsbMGYT1W+ok2YcdMmcdZhY66n16XrvtZxKXNxTkwwM7hqsZ1NoBn6+XT+PxNjAfX6+XY2DmV46xiIuix/DDRbFjxGEGl3YMMsbhx7gyHHFMJcPRj+FjOMYxYwwH388Sy8B8NzR43lnkstYZFj9MAZ5hUeTkmGGx5KSZYRHF5uUZFlc0m2dYdGFknmExxo7jDHK/sTiDLM4yxcTvEFT+vrU4S3JGkMVZ7FaXLM4wkmWQxTn/pDLI4iwpMIIszpIaI8jiLCkzgt57jMu00J2ZLMVeS+k0gd0JpvBAmbTWnWkFPvqZTrv3VV5//Inj/PQHZAaABrayalQAAAFvelRYdFNNSUxFUzE3IHJka2l0IDIwMjIuMDkuNQAAeJwdUUlqA0EQ+0qONrSb2hdMTnOPD3nCfCOPj6oNhh4hlaSq67oe35/n5+b7vuX31nt++vO4rutH8cfj87wufd5y89ff46U7I6WXb3NnW28goqG6bJOLBBDe6d68dBdTDEK7KAxP253cekgi1rZkG2XmetMWd0sAHMEAwCBrwRiVNFjJjnI46abywhBYc+hi4NK+3rajIxmAGSsUDpOMWrRJy0B9x04q6oVIQsoGVaJAUyxECgo6JKkOWS+ZtjqDoTnfLh49gGSJjYZFiidcNqAZXMVCPAXKSmtkZGKno0Z28OiKqPLsxoutbGgwPTuFILiPv5DrQbwFfAiVMxD7hYWnSg1EGTQ634TCOkLRVGR4xfbpOaxuz4ES2zDmiTpDz81q45p+4quzcB0Da3gtnDiMkGeOTTybxQMta2pL4CrYsOMW2dMxK0wbUIZO5uffP2+JfYzvanPyAAABPXpUWHRyZGtpdFBLTDE4IHJka2l0IDIwMjIuMDkuNQAAeJx7v2/tPQYg4GWAACYg5ofiBkZ2hgwgzczIxMagAWKwwAXYIQLMMAkOCM3E5gBV6ACVh/IFGRSANCNcGm4Omjq4BDcDowIjkwIjswYTM4sCC6sGEwubAht7BhM7RwIHJwMHVwYTF7cCF08CD28GEy+fAi9bgggjUCsbGy8PFwe7+D6QdVBPMfA3rJl4oFniqz2I47Im+4ByrCGY7XGi88Dul9r7QWwraZ4D8hdCweK/76zY38Z+DGQIw9SlP/YHqj4AqzmkYWQn7VwFFk+V9rHnie4Hq388Xciha8pCMNugxsrhr7SGA4g938XLQSxY1RbEvvpqisM2BWs7EDsoQcnhesVKsJkT57Xah27aDWbfCb9u90jL9ACILQYAeHhGlpIIM3AAAAGcelRYdE1PTDE4IHJka2l0IDIwMjIuMDkuNQAAeJx9U9tuHCEMfZ+v8A8s8hXwY3Y3iqoqs1K77T9UymP/X7WJNkwUVMAIzBkbzvFskO3H9fufv/DR+LptAPif4e7wWxBxe4VcwPn55dsOl/vT+eG53H7t959AlgOzf8Y+3W+vDw/BDictZizYgIqTdiLAgqPNTxkucJJSO0v3OK/OndsCKO8RBa3GVU+BbGRiC6Qmkgt1p8px3sUYVyEtc1MRclbNkNJra3WBrHBLpCubSa6aEYkvkC1iYqEm3kfIiCy+St7jlliaN3YJgojc6yq1R0Au7BiPCBxXFl3hKAR6C6ST9OS1VK4N+wpJEVIKVVQZ54oyiPoC5LijlmpSx9UolNElMMXhYtKIfVDKOgBfkRq5KVKKIydSa5W+RNogSBnNOfWMV62zP+/XT7X3Xo3n236d1ZidZ83FBmRWFkfXWT4UZrNIOKzOSqDYtim3hvUpqob51I7SjhppOuggBY2JD5zr8MiBXM2J9EAijckOZGl62pGTIwO5f/zLsd7+AdaxxgVg0jgoAAAA33pUWHRTTUlMRVMxOCByZGtpdCAyMDIyLjA5LjUAAHicHY87jsRACESvsqEtYdQUv0bWRM69h3C6mhPM4ZeeDJ4equK+tnt/3df2+t0feT/b9bc/jd6P3D+f7TB2hwoJl9gUOg/lmNCiwVGYyEbGOjzpaJTi6o3AMkuiramOsSxhlYItTWdkxpeVwZ16SBcxOgdLas2vBjOtXCwrUdotRGoRMGo4GiCwAtH9dCqBA12CTmWJYdYFhg2Nzj2NwzWykXRvw7pyTdEVr8uQlvu1Xi1C50o2DC9QPzR1pNH++Qf2Fz79MskNYwAAAY56VFh0cmRraXRQS0wxOSByZGtpdCAyMDIyLjA5LjUAAHice79v7T0GIOBlgAAmIBYGYlEgbmBkY0gA0ozMbA4aQJqZhc0hA0QzM7JDBJAk0BSwMeCSIILBzgA1HWw9ExPMMA4IzcTOAFbIxMjNwMjAyJTBxMScwMySwcTCmsDKlsHEyq7AzqHAwZnBxMmVwMWdwcTNk8DDm8HEzqfBxMfPwC/AICCowSQgpMDGmMDLkSDEoiDCDDSPjZGNlYWZiY2Ti5uHl4Odj52VRUiAX/wdKASgocMgrLIt1/6KafMBECftWNPe1Hw7MPtS3JH9c4oCwWzVzYoHIss4wew1sswHGm5b7gexbwiK7Peae3sfiG3467LdjfvHwOIJRjdtzzxKtwex9zeftZd1iwOzXVeKOCz89hSsftLCEof/+j/BbNvIyQ77ebzBakROVzh0C7M7gNjHL0k4bK/iBLNv7mfa/7hKEMw+lfd7/wxdTTDbwt7rwIeCe2C9p672H2hkkwaLJy/zObCdqcQOxBYDADeLYMDD7qZcAAAB7HpUWHRNT0wxOSByZGtpdCAyMDIyLjA5LjUAAHicfVRbjhshEPz3KbiAUT+h+3Ntr6IoWltKnNwh/7m/0s3IgZVQwLQZVNM0VcWcSrbvt2+//5R/jW6nUynwn5+7l18MAKePkpNyef/y9V6uz7fLa+X6+Hl//ijohTDeif4Z+/Z8fLxWsFwLVCfThuUsFQE436ow2nyVAniO5camWs5UvauKb5CcSKzKgiLlzJU6NYINUso9Myk1Vc8ZSjexDVIzJ1UQa9ayjkgJ0DbIdtSp3dh7zoTMWTbIPo4eRQLaKFi5b1PaACI0UE6yQA12CT1wWAOllrgolbRvcBgSFapMZIyjRPE4+Q6Z8nA1Im4H0lrz3d6Y+khsLk1y8+6MjXdAPlJaZ9eoAhG07ShHOaq0bm0AxRB1B9SUMShH6BJGCb0ZaYtshzU8agzOqca/wHbzFCesgw0wAFg792Bhh7TySOOKiwWHFHpTGG6H9KwzcnpvmjoTG/kO+X6/fbokx7W5PO63eW2y07wcEoPnDZAc0+bZdXo5HkqbhpUYfboS49Gm9zCGT4tJDFytJBkQF8tIBqTFGpIBefGAZEBZxKbcSxdRcYS2iIcj9EUkyoC2iIFjxRfSJc40mRoFyzwRDSp90pPkr1Tn8+vrFvPTX6Vf98XBmq4LAAABA3pUWHRTTUlMRVMxOSByZGtpdCAyMDIyLjA5LjUAAHicLZA5jgMxDAS/suEY0BC8DwwcTW4/Qvm+wI9fSmslEgrNZkH3pPk7+XUfz/fjfj3vY8pcRx6TJ/18DoTiNKdxKhCi8LhOBHRJs3EyVFg/rpPAREnHKcDBvmIMxm6+UqSRthFqeo2u6BCiNxOgCveBwJJc/I8ciQZBSOQiClraFQzKzLEXlmvrMPSltLWMMLQJh5CMC9vY0aSrCy1Rx0XQwLJJerJ1EYMwpywl1WrRcQkks/hG6V49pz2nrj0XJeSyQxlSvY0Iv0UZ6Qto0lcoUip2EWeJLqf+JaQc68dMgsbj8wf6U1Ab1845jgAAAXh6VFh0cmRraXRQS0wyMCByZGtpdCAyMDIyLjA5LjUAAHice79v7T0GIOBlgAAmIBYEYiEgbmBkY0gA0ozMbA4aQJqZhc0hA0QzM7JDBJjZFExAChhZICqZmCACTIwsnAwKIBkMBRwQIxk5wPJMMJM5GMA0E7uDBYhGWAmT4GZgZGBkymBiYk5gYWZhZGFlYGVjYGNnYWLjYODgZGHk5GLg4GZg5kng4dVg4uFL4ONP4BfQYOJnTOBmYRABeYuNkZ+Ph5mJlZWFm4NN/BrIFVBPMwh+j25x+DSb/QCIk1zh7eC/r2w/iO2y/KZ9X8dsMDs6wM7e7FfpXhB7lZPN/gcp8/eB2L/jNu9f/PgyWE3nKosD939vB7PdTlQf2LlQAWymzX6PA6lbNG1BbMuk/gOTxUztwTbnTzrwR5jXAcR8nvF8f+sRG7D4zE8L7QOD1oDZ3Ofm2rWJKoDV8M3Td9hefQai5m6Ow+vuR3Ygtu7BpQ6HZhiCxcUAbupVAS9ptUMAAAHPelRYdE1PTDIwIHJka2l0IDIwMjIuMDkuNQAAeJx9VEtuGzEM3c8peAEL/OqzyCK2k6AoMgYSp3fovvdHSQWOZECJZiRoqEeKfHyYDWK8nX///Qdfg8/bBoA/vK01+COIuL1CbOD49PJrh9P18XiznC4f+/UdqABV9/HnHvt4vbzeLAQn0ESSmTMcOBHV2gQwYR/DlR0oiUpjFjhgalmq0gIoDqRUENUTOFBiMkJbABV2txYVJY2ImBFtdbV5RD8vYtI4dkIklBfIHEhKiiSSY5fNPM0FsgSSU62m2LqPFCkrZIVnOEhq4sAWPoatllXlLWJKkJkLx7kXJrwAEgZSk1YsikEC+uWrgojgEkgrGc2bkBidrxWbxIGk5CG9gxHzu4Los0OcjZ1ESqKZ8zJN9ZDONlZ2nyjcaV9GNG8leysVmT2itWK8TDJ3FRUk7OeqrOsci19tIbcqQXVuUc0C+LSf7/T8qfDjZT8PhcfDQ8fqU4ZaNebQJLncFE7PLw809BfGPERGPstQEvms3UWGaMLYhjIoJt7HpZ5cNHlqdwfy1FWNpGRqHsdCOnVJu8WmdmgslCfeORYqE8HazV+GSNmvs5nZmcf4vv1lfL/9BwVw4m7ATRc5AAABDHpUWHRTTUlMRVMyMCByZGtpdCAyMDIyLjA5LjUAAHicJZC7agNBDEV/JeUujIXemrExBDYEd1ulMq62d+vGH29pwhQSZyTdK20HHc/lvn3fHrzNsPyuGSvZ9nXn9Viu+3p/3h4HXfev96JA4iztxEDU+2gXAYrB3E4Iw6UrtQtBIGoiAiZLgBAqSlpF6IgmCTMPMRmzVYiEPCGBIolWr5tJT8TQu+Xc+pOQSCQwpAiD4ej/JI15tBRIIaFqVNCOockCs88nsnC0xsCYlqZg1uQi5Safln12y40IRJ297At2JmklR+WdcyHFKrERJnWFQELJKaqsNcXqLr2Ij+l6ba+/s4K0Dv31c3bw9wcxIFBjmY2K2AAAAYp6VFh0cmRraXRQS0wyMSByZGtpdCAyMDIyLjA5LjUAAHice79v7T0GIOBlgAAmIBYGYlEgbmDkYNAA0sxMbA5gmoUdQjPD+Ag6AyzOiJcBUSvIoACkGbFohQhwMIAFGPEYwe5gAVbCzM3AqMHEyJTAxJzBxMyiwMKawcTKlsDGnsHEzpHAwZnBxMnFwMydwM2TwcTDm8DLp8DLn8HEL5AgIJjBJCiUIMSYwMmSIMidIMIMNI+NUUiQG+hXVjZ2Dk4WNh5efgFBbvF3IMdCA4dB+P7yd/aV2l0OII6J5VH7XzPNwOyquEe2AWskwWwJt6h9SXvz7UFsgZhL+8t5f9iB2JEMBgd+LdwPFmc42npg+bFWMHuVwoQDSmev7QOxmfMjDzwJ3L4fxN516vd+5bdVYLaBT8x+XdH/YPa+7Sn2m/7N3gtiZ94StL9leRQsfn3iNXvrHOUDILaO8lr7mVMawOxJl9wcJtWxgdnPO6MdMtiUweqnbRdxWJB7AOy213maDuFTX4PdIwYAFllkD8DpozwAAAHyelRYdE1PTDIxIHJka2l0IDIwMjIuMDkuNQAAeJx9VFtuGzEM/PcpeIEKfEkiP2M7KIIiNtC6vUOBfPb+KCnXkRII3TWFlTzikjOjPUBe38/ffv+B94vPhwMA/ufn7vBLEPHwCvkAx+evLxc43Z6Oj5XT9efl9gPIgSn2xP0R+3S7vj5WCK5AxZqqG2gR6oYdsOC45k6GU+CqoqEBF6tCahucwCVWibAKB06RSHmD08j3BQuTUM08Lk1NNsCaQCpNJe74X021797cEsilV8Rom4p6j+QbYE+gFjLk6JkKaiWuG6DdgRXFrWe1Sl5HEZ+Rnkgp4j0aznJVmGzHI+G9H2+dWDOpG5Lt6iSC01sirAWbNnY527YASn0C6aLsuQd7o+Y7pAxkbd7FM2dqyjtCSYfmrTfhltTWaH5faR0ukspNWlKWHSnukKmSFMLWkDMnIWnfkU99IFVCJc6OIrXRltLUiYuwdMxM0qtFGRughzk5rBSd13S9ovru3c+X84dDcj82x+vlPI8NZ8zToREyD4FmTK9TRJ2Ojgm06VuN6NOdGmHTgxrh02gaQaudaAy0uEbzjbxYI6ch/GIBzYF0kZrGUBdJday0RbqchjCLRJoD2SKF5kC+cK7jS/RO1eADJx1M//bwSv9Kds4f37d4PvwFVGP4WRD4UuQAAAEEelRYdFNNSUxFUzIxIHJka2l0IDIwMjIuMDkuNQAAeJwlkD1uQ0EIhK+S0pbWiOFvQU+p0qTzAaJUr418Ah8+YG/FfswOw94/TzzOy+2Uc458/V2nvNyvc/t5fP/i43kBZZgvI8VOrAPkxl0IpSt8HUwAu0oTY8DWcWMSdC8XU2lYajNQmJo2sjTb2UhoO7MskNXGiIyQrA3YHPICzlq12tJQruOupLVttaOpoF7eFbv1rapkTMwuMzpWjq5KJkOjUpOXG+9AlA30qK01utlMZ8XYobo6oPfIHKIu0TONxr6fKYEjRgLGSLTT8Ns7NBJ7HUIqutEr6/bUGBI2s/pTjX1dn//b9VCxjU25ywAAAGh6VFh0cmRraXRQS0wyMiByZGtpdCAyMDIyLjA5LjUAAHice79v7T0GIOBlgAAmIGaG0g2MbAwJIDaTIIMCkGaEUtwMjCAFIiD14nogEahmBubVq7SWAun9IM5Dt2X2QEPsoOz9MLYYAL8bDhR1EBjvAAAAqnpUWHRNT0wyMiByZGtpdCAyMDIyLjA5LjUAAHicjVBBCsMgELz7ivlAwmYlUI9RQyklCq3tHwo99v/UbdAkh4TOepgdZ2BYBcHNX18fVLBXCqCDZ4zBUxORmiAEdjxfAlwabFFcfIR0hwbnRJ6tc0hxKkoHh4Za+kFYP7Mq1SzDvdG1bAzpU/7nfseoxdj84xyD35SZ69kY/FJPhpcOsup1fu2WvZwhc/UF5eREK5dgimQAAABDelRYdFNNSUxFUzIyIHJka2l0IDIwMjIuMDkuNQAAeJxzznF2zlGo0TDUM7K0NDDRMdAzMtWxNtDRNdAD0roowpo1APX+Cf6ZQII9AAAAmnpUWHRyZGtpdFBLTDIzIHJka2l0IDIwMjIuMDkuNQAAeJx7v2/tPQYg4GWAACYgZgNiViBuYORkUADSjGxgigXKE4QJJoDUM0G53AyMDIxMDIzMDIwsDCysDCIg08SDQFJQoxnYrm++a8/A4GAP4gDZdkArloLY33Km2z90W7YfxNb0WbQPyIaqiQWKOYDF0ydwHQBSaiC2GAADdBr7G3R1jwAAAOZ6VFh0TU9MMjMgcmRraXQgMjAyMi4wOS41AAB4nH1R2wrCMAx971ecH7Akzdqtj25TEXEDnf6D4KP/j+nGrKIuaSFJT04uNUhyag+3B17iWmMAWjgxRlyFiMwRyUC92e07NMO6niNNf+mGMwK8Zqh+ItdDf5wjjC3YluLIM8iWXnk1wRJNxoxzaDRaiBALVvn9CygjIVcTkK2LkaT6ASzQ3BOTcIhViQWk19oKrEIg55P1t8swcjrLwVMosNDmpms/9jBtpu67Nm8mqcsLUAeSx0xukYdJrs8ds97wXuydOvnzd6ltnm7YYritnhp5AAAAc3pUWHRTTUlMRVMyMyByZGtpdCAyMDIyLjA5LjUAAHicTcwxCgAhDAXRq2ypEMNPolGxFDyNR/DwK2yz3TDFWzOsGOaOc+7nBOFqikLgWmiAsxnECDSEpd2mJKy9I9NIYBPvrdJ/NXdoofQJSVm8wK8QzwvW2RY5O3VteQAAAzJ6VFh0cmRraXRQS0wyNCByZGtpdCAyMDIyLjA5LjUAAHicnZJrSBRRFMfP3t2ZcV03dXV3dVfdcdV1tfUFFdhj96poUX2wlAjCnPo0PSBLiqQHlWFPyoIe0MP6EGhomRBR5M4tetDjQ5FBRA8oN+pDZWEYaNnMGcseBtGFy/md/z3zP+de5n244xmoywr6IuouUvdEdW8y8CBpGhFAVKNRT40/5LHzv0Wtzq9FkwCyFokqaL4m/dxg/D1G6fVj+PzWl+q+PEVf9eAf4KchRr4ecf3zYMRe0KNxtN1/tP0Bf17ul8cxkO8FoxFfxWABAxgIEKNaDCYOOB54AYQoiDIDiYZoi2iJgRgrxIyDmFiIjvMTQzzE28CWAAmJkGgHu0MmDqfkTJJJUrKU7JJJghvcKWJKKqSmQZpH9IiimC6TdK/kzZBJRqaUmSWTLJ/ky1Yzv+TPkYkn109Sx8P4AATyxEC+n6QU+ImtEMwALruUI0pmE2R7pUROHZkHs0l7To4Xoswm3uFMSnbZ+XRvhj9H5DOzfNneDOc89cczjPyDUFRc1UHTio1hLdl1cxP1PSpQNF46WE+54Wim8W6lhe4or0AunnWX2hq9yHHWj/TgrRrk2tmxJR5hMvLMc7aS8qHz6BM+MUz7L39B/zj7Axrob0J9XK+LbriSj/VX2PHQh0+vUD+zwh2um+ZE/XZkolJ9eC3qrxbcC96prkO9/eh15fWw3mtRpZVOjTQhL7FMou3C6qDGjpYy+rbrSUjj+5P6QoMtORT1sxxdV70VuaVDDnUPnETO3bg3NGX9feQC38ruDZ73yK8vXFRKg0+Ry573KNcudiAfqR0Ib3E0Iy8RPwcbn3LIjV+LFCGzBHnoIMeaF6Uit+UmsMrFDTgPV7qc9Xb24JxdDxuYEtmOd9y2po2dWXoPuYZ2sqrgdLxX08adbFnpZuSaGfvYmxudyJaebpbVehX5xYGX7KXplK7ffcJuwzLkc5EprPbqQmTT3Hx2c9Uw+lc49rHCQ8txntOuOSyxdT7OaUw+wI5GJiA/fnyJpQfqkPfPOca6C/uwvv95hZLXW4968YI99J3bpr/tN4LB8zwpM+AfAAAEQ3pUWHRNT0wyNCByZGtpdCAyMDIyLjA5LjUAAHicfVdbbiQ3DPz3KXQBC+JLIj9314sgCNYGEid3yP/eHymqbfUsQGTsJmbabKlYRZbGTy1ff7788e/Pdl788vTU2vif34ho/8gY4+lHyzft6/fffn9t396/fP288+3t79f3v5pGM8Ez+Pk198v724/PO9S+NetKU0e059GJndTb6GO/7ke5vTbtg1XMM3H69OAiUbCidCdmHu2ZOy1ysiJRkag9gkm4PUsfsSK0SDQkzi6u5JIrmgTbKBInEle3rMVyRZ2mHEXiQqL3sElquWKMOb3C6EiMTtPZtT1TV6Y1qUiMvXW4y+KkR8PMK3po7GospjDlksNUeFWZqQ1jy0EzEuWSYbOqm1Ic6qyDbeWaPlS8gkmpTspstGKTKVOIq9JJr9RFw2RLHni7KoEoFULNY4ZREr8M65eLpkQAiJpddVPP5LPSiFZ7Q/k8fAgW1c5kigYoMn0ThQVVJ/7O6A8vGY3dm2DRoDb1xdCzIpRTJNC45lyCpacN8QokXxoNd4dc2klMqMLIvCkKZGKArQ+0Xjk+LHtrAjCwjkbRqeX48Ic+w9yhyuq62Mr5YbtIVxsYHKwZJF4OEH/IM6eMKWkMjCGfVea6doci6CVUboOXVqSzozkzUSdIAFcBsykLimtJNBHHSJ1oOVcFpcdl7wxfoiNnxEBsVRA65zUzGc6yUsBYYLMqSFIgtO4Msu0ZyFMqDU6uzBgC19gjnH1fjZtobm/Y3uCCm1l2rvffIhl4XJ5DLJ1IaFVNJ1sl7bCNSP+CLUukLRep60o1HSPNE+uj50trEL8ABHwJuJ8n6JVRii9bqQWEPDBxeAiceqm+bqlmR9dDok3wouBqRJQuVbMU9HH6t+eYVKl8pS6WBTbBa8DMo+oAFdhIMiAS22eCcY5UuqpeuvLEIDH6D0OCiaoy7WJ1WshIf3CeVgOdVwM4LAlTnM7IM8rq14UT08FjXeajpYvheH7bxrxwZtk+a9H8ZUWBTO2qPtFemAJHI1aj9/315ZdvBdf3hK9vry/394T84fvbAD40uc98wqX3yQ5HaHaf34Rr3qc04Vr3WUy4/D5xCVfc5yrl9Xh85lZED6ck7XCwUYLLcOBR4stwEJJ+3DkgyT7uHJw4q3ivfKDS2mXTAUuJNsPBSwkYgR/PEsrABzJvKvF708ngK93xQMaEaAY+kOGEmoEPZHh5foRrP/i3ZuADmdfH7gczJ2YEPpg5MSPIo8FS2/b5YKSUQQ5mSZoR5O6CxIwgB7MkZgQ5mCUxI8jBLIkZQQ5mmJZmkIMZ3qQZ5GCGBekOj06z19GDWbMLMxzM8A1OzHowq1yV6t28u3vx4MGs2RoIejBrtkbeOZgxvpwc6sGsfnWCHsy6ewPUnsFIyFDobgTbkB9JNb4euqcpWdbxwGlO7+Os5ufP/wfw/uk/0IFKhuzSp/kAAAImelRYdFNNSUxFUzI0IHJka2l0IDIwMjIuMDkuNQAAeJw1U0uuGzEMu0qXCeAY+n8w6Gr26SGy7wne4Us56CALR0OLlMi578f9xO99P37/ed5833LPI/cb5wdKj/vDn3n4P+iBF+8nTt//H/77kc9jIPIE7NfP40U7mVxr4dQ4pq0LR3bO1vWSraEs66JtFO28XrrTnQsw3m5aNqgWrlwXbzGSWHhVhHfrkm1CnINJJY+pCBWht21hN2B0F4vIYDi5wGa70VGHjDq71xUbTGAFxrXF15Xbw6gHYwEh66rdHuxHD0Wgc2+Okho9Jpwxt7pKc8a1dh+y2N6hMiBCHzTybRzGA2IpHo22SUxjSlFRLTNImZkv2gJFMz7Uengt3ingm1tmFbYwc0n7LKgyIlEIJ+1pQlXFyzarK8+iGxWM7JuCrecOC5Mt6LQwOf6QVyVmzm0p3scMc4Ks2M1afioRSoFGJgUz556VwlqwOUn6sbUssHvoaA4/IPgsvTAMZ33pMqPc1xhF4/yoTp25zPtUdEtACSAgRwIu2BsOVmxJApTXy3dhT7ImQBJ9IODEns5WZlQ0lm7se8JoPHFB52h2RQkFmyzinqt2DkrsBAaoJsVix8ST0+HDyvP4Glh/nJJTVkxmmPWE2LZKtk0cYYh+lbsRpho4fKxzsfUEMjC50iwz0ULIBwWhZ+OxYVyfbySSJyMTRfX6prRg6CmlaJ6PpBHYXs+ffw3AyQdlEZicAAACOHpUWHRyZGtpdFBLTDI1IHJka2l0IDIwMjIuMDkuNQAAeJx7v2/tPQYg4GWAACYglgdiJSBuYGRjSADSjMwQmomJjUEDSDOzcEBoJhjN5gARZ3PIANHMjEgMmAyaCnaIViSjUWl2BgWQPJHCHBCHMmKYhsdhuJwqALaCiZuBkYGRiYGJWYOJiUWBhVWBlS2DiY09gZ0jg4mDM4GTK4OJk1uBm4eBh5eBl4+Bj5+BX4BBQJBBUIhBSJhBWIRBRJRBSIxBTJyBW0JBQjKDSVIqQUo6g0laJkFGNoNJVo6BizVBnJ9BViJBjoNBhAVoJxsrFycHOxubgKCQmDg/m6SUtIysBJscBye3hKx4HSPQg9BYYpCPki480DFhnQOI813e/4DymkYwe9fBB/uPPSwGs6eW+O1nl5oPZn85NWf/HwkpMJvpbJNd9SIuMHuD1Sz7w19CwOyiO9oOTnWuYPbV674OH7Ou24PYsiKCDvt7WMFsnhBP+yNpzmB2A7+xQ/q0xP0g9sTpb+wfbWc6ADYndY/doaZnYHHVOyL7V062BYurfGM+oCGrB2a3f1Q9sG/FCrCagIimA7t3d4LZOrsWHFAz4Aer2Sl54YBX8X+weLb4wwN5h8XB7BprjoNXLm3eB2JX7+k/8OFHBlj97Z0OBwrzK8Bs3+cdDmY7+sHq/z+Z6fB0iSJYvMflpEOatCGYnbHsuYP1pLNgNdtWXHOwZQ0Am6npudwhulvWFsSu8J7m8K52B9i/YgBzrJnF6vEgMQAAAud6VFh0TU9MMjUgcmRraXQgMjAyMi4wOS41AAB4nH1VW24bMQz89yl0AQt8iZQ+kzgoiiIO0KS9Q/97f3QoN1oHFWp7iX3MUsPhiD6V/Hy/fPv1u6yPXE6nUug/vzFG+alEdHopeVIen798vZan94fHjztPrz+u729FuajhHXw/Yx/eX18+7nB5Kmet4SHDSqvWGpsWqjQ/x6tyA4q6iher1ER8B9QEco3WBkvR2pm8tQ3Qyms5U+3k5plxBA+JDbAlkKuIDbMi1SgidhkdS1OV1ixAuLI7+y5hAId8ZIMdDFXCdGxwHTip3ptmXZV66xD1X9wADtKwy+hI7F1G2+GYZkLxTInnDa/EbmHmWUl0vxELiN53lUDhKzLGiC481ewstF1bZ9HdukK7s1Qysdg1kG0urqDmnMJ3ou47vbllr1FHZ+uWSYcLa99BHURzVecOkXAWQg0PNtBsDwBtSEf7QEA5vG2h2aEzzBjQZ3KlcBS2g44k0CqJBAyM/KKhqHVj9WzT2WsjPKfMOkYL8h107p+opMY0phZgLVuopI17xf5qognVxsI7sURvZcGf0XpuOzfiseVqt31JzIrNgTM4oNNOAcluWRVYRVtWxSKddvYTn0g8FNLZCmnet8jslVfpsErMruYg2TlVslUB0QdhbGB1JyfZuUrGzBmE9VvqJNmHHTJnHWYWOup9el677WcSlzcU5MMDO4arGdTaAZ+vl0/j8TYwH1+vl2Ng5leOsYiLosfww0WxY8RhBpd2DDLG4ce4MhxxTCXD0Y/hYzjGMWMMB9/PEsvAfDc0eN5Z5LLWGRY/TAGeYVHk5JhhseSkmWERxeblGRZXNJtnWHRhZJ5hMcaO4wxyv7E4gyzOMsXE7xBU/r61OEtyRpDFWexWlyzOMJJlkMU5/6QyyOIsKTCCLM6SGiPI4iwpM4Lee4zLtNCdmSzFXkvpNIHdCabwQJm01p1pBT76mU6791Vef/yJ4/z0B2QGgAYqfJbUAAABb3pUWHRTTUlMRVMyNSByZGtpdCAyMDIyLjA5LjUAAHicHVFJagNBEPtKjja0m9oXTE5zjw95wnwjj4+qDYYeIZWkquu6Ht+f5+fm+77l99Z7fvrzuK7rR/HH4/O8Ln3ecvPX3+OlOyOll29zZ1tvIKKhumyTiwQQ3unevHQXUwxCuygMT9ud3HpIIta2ZBtl5nrTFndLABzBAMAga8EYlTRYyY5yOOmm8sIQWHPoYuDSvt62oyMZgBkrFA6TjFq0SctAfcdOKuqFSELKBlWiQFMsRAoKOiSpDlkvmbY6g6E53y4ePYBkiY2GRYonXDagGVzFQjwFykprZGRip6NGdvDoiqjy7MaLrWxoMD07hSC4j7+Q60G8BXwIlTMQ+4WFp0oNRBk0Ot+EwjpC0VRkeMX26Tmsbs+BEtsw5ok6Q8/NauOafuKrs3AdA2t4LZw4jJBnjk08m8UDLWtqS+Aq2LDjFtnTMStMG1CGTubn3z9viX2MUoUfQwAAAbR6VFh0cmRraXRQS0wyNiByZGtpdCAyMDIyLjA5LjUAAHice79v7T0GIOBlgAAmIBYHYgkgbmBkY0gA0ozMEJqJiY1BA0gzs3BAaCBfAUizIKRBNDNcGztYmhnVFCDtADGFzSEDRAPVE8UgQxM3AyMDIxMDEzMHExMLAwsrAysbAxs7AxsHAwcnAwcXAws3AzdPBhMPbwIvXwYTH38Cv0AGE4sgg6BQBpOQcIKwSAaTiGiCqFgGkwB3gphggggoeNh4ePn4BbjZhIRFRMUExeUYgX6Chh6DOFee2H7RndUOIM6chPW209+rgtnbhG3325estgexgzq/73eJPA5mHzrTunf6q9JdIPbJ95v3z5iusx/EjtHVOnB0gaQdWK+6/oHe9HVg9be+1R94+5EVrEZTbMWBXdKzwGoKjzYd+BrEeADENjRbbL9YRgesvv+CosOsHul9IDbfrHKH72WsYHFRvVoHCxNGsNvm/dBx0PpiCmbbx62zX3yXC8xuXSBtv2vjarBds/exOZy8uQ3MVr5q6JBsZgi2K1Hrl/3brQ1g9uavL+0uX68GswVrY/eF8KmB2WIAg/VwSlJOfUQAAAIrelRYdE1PTDI2IHJka2l0IDIwMjIuMDkuNQAAeJx9VFtuGzEM/PcpdAEv+BTFz9gOiqLIGmjd3qH/uT9KautKQYSuLUKSZ/maoU8ln++3b7/fy7+HbqdTKfCfr7uXXwwAp7eSm3J5/fJ1L9fHy+V5c73/3B8/CnEhiXfi8xH78ri/PW+wXMsZNm1W0QpvzoxGBTboz3iVAhi3TSuH302dTNoCx4dD46aNCm7MLk0XQCn3csYM2KwFUNUEV5H18AhVmanvAJxXsWsicRNQU01kDZdthbRE0lbVAfN3VACyBbAdQONq0fgop5LyqhwvezlH/9xFepZKTEHBZyRC+tSNlAzSVbDpvkR2diS6XitQ5gEEdVkQJj+4kSk4lqyceNlNTIKCP2p89AgVHWSFlEDy1mozy5BKyLLqEWoHumrSEklGz9exa49tQEFMbJow0LIa69VEs0kxgFj9yOETsHVZVjCPbXDPglxxhfQeG0G5SVcJtahopXQ4srRWWTr5tQWpKyT2NF1FMnoQRUSwypOO8RGtrtx1wgrL+aG/A0RYyS3Dq0uIbgF93W8fZvmY7st9v43pzg+NGY5D4TGqcSgyBhLjqGPsMFYds4WxbAwQxmpjTPLoYxgw1yz5foGTstM70qRfSYM8CVXSoEyClDSok/LyGMKaJCZp0CYt9VBt0oykQZ+0IWlo1oCkIZy4ljREE6eShnjiTnq8gcmU43pET9JmivL8/POO/ekPvsQgr2KGLNkAAAEkelRYdFNNSUxFUzI2IHJka2l0IDIwMjIuMDkuNQAAeJw1UUlqxDAQ/EqONmhE7wsmJ9+TR8w38vhUO8QgJIraun3f9/H5fd4H7vv8wrnP483v+fj8f3z8HC/aXhmcS3er4r5oU3mo+pLtLenrAiu1vGTxVm1rQDz8KiDuafyQKFxV1ryIWos6HqaRZwwcYEJzvWSHN8mizU4k+UCpMX4a4gYAjbrNRueiIgrMtzjYtBUBPYihbsBcNgkFmvFGZ+o1aaIs68IcUpjnNWncBHPdFZW1xprVcpB2b8PQhIo8qiSJBFCmpGOMZjJr4WhosamgbK6FEdVYY0RMrg9iUv6EZ1boFMwoBMCn3QxrQnUR4TEyj3aQ5i84/a1cOKRzhOgVss6fX8HAYBsGU+wFAAABdnpUWHRyZGtpdFBLTDI3IHJka2l0IDIwMjIuMDkuNQAAeJx7v2/tPQYg4GWAACYgFgZiESBuYGRjSADSjMzsDApAmhnGhdBMTDCaAywN5TIzsjlogGgWNocMEA0SIIZBhiZuBkYGRiagi4AaGVhYGVjZGNjYGdg5Mpg4OBM4uTKYuLgTuHkymNh4GXj5Mpj4+BP4BTKYBAQTBIUymHjYE4R4E0RAPmbj4OTi5mFn4+MXEBTiFX8H8iU0QBiE73hsPbDIWOwAiPPJaeIB6ea1+0Fslp2zDlzrfG0LYr/tdT+w+tYrsLgpy//9rG/Dwew+DaH9Qn4rwez9bHz2K5av3Adi+37+Y/+lyR8sfjpV0GHmP0Gw+YdicxwSVxmA2adMZjnMKngEVrNj3wSHtsszwHqrWt0cikQt7UDs2DUtducuTrQHsfc6bbT/HcXhAGKXZnXbX69IA7Mfi67aFzCpCcyWn7trf/cmVzD7+pEp++M0z4P1igEAF3FlMCF1jzMAAAHrelRYdE1PTDI3IHJka2l0IDIwMjIuMDkuNQAAeJx9VFtuGzEM/PcpdAELHD4k8TO2gyIoYgOt2zv0P/dHyTWcVQAhWouQViNSOzPyoWT7dfn576N8Nr4cDqXQNz93L3+FiA7vJQfl9Prj7VrO95fT88359ud6/13ghalsz1fsy/32/nyDci5Hq60ZVMuRq2hzQqFKW9v3crmWo1YTV+ZyRBUza7pASubUOsRoWKwDRuQLoCZQYn2QjEw5RLuPBdISierOglaOVIfGQWmBbOWW69bJBdsxmZvbAtkjZwAtSlJuEYFYXwBHAKN2b+i21QaZ8wLoAeTKHSM/J0YDWDKEEKlIbR6H40T2RuIripACBZcYnvogkE5tpQ94QxpLlM1jsg8dy5yyVQdF0vzeoL9rWwF1o4jNwSMogDhjRSVso0iioIbrAkhmsgK2DUjDMVoyQAAvS6c6myiMcITGFpKl4BgPb6h1D79LJideyQN/INGYQ2jUhqG2yvl6vXy5JY97c7pdL/u9yYf3yxGTIvsNyKnuPkd0282M6G13LKL33ZaIPnbzaXTfLabRMTtJMwCTYzQDeHKGZoBMDsgi0ElpzQCbJM1pKDZppxnQJ5E0A8YkhmaAT6Rr1vuE8HZin4on2zO3OX/+n8X48B83q/U51RR/XAAAAPN6VFh0U01JTEVTMjcgcmRraXQgMjAyMi4wOS41AAB4nDWPTa7DIAyEr/KWiUSQx8bGVpbZt4foNXr4DkiPFfqYP57X8ZzP836ODz7r4Py//H2Py3uEY7RLu42odl+ju9XQdqGbu8dGaS7VpAMuslTGa8pYqrSRJOhVavRJz8EsIuk+pQw7S3W2m8THrCUygzkRfTMwtw/ipe3WrhO5R2kCjLIexYRFZrD25iRk7f4ZJbGIsz5XjlaOrOWCYM9OmWsRn7xAETqsmMd2o9abEoj7ApJFExsFsP0LM0VlG3wSi/3X4ZNLbYlFN0GoBoODy72d3x+8uk1JPSIfhQAAAiR6VFh0cmRraXRQS0wyOCByZGtpdCAyMDIyLjA5LjUAAHice79v7T0GIOBlgAAmIJYDYgUgbmBkY0gA0ozMEJqJid1BA0gzM+OiYerg6sHmYAizgYVZMIUhNAdYmglmOTsDzHAwzcIBodG0AR0JcQQLm0MGWD0jcQxUQ7kZGBkYmRiYmBOYWTKYWFgTWNkY2NgZ2DkYODgZOLkYuLgZuHkYeHgZuPkY+PgZ+AUYuAUZBIUUhIQ1mIREGEREGQTFFMTEM5jEJRIkJDOYJKUSpKQzmFhlEmRkNZhkmBJ4ORikxRJEmIG2sTIxs7DKsHFycfPwcrCJS0hKSYuJFzEC/QKNDAY5jrsCB6cFrrYHcQyvcB2UMX2xF8Telvz8wHxb5v0g9vH2awdck7+C2YJTlh2YdvYNmG14duaBztfn9oHYGjsiD8z1/W0LYi+YzH8grCUErGba0bD9uz1ng9WIzFxsV3JyAVh816o79vmbrcBsBbU/9sJSDmA3yO/yt+djuQVmnz4nvj9oyjQwu8xR12HWQmYHEFvy0Q/7SO8wMLt4vraD+ecpYHbirAiH4wsb7EDs4CMTHH4yzQXrPfu93YHnoQ5YzW/2fQ6HbazA4nL1jxxe/LgJZucYZzmsnTYH7B51V0WHWTt4DoDYxveMHDQlssHsQ5vaHKxbW8HsJ5qrHYzm+oDZ8bGLHFyr74D1pt4+eCDI5QbYDRcYjhx4e/8r2HwxABcGkWzBij1QAAACtXpUWHRNT0wyOCByZGtpdCAyMDIyLjA5LjUAAHicfVVbbhsxDPz3KXQBC3xK5GcSB0VRxAbatHfof+6PknKTVVCiuxah1c5SImdIn1pe3y/ffr+1j4sup1Nr8J+fu7dfDACnl5aT9vj85eu1Pb0+PL6vPN1+Xl9/tJgxxTdxf8Y+vN5e3lewPbWzd1D2wQ07swnNBh3WdXxKCbQ+5jDQdoaOGFgukNyu7Tw7MThRIhVpqBdISeToEwSmtDN2xxkfFUhNpHYC1TvSFICkQI5ESjcY5Ja7CwgKFsiZEXG8Rxsa75FoQhW6JZA6SQS8QjcGlGpzz83zvbmu0BmYvPKJQVMsMwZwZkCkA8UqZFKEfVIwBOlzknMC/kXSQvpwxyRmKrCXLnltbojCkr7jlFIRhJKhB4NOqTvsOEfkq0JqICk8TSSMCeiYXO492i0PKSKxzJ3FuN57Lo/DcAQr0ofKsBJokfVwZCKU2qHQG1fsoIdH6ZqZ1DgD0RhaKZggzihBuGXUGVV4HBUwudHusffMHSdN8YoaSmpmh2kQcWXGyaEKhpIajmDDpy9dEHOpC5KVH0U3GanPmMxRlu5fblwsJBKSD2pYy2OOlSEC5wgtyghnZLNM0VyRx9FsSPpEj9Ktsk62kBByyIJMJSdDFTL5iX4AasApsuAzqKpaTBIUSCSFpUsnsBL5fL186nf3Dvh4u16ODpg3HX0uHhofzUxyHB0rbz3aUjy0cfQejDGPBoMx7GgjGMOPXoE59o6Ay+BW+bgMbRWOy/BWyriMbDV7x+hWm7jM2IoQl5lbtd2/sq2scBnf6oeW2QsF1wpuFYFpiDbpLz/Em8YlDcmmZUlDumk2H0ORmzYlDc1Ng5KGbNOaBAPkm6QoDe/SkbXysbCyLAcx8acp6ek4cIpol0w+v//hxvz0B9uCcPYE0U2vAAABZXpUWHRTTUlMRVMyOCByZGtpdCAyMDIyLjA5LjUAAHicJVI5jsQwDPvKlgngGLpsSQi2cj/ziOnzgnn8Ut40BmiKIumstY7f9/k6Pvypj8/Fx3qvc63XsdYjz/PgPD8C1lr88z28kwdJ4+4kye0ePTXMG3UXt2y39SGaDobInKMAAS4YYLF2awffBAMyWHQjc6Rmu2pEFSPSB2eMdknH6V6IpwW3C2TfHMhSqrTLOjukyopaxCwOp1MWQv4v7LIp3HMmbMPtIM3YwuQs8Edjum2KmTUtsX8vM3hyM7i0mUVwBMSaipzaburKOcR3gDEZQ7gLDYDFUlJBITfSiGn5qVtibLnh1Yij+mMRWAFkPWhqsYyMDbavgbBj7A0xCP3f14Rxow0l77SXd1HKvRPVolRggb5mFMSsGrB7JaJWAO4ATLcWjSCFCZOdrSCuxiAuWxuSKZkJhH1apQ5mw/vVr6Ay2vn9A300eKAQKDg0AAABxHpUWHRyZGtpdFBLTDI5IHJka2l0IDIwMjIuMDkuNQAAeJx7v2/tPQYg4GWAACYgFgdiSSBuYGRjSADSjMwcDAogOQiXGSrMxASj2cHSzDDV6NJsDhogaRY2hwwQDdSPYEBkBMEGYIqzM4BpZnwm4GRwMzAyMDIxMDEDNTKwsDKwsjGwsjOwczBwcDJwcmUwcXEncPNkMPHwMvDwJfDxZzDxCygICCoICmUwCQknCItkMImIJoiKZTAJMDGICSbwcyaIMANN5mRiZmFl5+DkF2Dj4ubh4+dkExIWERUTFJdjBHoBGowM4hNbV+ybq9vtAOIsXlJkN7fEFsxmua63/67jY3sQe6sk+4FrLPxg8SCGhAObJ18Fi3tntB04LLfeDsQ+93XrAdnb3GDx+kkVB4ye9+8HsS/u0zmw5DLTARD754KZ+y/G/wOLz/RM2h/FHgsWN3fjtnfMrgKzb7y7bL/9uyWYnRDt6jAvOhzMXlO02r7bYQdY79HgrXurPlaB2eJcb20XVzGC7W2pP2X/uygIzPbZrOrw22PKPhA77mijg0/1LRuw+8snOFwz3AVWI1Wd4HDSTgXsr5WLmRw2MwiA2WIAQoNxNxwXUYwAAAIyelRYdE1PTDI5IHJka2l0IDIwMjIuMDkuNQAAeJx9VFuO2zAM/M8pdIEIfEv83CSLoijWAdq0dyiwn70/SsrNWgsItSNCpsd8aIY5lby+3779/lM+LrqdTqXAf37uXn4xAJzeSm7K5fXL161cHy+Xp+d6/7k9fhTiQhrfxP0Z+/K4vz09WK7lDJXJUaRIZXHGXqDCuI5PqdzDS2yuVqi6AQktcLwHtE5uvWBtTUVWASWBVBHBIzNFaLEGC6AmkKuGk6LgatZ1CbSylbNUChxjvGch4FWNLSNq1GgUzUBVMcYVsO+pe2cXLGesGE0LL5C+d2Me59hyByJobYFESCiOMoOf2HlvFKwuoP/YyfxsWYkoa5MVlAKanQgIJNKRmtsKmQzFKao2sqzUIUIuYwZF74UrdG5AGZRNfN2UjqAc58Qte5LYLUlC23uC3pU9d95DSsugLQiFUEjUl+xoFNpWUsI+smsnwGy5E8G6zKSJAugQ4ozc1N1wdfSULEkFVd75Jlurk3AAFUVNowgJMcnq3CkZShm3wGYRZrxUJ/EoEgQpDigGI5S/1Nzrdvs0y/t0X+7b7ZjuvOmY4XgofIwqxpJjIDGWHmOHsewYLozVjhHKx34MCsbyYxow16x5SYM4SVvSIE0KljTIk1JxGJkUKcOjk/AkDdokMBymTTrCYfokGEmDPilD0tCsAElDOFEtaYgmTiUN8UTeyHU4suT0fiSnUbJNx5NEzrTl8/MPPfanv41/JEwjoJOtAAABH3pUWHRTTUlMRVMyOSByZGtpdCAyMDIyLjA5LjUAAHicHZC7jQMwDENXuTIBHEN/S0jpPjeE2xshwx9lVwZBPRLcv5v3/jz2c+8j55zH/nueIx8+fPrxz/fxoqlSbDZsqpXKeNMUjfIYMitIbLxhipSKHDzXcnNIMpmpDCZRiwVFpxORwBOR3opNgaADGSbU7JeDFBKQ3EJZ7l2mgvTiyWI3T2ZUsQ98yIybxZcl7apcekv1ncYAwVw7salG1kqx5HijizvcABX5Alsnpa52aFittijSb7zhsy6ZMl0TNkIaNrhsZhCkqwO1Lt1TqJUUoR5BoBTdO8kKrvG2Se5qMJFELOKWnA19kYgVvEs5LWeM6RGqzSHDGL0uRrXx/P4DDTRenITEnVEAAAJnelRYdHJka2l0UEtMMzAgcmRraXQgMjAyMi4wOS41AAB4nJ2RSWgTURjH37xJJpNMs43Z980Q60nPjXkFc1Tc0kD1MMfBpRbrLoKVagoePPSgrZFIo4emVFAUK2rmVcGloKIH9SAFpVBEihUixiXgzDctiNvBBx/f7/t/y3t870N9Ygapx4r0g1VLqLZctWMMhyTVM6wJZVTPsksxp8cGXveYQzHVG/Q0xkveBDL7q7xYzevDmN/SRB/OERkuZX4CPeOEAczfC/6U+Qf8R5OAGMRgdRUx1pDBrBEZOcSZkIlHvBmZLcgiIKENCVZktSHBjuwOGTucklOUsbgMiS7J5Zax0YM8Xhl7fZLPL2N/QAoEVTGEQmEZhyNSJCrjaEyKxWVs45HbLgU9UjwkuQzqCzizRbDaeM7hFF1uO+f1+QNBDxeORGPxkHeUUZez+J8o8TVeox+3zClaIBUP0iNFO9V4unyIbi7sBvYNpagyS6GmL3NRCZ9ygn55XZKmbO9uaTxeOansa76+rfHzQrW+53sN6jvSZ3L50oTeu9DIvS+1Q6+4v5sUHq8Elh+cIPPlq1CTTtbI8W9e0K+NbSNP8lfuaHyj+CU3dHYQeFOjRl5VZusaj7x4SVzbD0PvANsik4YFeEN6/SfSnLqZ03gwa+08cM5PNJ7Z8ZC0PW2B3lhTJe7uAeB7l/rp/bcbOmApq0fo561VmGlbNU2Tzy4Al6tv6Pn5rqzGWe8juuL6OPRu9A3TrvYx4LV8glZFBbhZKiu7emxwb6o1rOR39gD3Ho3S/rungSc7++hcpRc4UdpL7aMOYM8P8UOwzZdo6mUAAAMJelRYdE1PTDMwIHJka2l0IDIwMjIuMDkuNQAAeJx9VluO2zAM/M8pdIEY4kuiPveFoig2C7Tb3qFAP3t/dChnZS9A1IkJyxmJw9cglxLX9+dvv/+WdfHz5VJK/c93jFF+Sa318lrioTy+fPl6K0/vD48fb57eft7efxTRIh178PmMfXh/e/14Q+WpXG0Tak29XGnz2tmxZavzOvZyuZWrbO5VRMqVN5bRSROkxJmyjVppWDx1GeaSIDWQvBnO6dO71TacEqSVt/idndV1eu9K1BJku59p1PD7NQCdiBNkDyRt1ahH7ABwGz2LyANZkaVRETH2iJjzSJADWaKNvLrtQLM2soAIdQJyEE7yIIwCmGYBUdRINiVRaxPpqrVnSAZSw7vBZ3gfpmmJSJDPWfY+apwpXTun3nX3jgLZniRvZlnoZHtE2oePiWwN+cyQUSN4VxbWQKo2k6xEFDVqW1cdOos5ulPaIBQ16mi6hpD2Yg4eKc8xka1ZxE6bGnHqnFGiP8U3527MhTdFR6fpZJo0uUVCIwfOnrJknpET2kgMQMzSSEnyHCKN5lS3ABA6PkXqjkReGhjHkPTGmtKMCl0byu7qc97Ymnga+xyjHv6ZJ8BYezbD3PdD2bV6BC9ouZa1EvvOtLsyygUkU6sp0XEfYqFukScdqEF2ZsjdDITZkUjoApuOTL+E7sgqVRwt3dkwexmSd+9wWrFL40FHFrvcpc5rdW9xpo3eUu96R3INsQFPw5RkLfJye/6k0LtmP77dng/Njg8fwoxFkUN9Y6mHxGJR7NBRBFTaIZaEux+KSLj9kD3CPQ5to7jPEkbT0EmqaJpFjoJdmMWP5P5mUcRI0TSLJdkds4hCMjQMLa6QBg1Diy56SsPQYkxBGYbPM63zzeLMkRAYPhLKMyu8KGMYNQwvyhg6DcOLMmYrlhic0whpGF6UOSjD8KLMvrtajNH5GkbOHa5l9u+pkzWMLMYSNYaRowuCMowsyjKzbEc5ZTI+J1kmYz9FLsFY9EQw2vPcjLH++POB58s/u36iIh6dk/kAAAGLelRYdFNNSUxFUzMwIHJka2l0IDIwMjIuMDkuNQAAeJw1kjuO5DAMRK+yoQ3Ygvgn0ZhI+cwhnO4R5vBblLEddAuvq8pkyev7WOc6vn7wtdY3rbWOn/N4+HmeY/09n4fPtQiEnv7Q+f/w5/e4bQi523XTyBmc1+eWkTlFrpsHSwVtVHNSXTiElLWKhwVpttGmVyManNwIxlDiV2XkfN1zzBlEzK9wGoVtyl6IBJyYpCZpJ4pYyvWhQTlzDydmXk2KxKof4a5m10eGkqhvkqqYVtvVGrjKmuwlY7skNGQTZdlzqbrh9PERqrWHqkhK+AJru+c7Z3HVZqgLWTTUiBGVIzmMLx6KjqiD2IUCikrO7IcR9hKAKbon1kjfqelm+e6lUbWZe1eCRrRrQp9ghEJLN8NoXSjKDudGju1S975sLl1wtJO5ncYaHFvGqbMHFyWNnRWpUIEw+Xtb0veC3Qrp75UyF3ZjNq0XTJl64UVgk9cE8ZRL+3dr8ALNia2gsdoxIDwRjBwr/HP+/gM+Z42x18E+QgAAAcR6VFh0cmRraXRQS0wzMSByZGtpdCAyMDIyLjA5LjUAAHice79v7T0GIOBlgAAmIBYHYkkgbmBkY0gA0ozMHAwKIDkIlxkqzMQEo9nB0sww1ejSbA4aIGkWNocMEA3Uj2BAZATBBmCKszOAaWZ8JuBkcDMwMjAyMTAxAzUysLAysLIxsLIzsHMwcHAycHJlMHFxJ3DzZDDx8DLw8CXw8Wcw8QsoCAgqCAplMAkJJwiLZDCJiCaIimUwCTAxiAkm8HMmiDADTeZkYmZhZefg5Bdg4+Lm4ePnZBMSFhEVExSXYwR6ARqMDOITW1fsm6vb7QDiLF5SZDe3xBbMZrmut/+u42N7EHurJPuBayz8YPEghoQDmydfBYt7Z7QdOCy33g7EPvd16wHZ29xg8fpJFQeMnvfvB7Ev7tM5sOQy0wEQ++eCmfsvxv8Di8/0TNofxR4LFjd347Z3zK4Cs2+8u2y//bslmJ0Q7eowLzoczF5TtNq+22EHWO/R4K17qz5WgdniXG9tF1cxgu1tqT9l/7soCMz22azq8Ntjyj4QO+5oo4NP9S0bsPvLJzhcM9wFViNVneBw0k4F7K+Vi5kcNjMIgNliAEKDcTczTxP4AAACMnpUWHRNT0wzMSByZGtpdCAyMDIyLjA5LjUAAHicfVRbjtswDPzPKXSBCHxL/Nwki6Io1gHatHcosJ+9P0rKzVoLCLUjQqbHfGiGOZW8vt++/f5TPi66nU6lwH9+7l5+MQCc3kpuyuX1y9etXB8vl6fnev+5PX4U4kIa38T9GfvyuL89PViu5QyVyVGkSGVxxl6gwriOT6ncw0tsrlaougEJLXC8B7RObr1gbU1FVgElgVQRwSMzRWixBgugJpCrhpOi4GrWdQm0spWzVAocY7xnIeBVjS0jatRoFM1AVTHGFbDvqXtnFyxnrBhNCy+QvndjHufYcgciaG2BREgojjKDn9h5bxSsLqD/2Mn8bFmJKGuTFZQCmp0ICCTSkZrbCpkMxSmqNrKs1CFCLmMGRe+FK3RuQBmUTXzdlI6gHOfELXuS2C1JQtt7gt6VPXfeQ0rLoC0IhVBI1JfsaBTaVlLCPrJrJ8BsuRPBusykiQLoEOKM3NTdcHX0lCxJBVXe+SZbq5NwABVFTaMICTHJ6twpGUoZt8BmEWa8VCfxKBIEKQ4oBiOUv9Tc63b7NMv7dF/u2+2Y7rzpmOF4KHyMKsaSYyAxlh5jh7HsGC6M1Y4Rysd+DArG8mMaMNeseUmDOElb0iBNCpY0yJNScRiZFCnDo5PwJA3aJDAcpk06wmH6JBhJgz4pQ9LQrABJQzhRLWmIJk4lDfFE3sh1OLLk9H4kp1GyTceTRM605fPzDz32p7+NfyRMemobZAAAAR96VFh0U01JTEVTMzEgcmRraXQgMjAyMi4wOS41AAB4nB2Qu40DMAxDV7kyARxDf0tI6T43hNsbIcMfZVcGQT0S3L+b9/489nPvI+ecx/57niMfPnz68c/38aKpUmw2bKqVynjTFI3yGDIrSGy8YYqUihw813JzSDKZqQwmUYsFRacTkcATkd6KTYGgAxkm1OyXgxQSkNxCWe5dpoL04sliN09mVLEPfMiMm8WXJe2qXHpL9Z3GAMFcO7GpRtZKseR4o4s73AAV+QJbJ6WudmhYrbYo0m+84bMumTJdEzZCGja4bGYQpKsDtS7dU6iVFKEeQaAU3TvJCq7xtknuajCRRCzilpwNfZGIFbxLOS1njOkRqs0hwxi9Lka18fz+Aw00XpyuSv8BAAABqnpUWHRyZGtpdFBLTDMyIHJka2l0IDIwMjIuMDkuNQAAeJx7v2/tPQYg4GWAACYgFgVicSBuYGRjSADSjMzsDApAmhnCZYYKMzGh0ujiCD4HgwaIDxQH0yxwvoIJSJ6RBaEQbB8jmwNEIZtDBogGmkQEg5uBkYGRiYGJGaiRgYWVgZWNgY2dgZ2DgZ2TgZNLgYtbg4mLh4GHl4WJl4+Bh5+BXyCDSUAwQVAog0lIOEFYJIOJlZGBg4lBhD9BhBloJCsjEzMLKxsbOwcTIyubgKCQsAi/OBsj0H3QsGIQVbMxcKiSYtoP4rSoRDhcPG+7B8Sec2eqA/s9e7D4ZOudDmkF7XYgdr3vUoefbRfsQexeq2wHnfW7wOzVkfwOlodqwWwmEzaHtjoGsN6TySEOwcvXg9keVdb2k773g9lLO3/t47Rr2gdix8Rs3Hd3wjywXk/ft/sX9yeA1cyZ8X+/xBbxAyD2PsXwAw4T7MHs7GsuB84dvL8bxD60wfrAXId9YL0uH1oOhF8RcwCx/8zacCDuw12w+EXdrQe+1ZeB3f9OtO+AkoEi2HwxACQOZmPkPSQ2AAACG3pUWHRNT0wzMiByZGtpdCAyMDIyLjA5LjUAAHicfVRLbhsxDN37FLqAB+JX5KKL2E6CoogNtG7u0H3vj5IauFIQIRqTmNG8IUW+Rx9Krp+XH3/+lv8LL4dDKfWLn7uXd6q1Ht5K3pTT8+v3aznfn06PnfPt9/X+qyAUpPgmro/Yp/vt7bED5Vxwa0LaoBzrJtUQtNSt9jU+xXIttFFriJ7ACiAmCyBFRN7UCKwmsLGz4QLIAZStmQnma1SWCP0ZJx0HKg3ivJuiA6xwGjjatAmzB47FOGr6jGu9ZCQ3tnjtDsirQqzjqqsj760Bp1VA74mjXvGoGKJJ0SNeAOP8t9huhESSyMjcmFbI5CVysjlRJwaFKRq6gGIEDQCxcrUoHMmaryiEpCaympBjD2qtga+4Ad6h7mrRnCNGUTU0soJK5o/6FZg4oR5taiuGICkKaG0i1rqKqtqSdEiWMhahKiWdpsTL/MnTkTeIBkWoOKloKmWBTKKOsgmYQ0qkEZnbSux1R6qCdX6Qa8MVUQh7duYKrZcU+lReyeT5evkwevswnm7XyxjGvHCMXDwUGoMFYTzGB8JkTAmE6RgGCGtD8xBmQ9oQ5kPA+QizTqE7mPSI6QAn2UHfoUle0F1o5+X1G01agu5kksyO1EkZnA7aJABOBzYRzenAJ0I5Hc7EcTqEiaDsxGhqnttHV4NV7iCdeZpZyefH32vcH/4Bl58PxYjgjDIAAAEnelRYdFNNSUxFUzMyIHJka2l0IDIwMjIuMDkuNQAAeJwlkDtuxDAMRK+S0gZkQfyKXCNAAKVIlT1AkGoPkWYPn6FXlfBG4sxwfdPitRattd3X9n7ff9bH1++27vuDHnVoX/z23LhPE5/tGN1GMHk7pcucLIUGkYVxO7V7CEWxqakBZH1GaaOzq3EWIbdJjbpzEtckn6YGoBY628mdJcPwJ/EACshIT375Uwq1ExbCItYO6ng0tZ1QNVKg4samEhcTdR2B8SxRhHqYvIbFnIRbsUwPbQej1hCEOFDQSaVQZrUqNKZZXp2HB1+lSxd2r/zhCHQe2gnu0jDMHFXPw7pRwImQWvIC7gRDBNVRe6xfquO1PWzGla4lU5QhIRZje3v7+7xRNX7+AyDkWyYEqFkMAAACOHpUWHRyZGtpdFBLTDMzIHJka2l0IDIwMjIuMDkuNQAAeJx7v2/tPQYg4GWAACYglgdiJSBuYGRjSADSjMwQmomJjUEDSDOzcEBoJhjN5gARZ3PIANHMjEgMmAyaCnaIViSjUWl2BgWQPJHCHBCHMmKYhsdhuJwqALaCiZuBkYGRiYGJWYOJiUWBhVWBlS2DiY09gZ0jg4mDM4GTK4OJk1uBm4eBh5eBl4+Bj5+BX4BBQJBBUIhBSJhBWIRBRJRBSIxBTJyBW0JBQjKDSVIqQUo6g0laJkFGNoNJVo6BizVBnJ9BViJBjoNBhAVoJxsrFycHOxubgKCQmDg/m6SUtIysBJscBye3hKx4HSPQg9BYYpCPki480DFhnQOI813e/4DymkYwe9fBB/uPPSwGs6eW+O1nl5oPZn85NWf/HwkpMJvpbJNd9SIuMHuD1Sz7w19CwOyiO9oOTnWuYPbV674OH7Ou24PYsiKCDvt7WMFsnhBP+yNpzmB2A7+xQ/q0xP0g9sTpb+wfbWc6ADYndY/doaZnYHHVOyL7V062BYurfGM+oCGrB2a3f1Q9sG/FCrCagIimA7t3d4LZOrsWHFAz4Aer2Sl54YBX8X+weLb4wwN5h8XB7BprjoNXLm3eB2JX7+k/8OFHBlj97Z0OBwrzK8Bs3+cdDmY7+sHq/z+Z6fB0iSJYvMflpEOatCGYnbHsuYP1pLNgNdtWXHOwZQ0Am6npudwhulvWFsSu8J7m8K52B9i/YgBzrJnFL04JmgAAAud6VFh0TU9MMzMgcmRraXQgMjAyMi4wOS41AAB4nH1VW24bMQz89yl0AQt8iZQ+kzgoiiIO0KS9Q/97f3QoN1oHFWp7iX3MUsPhiD6V/Hy/fPv1u6yPXE6nUug/vzFG+alEdHopeVIen798vZan94fHjztPrz+u729FuajhHXw/Yx/eX18+7nB5Kmet4SHDSqvWGpsWqjQ/x6tyA4q6iher1ER8B9QEco3WBkvR2pm8tQ3Qyms5U+3k5plxBA+JDbAlkKuIDbMi1SgidhkdS1OV1ixAuLI7+y5hAId8ZIMdDFXCdGxwHTip3ptmXZV66xD1X9wADtKwy+hI7F1G2+GYZkLxTInnDa/EbmHmWUl0vxELiN53lUDhKzLGiC481ewstF1bZ9HdukK7s1Qysdg1kG0urqDmnMJ3ou47vbllr1FHZ+uWSYcLa99BHURzVecOkXAWQg0PNtBsDwBtSEf7QEA5vG2h2aEzzBjQZ3KlcBS2g44k0CqJBAyM/KKhqHVj9WzT2WsjPKfMOkYL8h107p+opMY0phZgLVuopI17xf5qognVxsI7sURvZcGf0XpuOzfiseVqt31JzIrNgTM4oNNOAcluWRVYRVtWxSKddvYTn0g8FNLZCmnet8jslVfpsErMruYg2TlVslUB0QdhbGB1JyfZuUrGzBmE9VvqJNmHHTJnHWYWOup9el677WcSlzcU5MMDO4arGdTaAZ+vl0/j8TYwH1+vl2Ng5leOsYiLosfww0WxY8RhBpd2DDLG4ce4MhxxTCXD0Y/hYzjGMWMMB9/PEsvAfDc0eN5Z5LLWGRY/TAGeYVHk5JhhseSkmWERxeblGRZXNJtnWHRhZJ5hMcaO4wxyv7E4gyzOMsXE7xBU/r61OEtyRpDFWexWlyzOMJJlkMU5/6QyyOIsKTCCLM6SGiPI4iwpM4Lee4zLtNCdmSzFXkvpNIHdCabwQJm01p1pBT76mU6791Vef/yJ4/z0B2QGgAZY7TAmAAABb3pUWHRTTUlMRVMzMyByZGtpdCAyMDIyLjA5LjUAAHicHVFJagNBEPtKjja0m9oXTE5zjw95wnwjj4+qDYYeIZWkquu6Ht+f5+fm+77l99Z7fvrzuK7rR/HH4/O8Ln3ecvPX3+OlOyOll29zZ1tvIKKhumyTiwQQ3unevHQXUwxCuygMT9ud3HpIIta2ZBtl5nrTFndLABzBAMAga8EYlTRYyY5yOOmm8sIQWHPoYuDSvt62oyMZgBkrFA6TjFq0SctAfcdOKuqFSELKBlWiQFMsRAoKOiSpDlkvmbY6g6E53y4ePYBkiY2GRYonXDagGVzFQjwFykprZGRip6NGdvDoiqjy7MaLrWxoMD07hSC4j7+Q60G8BXwIlTMQ+4WFp0oNRBk0Ot+EwjpC0VRkeMX26Tmsbs+BEtsw5ok6Q8/NauOafuKrs3AdA2t4LZw4jJBnjk08m8UDLWtqS+Aq2LDjFtnTMStMG1CGTubn3z9viX2MO3eCLgAAAk56VFh0cmRraXRQS0wzNCByZGtpdCAyMDIyLjA5LjUAAHice79v7T0GIOBlgAAmIFYEYmUgbmBkY0gA0ozMHAwaQJqZic0BTLOwOWSAaGZGJAZERpBBAaQDQ5wNYgILzCR2BrACJqgVTExwmqAVmDICCiBL2WBmY7EDr+XMmI7AQXMzMDIwMikwMWcwMbMksLBmMLGyMbCyJ7BzZDBxcCpwcmkwcXIrcPMw8PAy8PIx8PFnMPELJAgIZjAJCiUICQMpEQYRUQ4mETEgFmcQl1CQkNRgkpBSkJJmkJZhkJFlkJVjkJNnkFdg4GBKEOZLUJBmEGEG+Y2Jg52VhZmNX0BQSJiPTUZWTl5BWnwaIzCooRHHoPj706cDfyaZHQBxJv68eeCZ3sn9IPbuPx8OrNnftA/EXl4jcFDOIRHMtvknffB7WI89iN3eyH+QVV3CAcSWYZY+2JSWA2ZXsb0/IPhYFMwOYL5xQMO9Gax+D9uKA011tWB2EG//Aa1oQbCaycwTDzz7twxs/l9epwPNcjvB7FXsIgdmH7sGdg+nVcD+Jr/bYPZd1oN79z1zBLv508PN9pu0XMDsc4+5HQLjnoDVfN212z6q9j3YnNjXbHv3xt4Fs7/dyXawePYCrIZpZqaDS04IWO9LhTyHhecXg9Xwv17qIJ/3Fqym8sk+B4l3QmB2wMPlDnf47cDu5334zuH5X2mwuM1bZkf7D9pg8bbX0o6FD5TAbOsMDUef9K9g9rJnMo7Kn/3A/o15weIobh4IZvtd/+AgVf4PrEYMAOAgpLsUtNu0AAADC3pUWHRNT0wzNCByZGtpdCAyMDIyLjA5LjUAAHicfVbLjtw4DLz3V+gHRhBJkRIPOcwjCILd9ACbSf4hQI77/9gq94zcAYS124QllMkSWST6Unj98/LXr3/LuvTlciml/c8vM8tPa61dvhW+lKfPX75ey/Pb49PHzvPrj+vb92JWzPEN7j+xj2+v3z52pDyXh1E9VULKg9bpOlRKq+24zm+1vJaHqFNkiJcHqT5k9L5B2rtPa9Phs1V1t8gNshOZtVnrYEukZI5ddL8hR0+HJ6kto7dd8CBw1owUtaLVxrCpG+Aoz7/pMuZUz2I10oaPDXLeztMjvQtddsm5i50ERh3eyA0k1aPtzi2NSEdi2lSSy2wqO5YiTHuvfTQbgeA6RObWp5YrkW4SM5hM05CwHfSokCHvKiBKaIjHLu9ylAhnFs2YLHuMkRY76FGjBoWYkYDUgTfbEogbtGXXngcVzdHmDoo6IZW9OV0RGS5tG5910irTwfAIP7vo1mfefEZEP2TXcSjfEdX2TtQ0LQ+oqfkuPJrmO1U0oXVh+Cnpeo8sPx///hQLz4YCviekzIOZpGxTAB0TObQNPzgAmX1Lt0MDjhT0RGeSg/fULZLFcrSJWzb69GHZt+cKRIdUe6hT9AMlw/YGOBCcbdJzKF1C+7anyUpNuEQ/8cAxoFPfAVkodr23RnWGhdquRTn10FXVwbEP1DYFU2zn0uRwOVsYesuqmnnujmN6kLQWA3wBjJlzG5vdhHGnoRg0CD1nk53Hz9eXP2bvbRo/vV5fzmnMW8+Ri0Wxc652Pufw5O3nhMSiLHkFvo0yzmnXsZznSOt48hxcwud+PimNyN0ckmNnkROyo1n8MFbkMIsipoccZrEU0oSRRRSzoNPI4iokCyOLrpAvjCzGaOFOo/etKsTo4qzMHs2ZUH3fWZyVnLmzOCs5w+jijF7Rw5y9y+xyZ3GG+IVGF2eIRmh0cVamGcbuZSvlEOWdPIXGFmdjnmHs1AGFkHe6oA54/MUYzSSEnWyovXulcf3xnwHvl/8A/hCVefX9Zx0AAAGCelRYdFNNSUxFUzM0IHJka2l0IDIwMjIuMDkuNQAAeJwtkjtuwzAQRK+S0gYogvvfhZFKfVzkCGpzhBw+s1RcGPbTznB2qPN90XVdj/PneV10Pj7fz6/zvNl3/7vJ/c1nf7gnP34fR0wrJh8HzzQOHq/DZxIFjYOmBYUCYUpW2jjWZDPxAqu5ZKlsRlUQNAsti0FzlbcwZ3kRD54SIblHPJN9yPSS8G2uXqY9o1S5E4QtbRc2b1/DsSt5rFm1mDqlTo0FR54cRLWJCSEaAgk7uYAJQjJt5HR74Rjiil7PI6pTLmwskt4s8Es2W6WMbUab8N6Ppi7D0yZuBMKT0iK3MJUgxF6Jhpokld1Eq7xVQtUqmcELu3csVIcSXwYjRZiWmRY3KTfZ61hIqTdidTbUEIgGVVenvcuavkoaJWZMuyoPdGDj1ZfSGhdnCWwBQ7autyhQDgZyuRCuhEWs2kOWhzTwrOpzjJ2zJZnrbsIdN4yDFS3af2PCJbVfCRUW8/H8/QNWf4iwWJsDEAAAAgl6VFh0cmRraXRQS0wzNSByZGtpdCAyMDIyLjA5LjUAAHice79v7T0GIOBlgAAmIJYBYjkgbmDkYNAA0sxMbBCahZ0hA8xnZGNIAClmgtDMQIUgmpGRzQGikM0BrJCZES8DopYDYih5mtkYYAIM6DI49SgzKIAci6mAm4FRg4mRSYGJGaiKgYWVAWg8G3sGEztHAgdnBhMnVwIXdwYTN48CI68CL18GEx9/Ar9ABpOAYIKgUAaTkLCCsIgGk4iogqhYBpOYeIK4RAaThCSDhFSClDRQG1uCEG+CtGiCCDPQNjZ2Dk4ubjY2Pn4BQSFeNjFxCSlpUfEoRqC7oDHBICP6SnS/SXijA4jz/ti0/WeqtcBsz039+1qld9uD2Ov2z7Jfs+QimM16ls0hTem+HYitduKgvZNl4X4wWznNoWmxDFiN1ol+h8Ui4mBxq+L9DitYruwDsTenX3JQOFEGViOzcauD4AIusF08bG0Ov7f9A4u/mhfk0O7pAxafsVPrgIW5PJh9TC3lgKNqDphdvG/hgbUPEsDsN5u2HBBYxwFmh/6ZfkCGIR9sTteigAOmnH1gdoyp+IErunv3gth+crYHJCz2gN2msJH5gCiX9gEQW2iW5oHIeY1g9vHIB/vjRFeA2VLb2vaJFC8Cs1dHKtlLvjoBZpdPXGHXvTkHzP6bLbi/8ag8mC0GAO7ThsntUv8LAAACm3pUWHRNT0wzNSByZGtpdCAyMDIyLjA5LjUAAHicfVVLbhsxDN37FLqABf4pLrqI4zQoithAm/YO3Ra9P0rONBkFEDq2CEnzLPHzHn1q9Xy7fv31p70/dD2dWoP/fCOi/WQAOL20mrTL0/OXW3t8fbi87Tzef9xevzcaLRfb5yP24fX+8raD7d7O0HWoATfpIDhCG3TYnuOn1B7bGTu6h1ijbsYDbAHkdqsTKd+qN+xi+RtfACVPxE4wwjUnxj54LHCaOOoIRsb5WlgHxAJnGQp2RQ7C8iCE0okF0PNA7hq6R2qIw1e4kTjpEoxDtiQFoK5ujgRqj0EDrYCCArEKBbM4zbq67geFcQSugLgdae7lWkZvBrTyEWlzEsegTB6mExFLH5EzPdwpICRygoExlj5WXc5VYFcfebcMd1lRAqsy58ykyTDLMy1L6bJCWiG1g4pkYriq5MgrpO9IExuCFTmr0fLMKs9ZukuoUiWTWZfUxdj9JI2iRpIYwnTFXYI9di6uUZUSgthXjhLu0FAp/qY0xEGMVlDaoaBuw7bcOkmsykn8L/kKQFHhgYIuWUyyK9KVXKByRkoGq5LSVqjUpDEmoArhprKEWrv8LlFwNoKUkXXykX6voFUq6EyZIq38WgzR5aFjv19tJAMqPgkTXkX1dLt+6E97x7rcb9ejY1GNoy/VBh/dB3PI0WMwhx6tBHPY0TFq6UdfkBzjkL/kiEPkkgNnLUsZxEm0UgZpUiduhicZbgHIJDcpgzrJqpYpmkk+UgZ9komUwTHJQcpgTLTHMjTTmzaT3P38/IkmLmMZoomyUoZ4YqaUIZkIKGVIJ55hGbKJTrLt+MQaKUNjYodUkg5Ipbq8f79qq2TiDgeLJzMrav32H5jz018tBV3fzbHLAQAAAVZ6VFh0U01JTEVTMzUgcmRraXQgMjAyMi4wOS41AAB4nEVRS07FQAy7Csv3pOko/48qNnQPh+AGrDk8TkGiq9QTx3by8Xo93q/r8fH85M/5+L+6Xq+7fLx9PfH78v04aHt5kC7bZNzrPHhzZvuSHaHFQGhLUXgu3hactU7eQtUDhGbZOmUzhcSibepFPS3O2rLAbhMBSbe3N1qCuXKdtq2Vazq8ifF0+u6SuknGRg1WbE/nmdyh3TxNkYkB0IwgmUFcJQY3Xd0xStKECLq5uSfUhEkvcKwyHQjcBGr0BJLAzuGb3IYE48k3EBZIByH1gNBhO63dx4wq0txzxBs5sTbqiFtLsQqdENSiKb9gu2FjWK8l2S9EntFrzKXYn00nHANC5AS/c450SVtwIy7xd49QphqMMuDnxFLVGNc6YkvWMGmrQN4XLEbXLYlNRyHlaFqH6Xp+/wCsaHP7KgqbvwAAAU96VFh0cmRraXRQS0wzNiByZGtpdCAyMDIyLjA5LjUAAHice79v7T0GIOBlgAAmIBYAYkEgbmBkZ8gA0syMTGwOGiAGCzuEZobRMHG4PEwDpgKwBDMjNgZEiSCDApBG53IzMCowMmUwMTEnMLNkMLGwJrCyKbCyA1kcChycGUycXAlc3BlM3DwJPLwMPHwZTHz8DOyMCXwcCSIgv7AxsrOyMDOxcXJx8/BxiJ8CGQn1KoPAi62LHbbc1dwP4rQuz3BYyHZzH4h944+2gyz/abC4TOEs+9eJa8DsY9U69lXiybYgtt3k8/YGz2bbg9isCd322RvUHUDsl71uDn8Lq8DiSVP99m8Xn24HYr+qXb1/isNNsLh9s8mBY2+/g9lvdAsPLHFwA7MDRPwPrNyiALar/n7rgZPqT8FsngUP9vPyx4HZl3Pm7Bd3FDwAYosBABs7UpVN3H4bAAABtXpUWHRNT0wzNiByZGtpdCAyMDIyLjA5LjUAAHicfZRdihsxDMff5xS6QIy+LNmPm2RZStkJtGnvUNjH3p9KE7L2gqk9FmP7N7Is/ZkNsv24fv/zFz4bX7cNAP/z9N7htyDi9g75AufXt287XO4v5+fK5fZrv/8EMiCPb6J/ZV/ut/fnCsEOtRDVXiucsJhJlQ5Y8GjjU4YLSIld5gNUluYrUMIjF2su6HCiUptJX4EaIBVGq36AoubSFmCNoyMyFzfN7VpVecFZcFSMyRqlZ/JuK86Pg7G1Zi1DZSSVBdeCk0LIShTb3Zvgyl+PcyMjDa1bJLxwr4Qrh4RJxk0lfGHG2p3bkqQkuTTGSnmZLtZVV2QW5iTFrSln9twjO0tSHiRLNXoUm92rr1CFywectFALOXDG7B2DXrH1cSmv2poeiTBXWqJ2uI3SMKNTXpCt174q+ut+/SLUh3TPt/06pJudh0A1hgwZao4htux1SComYEM5FMOHQDSmbeiAAu6j3BqD5qpqGqKpepqGeKqSpiGZqkGH0SnpeqzUKbV0GJsyqBHP8Juh0hRcpm1OUs6f/4Z43/4BXBXU+gNUdHAAAADlelRYdFNNSUxFUzM2IHJka2l0IDIwMjIuMDkuNQAAeJwlkDuOxCAQRK8yoS1h1F1Nf5DDzecSTlc+wRx+Cg8BQg+qePC+9L6v7bhwcWx///uFNW3v/dbXZ/Ou6jPaIT3C3GY7rXMBLDRglUToUWnaDu1eMdqpHRJeC9iIJGE+LbknXdwHk+1kQ0nMSEJMV1mMCZtZTXvMRJGgF8SVZFpMdh3WM2oYY5ms+iGYhz6iyPQkG12LzssipzxdXPmoWseKXpoPAyDZeBFos+wDGksBmj8gVZWN74ToWH+ggqEUoKoJ2v75AgkgRI/s0W4vAAABinpUWHRyZGtpdFBLTDM3IHJka2l0IDIwMjIuMDkuNQAAeJx7v2/tPQYg4GWAACYgFgZiUSBuYORg0ADSzExsDmCahR1CM8P4CDoDLM6IlwFRK8igAKQZsWiFCHAwgAUY8RjB7mABVsLMzcCowcTIlMDEnMHEzKLAwprBxMqWwMaewcTOkcDBmcHEycXAzJ3AzZPBxMObwMunwMufwcQvkCAgmMEkKJQgxJjAyZIgyJ0gwgw0j41RSJAb6FdWNnYOThY2Hl5+AUFu8Xcgx0IDh0H4/vJ39pXaXQ4gjonlUftfM83A7Kq4R7YBayTBbAm3qH1Je/PtQWyBmEv7y3l/2IHYkQwGB34t3A8WZzjaemD5sVYwe5XChANKZ6/tA7GZ8yMPPAncvh/E3nXq937lt1VgtoFPzH5d0f9g9r7tKfab/s3eC2Jn3hK0v2V5FCx+feI1e+sc5QMgto7yWvuZUxrA7EmX3Bwm1bGB2c87ox0y2JTB6qdtF3FYkHsA7LbXeZoO4VNfg90jBgAWWWQPvc7zYwAAAfJ6VFh0TU9MMzcgcmRraXQgMjAyMi4wOS41AAB4nH1UW24bMQz89yl4gQp8SSI/YzsogiI20Lq9Q4F89v4oKdeREgjdNYWVPOKSM6M9QF7fz99+/4H3i8+HAwD+5+fu8EsQ8fAK+QDH568vFzjdno6PldP15+X2A8iBKfbE/RH7dLu+PlYIrkDFmqobaBHqhh2w4LjmToZT4KqioQEXq0JqG5zAJVaJsAoHTpFIeYPTyPcFC5NQzTwuTU02wJpAKk0l7vhfTbXv3twSyKVXxGibinqP5BtgT6AWMuTomQpqJa4boN2BFcWtZ7VKXkcRn5GeSCniPRrOclWYbMcj4b0fb51YM6kbku3qJILTWyKsBZs2djnbtgBKfQLpouy5B3uj5jukDGRt3sUzZ2rKO0JJh+atN+GW1NZofl9pHS6Syk1aUpYdKe6QqZIUwtaQMychad+RT30gVUIlzo4itdGW0tSJi7B0zEzSq0UZG6CHOTmsFJ3XdL2i+u7dz5fzh0NyPzbH6+U8jw1nzNOhETIPgWZMr1NEnY6OCbTpW43o050aYdODGuHTaBpBq51oDLS4RvONvFgjpyH8YgHNgXSRmsZQF0l1rLRFupyGMItEmgPZIoXmQL5wruNL9E7V4AMnHUz/9vBK/0p2zh/ft3g+/AVUY/hZUwgaxwAAAQR6VFh0U01JTEVTMzcgcmRraXQgMjAyMi4wOS41AAB4nCWQPW5DQQiEr5LSltaI4W9BT6nSpPMBolSvjXwCHz5gb8V+zA7D3j9PPM7L7ZRzjnz9Xae83K9z+3l8/+LjeQFlmC8jxU6sA+TGXQilK3wdTAC7ShNjwNZxYxJ0LxdTaVhqM1CYmjayNNvZSGg7syyQ1caIjJCsDdgc8gLOWrXa0lCu466ktW21o6mgXt4Vu/WtqmRMzC4zOlaOrkomQ6NSk5cb70CUDfSorTW62Uxnxdihujqg98gcoi7RM43Gvp8pgSNGAsZItNPw2zs0EnsdQiq60Svr9tQYEjaz+lONfV2f/9v1ULHm+kTnAAAAoXpUWHRyZGtpdFBLTDM4IHJka2l0IDIwMjIuMDkuNQAAeJx7v2/tPQYg4GWAACYgZgNiViBuYGRjSADSjMwQmokJlWZGk2dk5mZgZGBkYmBiZmBmYWBmZRABGSkeBJKDms/AJvDH/MC/jwn7QByZw3v3345eawdi35CYve9km9h+EPt8Xrd9UffnPSD2LVNBB6GLJWDx98uW2ac47rIHscUAezkhR5UoSoMAAADzelRYdE1PTDM4IHJka2l0IDIwMjIuMDkuNQAAeJx9kVFuwzAIQP99Ci5QC7CxzWeTVFNVNZG6bHfY/+6vQafMrRYV2xLgBwYcwOU2Xb6+4U94CgEAX2xVhc+EiOEKrsBwejvPMK7HYfOMy8e8vkMBsQhbz+RxXa6bh2CEA8dWcy0IB4xMWmoCjHiXHstOUsyNhardp9REaQdMDto9snJ2TVpVzTtkNpIiNk2kDlpENfd/UAzkyKUpsYMqJZHsgOWeMaE1oaZkEeK9Gk/z9DSG38EMyzz1wfji3r0ZkHqPZCf3RsiO9HLdLI+PPaZ2e/st08MPHRtifhNSSUsAAAB7elRYdFNNSUxFUzM4IHJka2l0IDIwMjIuMDkuNQAAeJwVjDEOBDEIA79y5a5EUDAhgFLyrX38kc4aj11V9dRbv+8Z4PDlm8ZkSG5XOkN4BQw0WTUspVHHicS6noVnLjrCM1JxUXeO3HTA2NGLZmlbxa6mU9KpX80E9H5/masaAEG5Gv4AAACFelRYdHJka2l0UEtMMzkgcmRraXQgMjAyMi4wOS41AAB4nHu/b+09BiDgZYAAJiBmA2JWIG5gZGNIANKMzBCaiQlCM+MQZ2TmZmBkYGRiYGJmYGJhYGFlEAEZKR4EkoOaDzJcwOH65lh7CPeA/fXNd/dB5VQQbIf9QPZ+BBumXuAAjC0GAEKoGzDKyF/tAAAA13pUWHRNT0wzOSByZGtpdCAyMDIyLjA5LjUAAHicjZFRCsMgDIbfPUUuUElMtetjW8sYoxa2bnfY++7PImJtoZQZheT3M5qoII6Hv3++sA7jlQLAk9m2LbwZEdUE0YF+vN4CDEvXZ2WYX2F5ggMrJ8T2ZLfMU1YIBjDaWEknnL44h0YOacSkZM4IR9omtUJdMyPxAcgCruoZWAso+026uiLdsEFLB6TdkSePdBH8p5ox+F0XUl/6OfjSl2imlC8BcCmSZNWllBja8l6S5baXbVPHOH+W+OoHB0FhrfjW9AsAAABhelRYdFNNSUxFUzM5IHJka2l0IDIwMjIuMDkuNQAAeJxzdnbWcNZ0dlao0TDSMzLVMdCzMDMzADKsDfVMdXQN9EyMjQ0MjXWsDZA5QKY5UNZQz9zYyMAUxkfo1UU1S7MGAD9KFLuUEU/JAAAA23pUWHRyZGtpdFBLTDQwIHJka2l0IDIwMjIuMDkuNQAAeJx7v2/tPQYg4GWAACYg5oLiBkY2hgQgzcjMpmACkmNkYYcIMEEkmJjYHDSANDMLm0MGiGZmJIbBzcjAwsTIBDQXqJOBhTWDiZUtgY09g4mdI4GDM4OJkyVBhBGolI2Fk4OdjVW8CWQl1H0MXCHSxQeEk3/vA3EMUyUOwCQOO7Ad8OvaYw9if1s2f79wcvV+ELtRS88Opn6NxQsguxqsprDqvT1M/Ts/BwegGjuoegeY3j0vloHUgNliAN7BMEOgLyWRAAABKnpUWHRNT0w0MCByZGtpdCAyMDIyLjA5LjUAAHicfVLBbsMwCL3nK/iBWmBwsA87NElXTVMTaev6D7vv/zXIlDnVOhOIbPJs4L104PY2vX5+wa/FqesAsOGlFLgxInYX8AUMp/PLDOP1OGyZcfmYr+9A6L4+99jjdblsGYIRDhy05CQMBwxSrIQdCbhaPRsdGQNnIu133/8AGWYHYlFFBgqisSg9AIrfSCEaIK+1SybzB8hkSAykiFmaTfYrUBKnpNC4UA1HISuWKK0Ws+HYspIpQ6NuMVwMGolFmpOYIl6ZkY0en/7f0qd5ulPqR7thmaeqHZkqpuDz+YmrTJ7kKoZvpVJOFqnyahvoK3tioZUksciVC7EodWSxoP1k4q+0H2Dfru+339TW3TcZ4ZBTN20zuAAAAJ96VFh0U01JTEVTNDAgcmRraXQgMjAyMi4wOS41AAB4nE2NMQ7CQAwEv0KZSI61tu9kmzRIR0HFBxBVHkGTx3NBIonlYmTtjtur3R7v4Tm2RZZt5LIOk7Fn1EITuCQyaZ6ULUSC8GOkOwkX1/R+ENaOseUzpC/NYHEgzo4O1Wp1OlLC4Ug9VMZACaW9pOwqVs5qYYNl//ZvjfS5X4WxfgEEyCtfFyolIgAAANl6VFh0cmRraXRQS0w0MSByZGtpdCAyMDIyLjA5LjUAAHice79v7T0GIOBlgAAmIOaE4gZGdoYEIM3IxAammRC0gwaQZmZhc8gA0cyMxDC4GRiBRjEwMQM1ZjCxsCawsmUwsbEnsHNkMHEwJ4gwApWxMXOws7GyiJeBrIU6iYHzX3bjgeDAClsQZ1On6oFJWy/bgdgJy4/tf26ksx/EXr/mwN7UXYv3gdiS01fYSTr324PY0Yee2H/O3QNm6083cciecxSs93mdpMP0U21gvYWHCuwLv24Gs8UAx50y1HgYIusAAAEoelRYdE1PTDQxIHJka2l0IDIwMjIuMDkuNQAAeJx9kl1uhEAIgN89BRdwAgzzw+Oqm6ZpVpPW9g593/unYGNnN5kUJAH8BoFxAJf35e37Dn/CyzAA4D+PqsJXRMThBu7AdH15XWHeL9OZmbfPdf8ANUXXZ/Kyb7czQ7DCKAFFJEbAgBkzizuHtKMMM4wcUs2JrWoQiqKpA0YHKaREWiOMGHJhO9MhxUlLq2BR9yJpqdQhk5H2mpVLBQpEyrH37WwchVILWRkKUpiwxxXjOFSmwtUL16RJO1w9uGiDFPShMEVMtQPq0aANIrk4KJiUe+B1XZ72/3sj07Yu7UZcue3dAohtu2QmbYWuqe3JAshtHWJW2tRiVttwYqZtBHF7bPSxLY/PX8z84Qey8YO0Zh5qigAAAJh6VFh0U01JTEVTNDEgcmRraXQgMjAyMi4wOS41AAB4nB3NOQ7DQAhA0aukTCSM2Be5dJ9L+Bo+fCBToSf4872um+99/HrehyGZmQIhBYWYwXkIeoWvGau1DzG6cxcchJESLmNz0kbZtqrcWQznTNKSBYzMLZNjzEpesBSeFcESzs1reXuvaJcmzDfkSrGZSVv8ychb4fP8AHgAJn9ACmjXAAABtHpUWHRyZGtpdFBLTDQyIHJka2l0IDIwMjIuMDkuNQAAeJx7v2/tPQYg4GWAACYgFgNicSBuYGRjSADSjMxsDApAmgXBhdDsYJoJqoyJCUIzM3JA5OHiHAwaIHEmNgcwzcLmkAGimRmxMaBKYEYqmICNYoGbiSEAUwnVyc3AyMDIBHQdAyMLAwsrAysbAxs7AxsHAwcnAyeXAhd3BhM3TwIPbwYTL18CHz8DvwCDgCALo4AQg5AwC6OQCIOIKIMoV4IoXwaTCCg02LhE+Xh5uNn4BYRERPnEhRiBlkIDi0EsU/zxAaZ7p/aDOEueXDhQNsdzH4h9f+O+A0/KZtiD2I7+fw/wx+2zA7HZq5YccPrrDFZvyVJ7IPSYNFj8v57KAXnPq2C9sz3FDxyb8hmsJrhuw34PLwawOdoCYjbP47r2gthnuGfa/1oUCRbnbKqz/9cp6gBiR0zgdtjiGgBmT0pNcdB6oA1mf/UqdLheOxOsXlxgqUNHqiKYfbJptUOJfDTYrrS31x3ORG0Ds+91tTqosT8Gsyf87Xa4tCTgAIjd7GDkIGwzCywuH63qsFpyAtj9YgBxgWZgseqQ1gAAAiJ6VFh0TU9MNDIgcmRraXQgMjAyMi4wOS41AAB4nH1U244bIQx9z1fwA0H4jh/6sEm2q6raidSm/Ye+9/9Vm2w6pEJlBmswBwM+x3Mo2b5dvv76Xf42vBwOpbT/vO5eflJr7fBe8qOcXt++bOV8ezk9POfrj+32vSAWpFgTzzP25XZ9f3ignMvRanPVZuUIVTp7iyW1jbavxURqFTSHVo6tgmvvukBSIqW6OAIVCCAA9gWQ75s7BJJjngw6wAIoZcuIQN5dc29TkU4LpGZIir2JxjwIwoj9L9ASiFVUSHuGZFCxVcherokkpZ5IqN7QbXUfz5gQ1+hdJOalAdAqZCTwOtx59dy8qYmujglJUKZQdByuR0xehkx+WnVnsCC+EqmwrYBJD1boTbsUqigc7wqY9FBkqGtoDmvARZYRZQDNGoY7DxvXWp4x2QkapSPkjkqNZaUgsAEkcYvgx7y2OPsKmexoNTZDz+QzsvIyZrLDFYywYSLNIkUrJCY7HDSyNUo1obamy5qAkUvrAn1IAxu7rKSBOJAhWu2ZQ+zAy2O+bpenAr2X7Om6XfaSzQf3uoxBob34csh7ieVQ9kKC6LpXC0S3vSYget+Fn0Pf1Q3ZZxHDMDCJldMATqrkNECT/DgN8KQzTgMyCQqG0Uk5MIxNEoFhejl/fvsEkyDufp+IhzRB6xMS24cfJjohDeJEG6fZ74j04ZGZsZmfHD9+x/F9+AMe1BkfnncdvwAAAS56VFh0U01JTEVTNDIgcmRraXQgMjAyMi4wOS41AAB4nDWQPWpEMQyEr5JyF/yEfizJyjYBN6myVaqQag+RZg+f0YM1BuOPGc/Ie1/2Fftr78v9uu8PeWDpQ/bP/vj8BXudW9+elyOJK0LGIeRr1rgdQa5ZIExSsVaAOZWXyhAgEQNJKgEaTJayRE6RWFX7MtxXqww+swWVuIpOICUPt2zZlPC0k1nYyi5RrLWABO92NpMzEqFiYu5MxMPLkQ7PuHUlj4RwQTlPYdWU1IFnDU3GTUkWRw0j9akAhhLIU4rlHn3PZD3HQ0Qb0B8GJl0yZzTJ5VJdUXkWyCRJ0waZFiewnBgCKcEM4GRe6HF0N6/+3SBIMDNcU2d4i8QXvpYpjCfKXMff97skKg8phD3/AdFKYC7QCzu2AAACCXpUWHRyZGtpdFBLTDQzIHJka2l0IDIwMjIuMDkuNQAAeJx7v2/tPQYg4GWAACYglgFiOSBuYORg0ADSzExsEJqFnSEDzGdkY0gAKWaC0MxAhSCakZHNAaKQzQGskJkRLwOilgNiKHma2RhgAgzoMjj1KDMogByLqYCbgVGDiZFJgYkZqIqBhZUBaDwbewYTO0cCB2cGEydXAhd3BhM3jwIjrwIvXwYTH38Cv0AGk4BggqBQBpOQsIKwiAaTiKiCqFgGk5h4grhEBpOEJIOEVIKUNFAbW4IQb4K0aIIIM9A2NnYOTi5uNjY+fgFBIV42MXEJKWlR8ShGoLugMcEgI/pKdL9JeKMDiPP+2LT9Z6q1wGzPTf37WqV324PY6/bPsl+z5CKYzXqWzSFN6b4diK124qC9k2XhfjBbOc2habEMWI3WiX6HxSLiYHGr4v0OK1iu7AOxN6dfclA4UQZWI7Nxq4PgAi6wXTxsbQ6/t/0Di7+aF+TQ7ukDFp+xU+uAhbk8mH1MLeWAo2oOmF28b+GBtQ8SwOw3m7YcEFjHAWaH/pl+QIYhH2xO16KAA6acfWB2jKn4gSu6e/eC2H5ytgckLPaA3aawkfmAKJf2ARBbaJbmgch5jWD28cgH++NEV4DZUtva9okULwKzV0cq2Uu+OgFml09cYde9OQfM/pstuL/xqDyYLQYA7tOGyQQFIxwAAAKbelRYdE1PTDQzIHJka2l0IDIwMjIuMDkuNQAAeJx9VUtuGzEM3fsUuoAF/ikuuojjNCiK2ECb9g7dFr0/Ss40GQUQOrYISfMs8fMefWr1fLt+/fWnvT90PZ1ag/98I6L9ZAA4vbSatMvT85dbe3x9uLztPN5/3F6/NxotF9vnI/bh9f7ytoPt3s7QdagBN+kgOEIbdNie46fUHtsZO7qHWKNuxgNsAeR2qxMp36o37GL5G18AJU/ETjDCNSfGPngscJo46ghGxvlaWAfEAmcZCnZFDsLyIITSiQXQ80DuGrpHaojDV7iROOkSjEO2JAWgrm6OBGqPQQOtgIICsQoFszjNurruB4VxBK6AuB1p7uVaRm8GtPIRaXMSx6BMHqYTEUsfkTM93CkgJHKCgTGWPlZdzlVgVx95twx3WVECqzLnzKTJMMszLUvpskJaIbWDimRiuKrkyCuk70gTG4IVOavR8swqz1m6S6hSJZNZl9TF2P0kjaJGkhjCdMVdgj12Lq5RlRKC2FeOEu7QUCn+pjTEQYxWUNqhoG7Dttw6SazKSfwv+QpAUeGBgi5ZTLIr0pVcoHJGSgarktJWqNSkMSagCuGmsoRau/wuUXA2gpSRdfKRfq+gVSroTJkirfxaDNHloWO/X20kAyo+CRNeRfV0u37oT3vHutxv16NjUY2jL9UGH90Hc8jRYzCHHq0Ec9jRMWrpR1+QHOOQv+SIQ+SSA2ctSxnESbRSBmlSJ26GJxluAcgkNymDOsmqlimaST5SBn2SiZTBMclBymBMtMcyNNObNpPc/fz8iSYuYxmiibJShnhippQhmQgoZUgnnmEZsolOsu34xBopQ2Nih1SSDkilurx/v2qrZOIOB4snMytq/fYfmPPTXy0FXd/gjRflAAABVnpUWHRTTUlMRVM0MyByZGtpdCAyMDIyLjA5LjUAAHicRVFLTsVADLsKy/ek6Sj/jyo2dA+H4AasOTxOQaKr1BPHdvLxej3er+vx8fzkz/n4v7per7t8vH098fvy/Thoe3mQLttk3Os8eHNm+5IdocVAaEtReC7eFpy1Tt5C1QOEZtk6ZTOFxKJt6kU9Lc7assBuEwFJt7c3WoK5cp22rZVrOryJ8XT67pK6ScZGDVZsT+eZ3KHdPE2RiQHQjCCZQVwlBjdd3TFK0oQIurm5J9SESS9wrDIdCNwEavQEksDO4ZvchgTjyTcQFkgHIfWA0GE7rd3HjCrS3HPEGzmxNuqIW0uxCp0Q1KIpv2C7YWNYryXZL0Se0WvMpdifTSccA0LkBL9zjnRJW3AjLvF3j1CmGowy4OfEUtUY1zpiS9YwaatA3hcsRtctiU1HIeVoWofpen7/AKxoc/vGjxbYAAAB+3pUWHRyZGtpdFBLTDQ0IHJka2l0IDIwMjIuMDkuNQAAeJx7v2/tPQYg4GWAACYglgZiWSBuYGRjSADSjMwQmomJjUEDSDOzcEBoJnYIzczmABFnc8gA8xmJYjAoABksCLMhNDtYmBldGGaFAIRmwmswmlYozQE2mQnmKW4GRgZGJgYmZg0mJhYFFlYFVrYMJjb2BHaODCYOzgROrgwmFm4Gbh4GHl4GXj4GPn4GfgEGAUEGQaEEIeEEYZEMJhHRBD4xBjFxBm4JBglJBkkpBi7WBHFuBlFBoBwz0BI2NnYOTi5WNh5ePjFxblYhQVERYXE/RqDt0OBmkE4UjnOwOdtzAMRR7Ih38J5rCWY3K/I6PIvmALOnSKTarxU3B7Odp/E5PK9S3A9iLyxMcliy8LQtiC2fM8shaaI2WPxc5BGHSbdLweJ6IkcdTFcetwex7z+Y7cAgJuoAYic8S3Yo3nIGLD5pX4H9fi0+OxD78rPzdiqLFoLNKZ7euV9F6gCY3ZLIeGDxqjX7QGwJrYQDQa7CYPGP8X0Hls4UA5tjfWTvAc/gzWBzrpRePrDoYQ1YTUkh48HitY4QtgPrwXsllmD1/0/cP8DkuQXMLo7dt/+yTQeYfdzrzO7LW5aB2RyM3+zzvi0CsztEttu/19UBu18lWsqh6lgJmC0GAEpWfuS/I4KJAAACgXpUWHRNT0w0NCByZGtpdCAyMDIyLjA5LjUAAHicfVVbbhsxDPz3KXSBFfgUyc8mDoqiiA00ae/Q/94fJWWkqwBC1xaxK89SJGdIX1pdP67ff/9p/y66Xi6twX++EdF+MQBcXlvdtKeXr99u7fn9y9PHzvP95+39rZE1inwnP5+xX97vrx872J4bdxkRzO2QLulZuUGHeZ2v0gMYNFzaQT0AiMYGyAmkTqBoUEBkGBAboLR77npIwCigD3CCDVDbrTySBWE7oA8Gc9oAx4xR2dG1fo4Q2p1siZPupJn2dGiAbhugJ3BkBhpj1mRk0rLBxQOnbsgNu2q44gaH8DjZkHKbOlPI8B3wwYtm5XiUxwjSXYRYvEAPAYFyhOzOugPyBErmoN4O7DTIxjZISWQCwCRY6k4BLLZhFjVJHRCqWZWS2Yh3Ncci58iUoMpeUDXNCHbQ4qe0mGrD4lndaUs4FkGH9mAgKGI43cs2/Whv7Rg9NYal9CyZW+pkp/Qi6fCUD2BmnVDTofumwAeUM7xZdSORbfpUPOX52WeU4sQkwsW2x/Oj/OKWkk8kDGHd1YkmUbU/KInCnlXg2MapicSe5Qwol2SM2zJlR98rOIYEpEBHAMNO8WSzzQUx65lKdZKBO+DL7fpp4DxG0NP9dj1HUH3oHDT50PgcJ/nQ5BwamI96jgbMNc4BILns7HPJ5Wc3S644m1Zy4dqcUgZx6cJyj7R0G07DS1vhNLK0D06jS5fgNGNpBpzGFs3jNL5oW8pgLBqWMrRKVcoQLoqUMkSL8ubpxIvCsAzJoqSZF+miGCxDY5EGliFbNCBVoxPiBZGlYFQhVwS+6mFlv54//rzy/vIXy25Pk7P+iLsAAAFLelRYdFNNSUxFUzQ0IHJka2l0IDIwMjIuMDkuNQAAeJwtkDtu7TAQQ7fySl9AFub/gZFKfbKIu4S0WXwo5bmSCQ7nDNda18fX6/N683t//Fp8ra/1WuvzWust0L4Ff/zv59Jp0a3jtmlE5OOB0hI1bplNJDoemULOuRVWCh4PzWprii1VUMkxSbaMm2Yo5ZZ0uhb3oEndJm3jsVnieUxJXDmeQKZ3bFPsdX0kr+TB073Lz1SyDJmKkDzBQYiDocG6edrIqJDCWqWY4dnCvUMklY9gSspIiaZzlTEXDwWS/R1lQHBcjpmQRC5elLbrwSpC/oODSXibaKrm4b3BQ//P8vS/SfSJHhlEXiW7jttnKwkUhd2AdMdE99KABLzt+MKN4IEpxeykF+qjU2x6uOuZQ+msW+vK4jqoVuBBFoXpRkClFKLYxFNPta+fX6p9bjR+5eLsAAABAHpUWHRyZGtpdFBLTDQ1IHJka2l0IDIwMjIuMDkuNQAAeJxljz0KwkAQhWdnk83m10a0TSES8BBJ5QE8Qcogam9nJdhaeAPT2djYJTmClU1AsLTyCu6SDAk6MLy3H29ndj/F5QmqfGgKVQeqB6p3TEKklKNo1BAJaaaVs39jNRHeAWgBpHo+kkoItf5iF1iEDEPkGXIjNcwMTZEKK0MmQ2mD7YDjguuB54OFqS9hqN8suGEKC4XtuJ4vx1eFWPslCFb3/Hxbzyp9OD325019KrV/zfP4tq6Lxk8T4ovlNiGu/XFyiClznLxjutvxvOzm5GUvX1FezamIa9/bW9He0RcmZ0n6MbM3wwAAATp6VFh0TU9MNDUgcmRraXQgMjAyMi4wOS41AAB4nI1TW26EMAz85xS+AFEmD5J8LrCqqmpBare9Q/97f9WmAgepIBJsBWti4xnTkKz38e37h7blxqYhsidPKYW+vLW2eZAcqL+/vE40PG/9Ghnmz+n5QQiEyHd477G35/xYI6CZWmvssqh1pks5JtAW2u46GmokDI6QnpEwrhTrs1wJ7gAYGOhMLNmm7jRjZKA3uSRwU2cZuxoIYxOCK//gEk1aGSa7A1yuWznJVzhfe6lnWOHxSk5AkFe+Ek5UvNI3RJv2EpUIu/Jn8tyncTdUf2PWz9OoY+bEdJYk4HVggpiOheyo4vMLdSpxYEuqZGDLKphkLqoLxGr2sThULGNxrmITi/MVa1hcqMgJXEsRURBBCwslNQHyvv6jfG5+AVmKvjfa89kuAAAAkXpUWHRTTUlMRVM0NSByZGtpdCAyMDIyLjA5LjUAAHicbY47DoNADESvkhKkteUxS9YrlMp9OIR7TsDhQUEQpKUbjd585o93gYhYAv0X7rM7XmsniZTfxcaSpl2DcWiw1io5kXDW3UGalMdqYjdoYKsFuEOnBZaCPPxTYNOfcTZfBD1sUUs1RdRs0cMham736wb+YjdJyX6LkQAAAcF6VFh0cmRraXRQS0w0NiByZGtpdCAyMDIyLjA5LjUAAHice79v7T0GIOBlgAAmIBYHYkkgbmBkY0gA0ozM7AwaQJqZGcZng/BZOCA0E0SciYnNASLO7gBV75ABphlhEnADEBJoKhBaoTrgNC4duM3kZmBkYGQCSikws2gwMbMysLIxsLEnsHMkcHBmMHFyMXByJ3DzZDDx8Cbw8mUw8fEn8AsoCAhmMAkKJQgJZzAJizAIiyaIimUw8bNlMPGyJ4gJJIgwA81mZWPn5eNn4+Dk5uFlZxMUEhYVExCXYwS6AhqMDOLcCRIOB/5OPQDiLJ8zzd5uXxGYzX/KZx9bfg+YrbB+jb1uojCY3VKk57C36dZ+ELsjVsTuivsWMHtVxSK7GyrLbUHsWU/O2zelBNqD2DXvnBzenVtrB2KfrGh12J69Ciz+8Nsmh+SoKDC7+ke5g0ygsQOI7ftHxiH+QyCYnf1ppX1iiRCYvcNWbd+8Wlkwuzrbc/+rjB6wXvkygQOlb33AbNlP/gde1nwDs9ezTT+wq+sCmB0QtuzAw0khYDd8SL56wPDv1r0gduCMtgNLnmeB3Z8kqn/AjVkezBYDAChVc+qOpjfOAAACPXpUWHRNT0w0NiByZGtpdCAyMDIyLjA5LjUAAHicfVRbjtswDPzPKXQBC3yJIj83yaIoinWAdts79L/3R0llE2tRoXJEWPKIIjnDnEqO79dvv/+U56Dr6VQK/Ofn7uUXA8DpreRLOb9++bqXy/vL+bFzuf3c338U4kItzsTzGfvyfnt77GC5FKpsYEplk6rWKU9VGOM4SmUvWLGrNi0b1+5kigsgh8cNKkagDumSzVrjBVICiZXFwaVsEQWQgS6ArdwiyE6tS3jE2qEjroLU8BhXi5hZAgVMhBbAPoCMnannZ0PFVYg2slYSVInPht0jhH9xHv64grR7Aswu6gscBjtFoozBY8vkGQVXAWIS02pzUk6P1siXmcTpvNq6NMGokgEarYqIPKiWRhYS4hq1Jl8CP3ihHlWOE2TGS/6Cgn1QrcTS0rdCyGKF1LsoummPO7GCq7clMpkJLQTXhFlpAxC3FdISGXmIY7jC6tRCvStkshNC7OhNdfDpEfFK5EnP1kK8BqPsBL0tM6LkZ9OqatIgc4PQnC6hdL+eQME5oY7hdRUp8T37zpHK8KqEIecF9HW/fmrke2ufb/v1aO186GjgWBQ+2jSXcvRiLEo7Og5jqUdfYcx+dI/EtKNJJKYfvSAxcdY8DoOTuGXs0KRiSYM8yVXSoEy6lDTYJgHmMuQ1CQ2H6ZOgJA3aJBxJgz4JRNLQLARMQzgRLmOHJl4lDfFEn+Ttz8vpI+Tn3ZQRB+yIL3mcWcv148883k9/AdZaI8gYPSD+AAABLHpUWHRTTUlMRVM0NiByZGtpdCAyMDIyLjA5LjUAAHicJVC5bcRADGzFoQSsFvwfHBwpt4tQfhW4eA9tJSsMyfnuh5/nOa5HnuO+j8/v8+u4z/t8K9D7xEzfgoc/fo4rdkSZr4s2VVVwrdflm7vIFm2h9BZAtpPbc/EOaVEgusWaHUiLRwORLZ7COCsi62GinRXZgS3qaF8v2sqpkmsEOVhlMDaD+rp4G5XZevFWa+oFUiUpXi/ZCXqbnaRknh3OiFiwki0Vs6NF+IHdqPyzCe7GN5BWuc9ZiHGMTc6Glm4yr/Gt2jZRDMyEI7hQNkj5Rg0xjZRLm8xRpbktQVguHW3DaKGWIv0LIJmMuVSp/zsJUXSNzaD8byzVo6b9EOYJDp9CMclpN6P9XOfPL14YYBFNr73DAAABjnpUWHRyZGtpdFBLTDQ3IHJka2l0IDIwMjIuMDkuNQAAeJx7v2/tPQYg4GWAACYgFgZiUSBuYGRjSADSjMxsDhpAmpmFzSEDRDMzskMEkCTQFLAx4JIggsHOADUdbD0TE8wwDgjNxM4AVsjEyM3AyMDIlMHExJzAzJLBxMKawMqWwcTKrsDOocDBmcHEyZXAxZ3BxM2TwMObwcTOp8HEx8/AL8AgIKjBJCCkwMaYwMuRIMSiIMIMNI+NkY2VhZmJjZOLm4eXg52PnZVFSIBf/B0oBKChwyCssi3X/opp8wEQJ+1Y097UfDsw+1Lckf1zigLBbNXNigciyzjB7DWyzAcablvuB7FvCIrs95p7ex+Ibfjrst2N+8fA4glGN23PPEq3B7H3N5+1l3WLA7NdV4o4LPz2FKx+0sISh//6P8Fs28jJDvt5vMFqRE5XOHQLszuA2McvSThsr+IEs2/uZ9r/uEoQzD6V93v/DF1NMNvC3uvAh4J7YL2nrvYfaGSTBosnL/M5sJ2pxA7EFgMAN4tgwOYCr0sAAAHselRYdE1PTDQ3IHJka2l0IDIwMjIuMDkuNQAAeJx9VFuOGyEQ/PcpuIBRP6H7c22voihaW0qc3CH/ub/SzciBlVDAtBlU0zRVxZxKtu+3b7//lH+NbqdTKfCfn7uXXwwAp4+Sk3J5//L1Xq7Pt8tr5fr4eX/+KOiFMN6J/hn79nx8vFawXAtUJ9OG5SwVATjfqjDafJUCeI7lxqZazlS9q4pvkJxIrMqCIuXMlTo1gg1Syj0zKTVVzxlKN7ENUjMnVRBr1rKOSAnQNsh21Knd2HvOhMxZNsg+jh5FAtooWLlvU9oAIjRQTrJADXYJPXBYA6WWuCiVtG9wGBIVqkxkjKNE8Tj5DpnycDUibgfSWvPd3pj6SGwuTXLz7oyNd0A+Ulpn16gCEbTtKEc5qrRubQDFEHUH1JQxKEfoEkYJvRlpi2yHNTxqDM6pxr/AdvMUJ6yDDTAAWDv3YGGHtPJI44qLBYcUelMYbof0rDNyem+aOhMb+Q75fr99uiTHtbk87rd5bbLTvBwSg+cNkBzT5tl1ejkeSpuGlRh9uhLj0ab3MIZPi0kMXK0kGRAXy0gGpMUakgF58YBkQFnEptxLF1FxhLaIhyP0RSTKgLaIgWPFF9IlzjSZGgXLPBENKn3Sk+SvVOfz6+sW89NfpV/3xYA0j0kAAAEDelRYdFNNSUxFUzQ3IHJka2l0IDIwMjIuMDkuNQAAeJwtkDmOAzEMBL+y4RjQELwPDBxNbj9C+b7Aj19KayUSCs1mQfek+Tv5dR/P9+N+Pe9jylxHHpMn/XwOhOI0p3EqEKLwuE4EdEmzcTJUWD+uk8BESccpwMG+YgzGbr5SpJG2EWp6ja7oEKI3E6AK94HAklz8jxyJBkFI5CIKWtoVDMrMsReWa+sw9KW0tYwwtAmHkIwL29jRpKsLLVHHRdDAskl6snURgzCnLCXVatFxCSSz+EbpXj2nPaeuPRcl5LJDGVK9jQi/RRnpC2jSVyhSKnYRZ4kup/4lpBzrx0yCxuPzB/pTUBvwrAosAAAByXpUWHRyZGtpdFBLTDQ4IHJka2l0IDIwMjIuMDkuNQAAeJx7v2/tPQYg4GWAACYgFgdiKSBuYGRjSADSjMzsDApAmhnCZWKC0ewMGiBhDHE2iDgLmwOMzgCrY8TLgKiFm4lHL0RGEOwobCaABZgYuRkYGRiZGJiYgYIMLKwMrGwMLOwK7BwaTBycCZxcGUxc3AncPBlMPLwJvHwaTHz8CvwCGUwCggmCQhlMQsIMQiIJIqIZTKJiCmyMDGLsCrwcCaL8CSIsQNPZGNlYWZiZ2Di5uHl4Odj5gFhMlJ9NQFBIRJRfXI4R6C5ogDKIX5U64MC/Vf4AiOMoMcWB+9in/SC20b8oB88SI7A4908mBwclHjA70+eD/enfRmA1bRGuDnyqrnYg9rV1fQ6H/57fB2KbtTDYm8w9uxfEnrTtsV0E02Z7EJvn5gt7+7f/wey3hv/sHeLiHUDs83bu9mYaPWD2/+kS+3/eKgSzD3k6748sFgKz2Tp4Dzzn/wzWK3DL+IAxNxuYfeZJ54G1kiJgtmXa4gMnjQ3BbnvyvufAe2VGsJsDC5cd8CkPArMdPlge6F3OAmanvGU7sD/AF6yeOVJpf6hJF5gtBgBPE23ke0lJ0QAAAj96VFh0TU9MNDggcmRraXQgMjAyMi4wOS41AAB4nH1U0Y4bIQx8z1fwA1l5jAH78ZKcqqq6jdSm/YdK99j/V21WOTgVFYK1yw429oxzSjG+3779/pM+Bt9Op5ToPz8zS78yEZ3eUjyky+uXr3u6Pl4uz53r/ef++JE4J65+xudn7Mvj/vbcQbqmuhFlbiWdeRMrEqd8K8Y4ymlPslVuVpHO2NRqrbYAZveYN2G02j021Sy6AIoDeSOpUiiAUCtGC2Dx0B6wtZw5nWmrZihlAaw9NGkuHAFhXFgWuOY42aSoSncoVDnnBVAdSFshJrQAwgtlbQG0DhSRVtjvmk0LrYoDZydygcFvhs3ZFF4VB+hA96NOuNfTCGsg99CtaSb2rHIzW4cOYjyHYpVquPQjtqw35EC2yiriHLEqr5FBjVPHgHCLxEyNV5VEcONIBUGDk8K50jKhYOfsiZChRSKlacGq6Ah6zsVZqcx2KINhK/XCDqdCXu4cF3FGFav47BS9h1snPbsqzjnyLxkrLI6sjFxx1t029rmC8gEFKed+WQ1ZrWrlBdx7NlnQerNRs+YO/oW+7rdP7Xw0+OW+30aDx+TRxv6S8mhW+JLRkvBVRuPBVx3tBV9tdFF81dEr7MtGR4gvzMqXMMAkcQkDnrQsYZAn0UoYyCRODoMyiRDd1ElsEgZtEpWEgU7ikTCwSSMIw7MUpO9gIlzCME+8xquTNtEHL85ARFV98yM0l3Aro1Yc9w1HdeZ1ZjHen3/x/nz6C950J+wAwkjdAAABJHpUWHRTTUlMRVM0OCByZGtpdCAyMDIyLjA5LjUAAHicLVE5jsQwDPvKlhnAMXQfCKZyn09Mu0+Yx6/kbCqFoUiKWTeudR+L3h/+9MPve0/H+n3V202vtfDne9gEYIpx0pRU4XHJNPK0ceKMNPNx8RRCt+Z4BOu4aIKYaCMYqTmuIrszjxOmZaIWCaYCAXpjWC7pjYmIKw2cnKG4FzGxgcxs/xqiFMs0AblX3IOBhkz2kh5X6WkaWJPqW+aG3ChEBk2KoIZqQizFviOSNhIIGKP2iQ2ioBKFfCCvPBXx1Epr9H8KYVXRNAF5aqqLgjatjuuLuR2Vt36ClneznPyBEIKkxaLb4J3VWNCxKwZPp64YqliuGJikxa/fIBqxF6Xj8Hh9/wDGs2CKkkrHxAAAAZV6VFh0cmRraXRQS0w0OSByZGtpdCAyMDIyLjA5LjUAAHice79v7T0GIOBlgAAmIBYBYjEgbmBkY0gA0ozM7AwKQJoZxoXQTEwwmp1BAyQNFAfTLAh+BphmxMdwgOhhc4ALoMkIgi3HFIfYzszIzcDIwMgEdBZQjIGFlYGVTYGNXYOJnUOBg1ODiZNLgYtbg4mbR4GHN4OJly+Bjz+DiV+AgV8wQVAog0lImEGYlUGYjUGIJ0GEGWQeK5swJzubsBAPNxcnBxsvH7+gEI/4L5ALoEHEIBKXtcvhhkD+fhDnGt8Ch307FtuB2DfnbXVYWH7FHsSe4pbgcOFWHli8uV/b4WvgPrD49YLp9gr2m8Hsc0cU9k3fz+IAYr86OX1/2WwvMLvAVvsA75lQMHtfRfWBPyKKYLZaW/eBZscusN57AoUHLPxn7AOL+0gf2L68AuyerffNDmjKSR0AsSX5Xu3n+BUPZq+6tmffmoeeYLbPdw37Y/fawexKvTrbx7dug/Xuqi/f7+mmAGY7x0zY+3ehMNguMQA0TmRimAHTaAAAAgB6VFh0TU9MNDkgcmRraXQgMjAyMi4wOS41AAB4nH1UXYobMQx+zyl8gRj923rcJEspZSfQpr1DoY+9P5U8JOMFU89I2JrPsmR9mlPJ8f327fff8hp0O51Kgf+87l5+MQCcPkpOyuX9y9etXB9vl6flev+5PX4UgkIUe+L5jH173D+eFizXorWTSpdyhurMXbFAhTGOrVS2AAJgx/zM6M18gePh0JqaYMFq6g4rfxI4rgrC0OMzMZO2BU4DR9U6GEv4k2692QJnER9W7Iyc5woAmyxwLfxFnqgtcgnP0AR9Bezh8JwetYtHqGjaeJWxp0caKZMGkAW0rYAIieTq5CQSZyuawyoZzLKcpbIBkkU60GOyihJp99nMTDUzI2+yPp73QIVMiUexGzIsobJDuzYBGZsiAl/VEbNAcU+dumYAXMXdeJmV7XfP1oNwCUUV9mUAUaY/YTcDyFilkqjL8gZ6eA2zEahlJA2b4YpK6Pv5btZ8XICRQaMV22GHQgPpyU+NC17m/77dPjXU3mKX+3Y7WiwfOhopFoWPfsmlHG2BIXqwH0PsIDmGtIPLFNIPxmKIH7ykEJzph0PhRDNKhTTRCYfiiTWSCmUih6RCnTiQyyjwVGocqk0VlWHpU+EkFfpUIExFcx0w1csx4W54+Y1fnIyNPFdkvv9cP3+PMT/9A+6vA+Uf/K+nAAABCXpUWHRTTUlMRVM0OSByZGtpdCAyMDIyLjA5LjUAAHicJY85jsMwDEWvMqUDyAT3BUYq9b6E2xwhhx9KAdz46fMv8z7ma86bJr/v+Z79PfI8zzE/r+eRyfT3PQySTXOcCCWSRuMyQKSkgSBU4bWIh7kOArfqfwFDlaVgEbYYF4MnurRC0zPHRUAptAGi+Lg6gCzaeTBgKLXNuUSWNgTILbQJ7yRuIorWPqdAcbH2lZFX1zsVxHFbYyLx1oS72xrBFRq1nZTdeA8LEvyxXDHrrU9/DZLTfLSFVrnuntIL2BYj00YI7ogso6NZrTZCZ1yHBEHhvA/LPUpWpLNj/CAGavZIBOuWveD1/QfdJFOu7rq6xAAAAABJRU5ErkJggg==\n", "text/plain": [ "" ] }, "metadata": {}, "execution_count": 45 } ], "source": [ "\n", "Draw.MolsToGridImage(showmols, molsPerRow=2)" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "colab": { "base_uri": "https://localhost:8080/" }, "id": "dwIQUTC192GY", "outputId": "6082112a-e51c-4762-ca96-567eca692b3f" }, "outputs": [ { "output_type": "execute_result", "data": { "text/plain": [ "['CN(C)CCCC1c2ccccc2Cc2ccccc21',\n", " 'O=c1nc(-c2ccccc2Cl)c2cc(O)ccc2[nH]1',\n", " 'CC(C)CCN1CCC(C)(c2ccccc2)c2ccccc21',\n", " 'FC(F)(Cl)CCl',\n", " 'ClC(Cl)Cl',\n", " 'Cc1cnc2c(c1)C(c1ccccc1)=NCC(=O)N2',\n", " 'CCc1ccc(CNC2=NC(=O)CC2)cc1',\n", " 'CC(=O)C1c2ccccc2Oc2ccccc21',\n", " 'C=CC1(CCCN(C)C)c2ccccc2C1c1ccccc1',\n", " 'NCCc1ccccc1',\n", " 'CN(C)CCCN1c2ccccc2C=Cc2ccccc21',\n", " 'NC(Cl)(Cl)Br',\n", " 'CCCN',\n", " 'CC(N)=O',\n", " 'O=C(c1cccnc1)N1CCOCC1',\n", " 'CCc1ccccc1',\n", " 'CCCC(=O)C1=CC=CNC1C(N)=O',\n", " 'CN1CCN(C(=O)c2cccnc2)CC1',\n", " 'CN(C)CCCC1C2=C(C=CC=Cc3ccccc31)C2',\n", " 'CCNC1=NC2C=C(O)C=CC(Cc3ccc(Cl)cc31)C2',\n", " 'CN(C)CCC(c1ccccc1)c1ccccc1',\n", " 'Cc1ncsc1CCCl',\n", " 'CCCC1CC(=O)NC1C',\n", " 'CN(C)CCN1C2=NC=CC=Cc3ccc(Cl)cc3C21',\n", " 'Cc1ccc(OCC2C(O)C2CC(C)C)cc1',\n", " 'CN(C)CCOC(c1ccccc1)c1ccccc1',\n", " 'CCC1(CC)C(=O)NC(=O)OC1=O',\n", " 'C1CCCCC1',\n", " 'CN(C)CCC1C2=C(C=CC=Cc3ccc(Cl)cc31)S2',\n", " 'C=CCC1CCN(C(O)c2ccccc2)CC1',\n", " 'Cc1csc(N=C(N)N)n1',\n", " 'CCC(=O)Oc1ccc2c(c1)N(CCCN1CCN(CCO)CC1)c1ccccc1S2',\n", " 'CN(C)CC=C1c2ccccc2C=Cc2ccccc21',\n", " 'CCC(=O)O',\n", " 'OC=NC1=C(c2ccccc2)CNC1',\n", " 'CCC',\n", " 'CCC(C)CC',\n", " 'CN(C)CCCN1c2ccccc2Sc2ccccc21',\n", " 'CCCCn1nc(N)nc1C(=O)O',\n", " 'CCNCCCCc1cccnc1',\n", " 'CCC(F)(F)C(F)(F)F',\n", " 'O=C(O)Oc1ccccc1',\n", " 'CCO',\n", " 'CC(=O)C=CC(c1ccccc1)c1ccc(Cl)cc1',\n", " 'CCCOC(N)=O',\n", " 'CC1C(=O)CN=C(c2ccccc2Cl)c2cc(Cl)ccc21',\n", " 'CCN',\n", " 'CC(C)CCO',\n", " 'CCN1CCN(CCCC2c3ccccc3Sc3ccc(C(F)(F)F)cc32)CC1',\n", " 'CNC(C)C',\n", " 'CC(C)(C=O)CO',\n", " 'CC(O)C(F)(F)F',\n", " 'CCc1ccccc1',\n", " 'FC(F)(F)CCl',\n", " 'CN(C)CCC1c2ccccc2Sc2ccccc21',\n", " 'FC(F)(F)CC1(C(F)(F)Cl)CO1',\n", " 'CCCCO',\n", " 'C=CC(N)C1=CN=C(C)C1=O',\n", " 'C#CCC',\n", " 'Cc1ccccc1-n1ccc(C)c1CC1CCCCC1',\n", " 'CC(C)CCOc1ccccc1',\n", " 'C=C',\n", " 'C=NCc1scnc1C',\n", " 'C=CCC1(CC(C)C)C(=O)NC(=O)NC1=O',\n", " 'CCNc1nccs1',\n", " 'C=CCC1(CC)C(=O)NC(=O)NC1=S',\n", " 'CCCC1C(=O)CC(c2ccccc2)C1=O',\n", " 'CC1(C)CC(c2ccccc2)c2cc(O)c(C(=O)O)cc21',\n", " 'CC(=O)C(c1ccccc1)c1ccccc1',\n", " 'CC1C2=C(C=Cc3ccccc31)C(=O)OC2(C)C',\n", " 'CCCCCC(=O)NO',\n", " 'CCC1(O)C(=O)OC(=O)N(C)C1=O',\n", " 'C1CC1',\n", " 'ON1CCCOC(c2ccccc2)C1',\n", " 'NNCC=C1c2ccccc2Sc2ccccc21',\n", " 'CN(C)CC=C1c2ccccc2Sc2ccccc21',\n", " 'COC1CCN(C)CCc2ccc(Cl)cc2N1c1ccccc1',\n", " 'CN(C)CCC=C1c2ccccc2Sc2ccc(C(N)=O)cc21',\n", " 'COCCCC(c1ccccc1)c1ccccc1',\n", " 'CN1C(=O)CN=C(Br)c2cc(Cl)ccc21',\n", " 'CC(C)OCC(=O)O',\n", " 'C=CCCC(=O)C(C)c1ccccc1',\n", " 'CC1C=NNC1=O',\n", " 'CNc1c(C)cccc1Cl',\n", " 'CC1CCCC1',\n", " 'CC(C)CO',\n", " 'C#CCNC(O)c1cccc(Br)c1',\n", " 'FC(F)(F)C1=CC=CC=CC2CCN=CC12',\n", " 'O=C1C2=CC=CC=CCCCC3CCC(CCC23)OC1C(F)(F)F',\n", " 'CC(=O)N1C(=O)OC1Cc1ccccc1',\n", " 'Cc1ccccc1',\n", " 'CC1CCCC1',\n", " 'OCCN1CCN(CCC2c3ccccc3Sc3ccc(Cl)cc32)CC1',\n", " 'CCC1=CC=C(C)C1',\n", " 'CC1(C)Cc2ccccc2N(N)c2ccccc21',\n", " 'C=C(N)N(C)Cc1ccccc1',\n", " 'CC(Cc1ccccc1)OC(=O)O',\n", " 'CC(C)C(=O)CC(c1ccccc1)c1ccccc1',\n", " 'CC(F)(F)Cl',\n", " 'O=C(NCC(O)c1ccccc1O)c1ccccc1C=Cc1ccc(Br)cc1']" ] }, "metadata": {}, "execution_count": 46 } ], "source": [ "finetuned_smiles" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "id": "Lu9sflXWbS3x" }, "outputs": [], "source": [ "with open('bbbp_gen_norm_22.txt', 'w') as f:\n", " for line in finetuned_smiles:\n", " f.write(f\"{line}\\n\")" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "colab": { "base_uri": "https://localhost:8080/" }, "id": "pQber6TMbk_Z", "outputId": "205b43c5-6521-42cb-f1d6-86879401a3a0" }, "outputs": [ { "data": { "text/plain": [ "100" ] }, "execution_count": 80, "metadata": {}, "output_type": "execute_result" } ], "source": [ "len(finetuned_smiles)" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "id": "bwCBBHui7i4a" }, "outputs": [], "source": [] } ], "metadata": { "accelerator": "GPU", "colab": { "provenance": [] }, "gpuClass": "standard", "kernelspec": { "display_name": "Python 3", "name": "python3" }, "language_info": { "name": "python" } }, "nbformat": 4, "nbformat_minor": 0 }