--- tags: - merge - mergekit - lazymergekit - RJuro/munin-neuralbeagle-7b - timpal0l/BeagleCatMunin - macadeliccc/WestLake-7B-v2-laser-truthy-dpo - bineric/NorskGPT-Mistral-7b - meta-math/MetaMath-Mistral-7B - teknium/OpenHermes-2.5-Mistral-7B base_model: - RJuro/munin-neuralbeagle-7b - timpal0l/BeagleCatMunin - macadeliccc/WestLake-7B-v2-laser-truthy-dpo - bineric/NorskGPT-Mistral-7b - meta-math/MetaMath-Mistral-7B - teknium/OpenHermes-2.5-Mistral-7B --- # WestLake-Munin-Cat-NorskGPT WestLake-Munin-Cat-NorskGPT is a merge of the following models using [LazyMergekit](https://colab.research.google.com/drive/1obulZ1ROXHjYLn6PPZJwRR6GzgQogxxb?usp=sharing): * [RJuro/munin-neuralbeagle-7b](https://huggingface.co/RJuro/munin-neuralbeagle-7b) * [timpal0l/BeagleCatMunin](https://huggingface.co/timpal0l/BeagleCatMunin) * [macadeliccc/WestLake-7B-v2-laser-truthy-dpo](https://huggingface.co/macadeliccc/WestLake-7B-v2-laser-truthy-dpo) * [bineric/NorskGPT-Mistral-7b](https://huggingface.co/bineric/NorskGPT-Mistral-7b) * [meta-math/MetaMath-Mistral-7B](https://huggingface.co/meta-math/MetaMath-Mistral-7B) * [teknium/OpenHermes-2.5-Mistral-7B](https://huggingface.co/teknium/OpenHermes-2.5-Mistral-7B) ## 🧩 Configuration ```yaml models: - model: RJuro/munin-neuralbeagle-7b parameters: density: 0.53 weight: 0.2 - model: timpal0l/BeagleCatMunin parameters: density: 0.53 weight: 0.2 - model: macadeliccc/WestLake-7B-v2-laser-truthy-dpo parameters: density: 0.53 weight: 0.2 - model: bineric/NorskGPT-Mistral-7b parameters: density: 0.53 weight: 0.2 - model: meta-math/MetaMath-Mistral-7B parameters: density: 0.53 weight: 0.1 - model: teknium/OpenHermes-2.5-Mistral-7B parameters: density: 0.53 weight: 0.1 merge_method: dare_ties base_model: macadeliccc/WestLake-7B-v2-laser-truthy-dpo parameters: int8_mask: true dtype: bfloat16 ``` ## 💻 Usage ```python !pip install -qU transformers accelerate from transformers import AutoTokenizer import transformers import torch model = "birgermoell/WestLake-Munin-Cat-NorskGPT" messages = [{"role": "user", "content": "What is a large language model?"}] tokenizer = AutoTokenizer.from_pretrained(model) prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) pipeline = transformers.pipeline( "text-generation", model=model, torch_dtype=torch.float16, device_map="auto", ) outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95) print(outputs[0]["generated_text"]) ```