--- library_name: transformers license: cc-by-nc-4.0 base_model: MCG-NJU/videomae-base tags: - generated_from_trainer metrics: - accuracy - precision - recall - f1 model-index: - name: videomae-base-videoMAE results: [] --- # videomae-base-videoMAE This model is a fine-tuned version of [MCG-NJU/videomae-base](https://huggingface.co/MCG-NJU/videomae-base) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.0563 - Accuracy: 1.0 - Precision: 1.0 - Recall: 1.0 - F1: 1.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - training_steps: 1275 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | |:-------------:|:------:|:----:|:---------------:|:--------:|:---------:|:------:|:------:| | 0.5203 | 1.0 | 256 | 0.4891 | 0.4667 | 0.2178 | 0.4667 | 0.2970 | | 0.2595 | 2.0 | 512 | 0.0563 | 1.0 | 1.0 | 1.0 | 1.0 | | 0.0315 | 3.0 | 768 | 1.3579 | 0.6667 | 0.8056 | 0.6667 | 0.6348 | | 0.0004 | 4.0 | 1024 | 2.7397 | 0.5333 | 0.7667 | 0.5333 | 0.4296 | | 0.0002 | 4.9805 | 1275 | 2.8840 | 0.5333 | 0.7667 | 0.5333 | 0.4296 | ### Framework versions - Transformers 4.44.2 - Pytorch 2.4.1+cu121 - Datasets 3.0.0 - Tokenizers 0.19.1