--- library_name: transformers license: cc-by-nc-4.0 base_model: MCG-NJU/videomae-base tags: - generated_from_trainer metrics: - accuracy - precision - recall - f1 model-index: - name: videomae-base-videoMAE results: [] --- # videomae-base-videoMAE This model is a fine-tuned version of [MCG-NJU/videomae-base](https://huggingface.co/MCG-NJU/videomae-base) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.0497 - Accuracy: 0.6667 - Precision: 0.8056 - Recall: 0.6667 - F1: 0.6348 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - training_steps: 1275 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | |:-------------:|:------:|:----:|:---------------:|:--------:|:---------:|:------:|:------:| | 0.4685 | 1.0 | 256 | 0.2059 | 1.0 | 1.0 | 1.0 | 1.0 | | 0.4451 | 2.0 | 512 | 0.1075 | 0.9333 | 0.9407 | 0.9333 | 0.9327 | | 0.1107 | 3.0 | 768 | 3.2224 | 0.4667 | 0.2178 | 0.4667 | 0.2970 | | 0.0004 | 4.0 | 1024 | 0.7245 | 0.7333 | 0.8303 | 0.7333 | 0.7185 | | 0.0002 | 4.9805 | 1275 | 1.0497 | 0.6667 | 0.8056 | 0.6667 | 0.6348 | ### Framework versions - Transformers 4.44.2 - Pytorch 2.4.1+cu121 - Datasets 3.0.0 - Tokenizers 0.19.1