--- language: - en license: apache-2.0 base_model: openai/whisper-small.en tags: - generated_from_trainer datasets: - bika5/pfedrax metrics: - wer model-index: - name: Whisper pfe - bika5 results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: pfedrax type: bika5/pfedrax args: 'config: en, split: test' metrics: - name: Wer type: wer value: 92.92035398230088 --- # Whisper pfe - bika5 This model is a fine-tuned version of [openai/whisper-small.en](https://huggingface.co/openai/whisper-small.en) on the pfedrax dataset. It achieves the following results on the evaluation set: - Loss: 3.6101 - Model Preparation Time: 0.006 - Wer: 92.9204 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 2000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Model Preparation Time | Wer | |:-------------:|:--------:|:----:|:---------------:|:----------------------:|:-------:| | 0.0001 | 83.3333 | 1000 | 3.5216 | 0.006 | 92.9204 | | 0.0 | 166.6667 | 2000 | 3.6101 | 0.006 | 92.9204 | ### Framework versions - Transformers 4.43.0.dev0 - Pytorch 2.3.0+cu121 - Datasets 2.20.0 - Tokenizers 0.19.1