--- library_name: peft license: mit base_model: roberta-large tags: - generated_from_trainer model-index: - name: roberta-large-lora-multi-class-classification results: [] --- # roberta-large-lora-multi-class-classification This model is a fine-tuned version of [roberta-large](https://huggingface.co/roberta-large) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.2042 - Micro f1: 0.7842 - Macro f1: 0.5733 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 16 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: constant - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Micro f1 | Macro f1 | |:-------------:|:------:|:----:|:---------------:|:--------:|:--------:| | 0.4408 | 0.9995 | 1048 | 0.2138 | 0.7841 | 0.5624 | | 0.448 | 2.0 | 2097 | 0.2127 | 0.7943 | 0.5788 | | 0.446 | 2.9986 | 3144 | 0.2042 | 0.7842 | 0.5733 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.1.0+cu118 - Datasets 3.0.2 - Tokenizers 0.20.1