--- base_model: meta-llama/Llama-3.1-8B-Instruct library_name: peft tags: - llama - llama-3.1 - lora - fine-tuned - peft --- # Fine-tuned Llama 3.1 8B Instruct Model This is a fine-tuned version of Meta's [Llama-3.1-8B-Instruct](https://huggingface.co/meta-llama/Llama-3.1-8B-Instruct) model using LoRA (Low-Rank Adaptation) technique. ## Model Details ### Model Description This model is a fine-tuned version of Llama 3.1 8B Instruct using PEFT (Parameter-Efficient Fine-Tuning) with LoRA. The fine-tuning process focused on adapting the base model to specific use cases while maintaining the general capabilities of the original model. - **Developed by:** Bhavya Bipin Gada (PRESHENT) - **Model type:** LoRA fine-tuned Llama 3.1 - **Language(s):** English - **License:** MIT - **Finetuned from model:** meta-llama/Llama-3.1-8B-Instruct ## Training Details ### Training Procedure The model was fine-tuned using the following LoRA configuration: - **LoRA rank (r):** 8 - **LoRA alpha:** 16 - **LoRA dropout:** 0.05 - **Target modules:** k_proj, q_proj, v_proj, o_proj, gate_proj, up_proj, down_proj - **Task type:** CAUSAL_LM ### Training Data ```json [ { "messages": [ { "role": "user", "content": "What sustainable solutions do you offer for solar energy?" }, { "role": "assistant", "content": "We offer rooftop solar panels, community solar options, and solar battery storage solutions optimized for your location." } ] }, { "messages": [ { "role": "user", "content": "Can you recommend a sustainable water purification method?" }, { "role": "assistant", "content": "Reverse osmosis systems powered by renewable energy are highly effective and sustainable." } ] } ] ``` ## Usage You can use this model with the Transformers library: ```python from transformers import AutoModelForCausalLM, AutoTokenizer from peft import PeftModel, PeftConfig # Load the base model base_model_id = "meta-llama/Llama-3.1-8B-Instruct" model = AutoModelForCausalLM.from_pretrained(base_model_id) tokenizer = AutoTokenizer.from_pretrained(base_model_id) # Load the LoRA adapter adapter_path = "bhavyabgada/preshent-llama" model = PeftModel.from_pretrained(model, adapter_path) # Generate text input_text = "Your prompt here" inputs = tokenizer(input_text, return_tensors="pt") outputs = model.generate(**inputs, max_length=100) print(tokenizer.decode(outputs[0], skip_special_tokens=True)) ``` ## Limitations and Biases This model inherits the limitations and biases from the base Llama 3.1 8B Instruct model. ## Framework versions - PEFT 0.13.2