--- language: - en thumbnail: https://avatars3.githubusercontent.com/u/32437151?s=460&u=4ec59abc8d21d5feea3dab323d23a5860e6996a4&v=4 tags: - text-classification - emotion - pytorch license: apache-2.0 datasets: - emotion metrics: - Accuracy, F1 Score --- # bert-base-uncased-emotion ## Model description: `bert-base-uncased` finetuned on the emotion dataset using HuggingFace Trainer with below training parameters ``` learning rate 2e-5, batch size 64, num_train_epochs=8, ``` ## How to Use the model: ```python from transformers import pipeline classifier = pipeline("text-classification",model='bhadresh-savani/bert-base-uncased-emotion', return_all_scores=True) prediction = classifier("I love using transformers. The best part is wide range of support and its easy to use", ) print(prediction) """ output: [[ {'label': 'sadness', 'score': 0.0005138228880241513}, {'label': 'joy', 'score': 0.9972520470619202}, {'label': 'love', 'score': 0.0007443308713845909}, {'label': 'anger', 'score': 0.0007404946954920888}, {'label': 'fear', 'score': 0.00032938539516180754}, {'label': 'surprise', 'score': 0.0004197491507511586} ]] """ ``` ## Dataset: [Twitter-Sentiment-Analysis](https://huggingface.co/nlp/viewer/?dataset=emotion). ## Training procedure [Colab Notebook](https://github.com/bhadreshpsavani/ExploringSentimentalAnalysis/blob/main/SentimentalAnalysisWithDistilbert.ipynb) follow the above notebook by changing the model name from distilbert to bert ## Eval results ```json { 'test_accuracy': 0.9405, 'test_f1': 0.9405920712282673, 'test_loss': 0.15769127011299133, 'test_runtime': 10.5179, 'test_samples_per_second': 190.152, 'test_steps_per_second': 3.042 } ``` ## Reference: * [Natural Language Processing with Transformer By Lewis Tunstall, Leandro von Werra, Thomas Wolf](https://learning.oreilly.com/library/view/natural-language-processing/9781098103231/)