--- base_model: - OpenPipe/mistral-ft-optimized-1227 - mlabonne/NeuralHermes-2.5-Mistral-7B tags: - merge - mergekit - lazymergekit - OpenPipe/mistral-ft-optimized-1227 - mlabonne/NeuralHermes-2.5-Mistral-7B license: apache-2.0 pipeline_tag: text-generation --- # llambses-1 llambses-1 is a merge of the following models using [LazyMergekit](https://colab.research.google.com/drive/1obulZ1ROXHjYLn6PPZJwRR6GzgQogxxb?usp=sharing): * [OpenPipe/mistral-ft-optimized-1227](https://huggingface.co/OpenPipe/mistral-ft-optimized-1227) * [mlabonne/NeuralHermes-2.5-Mistral-7B](https://huggingface.co/mlabonne/NeuralHermes-2.5-Mistral-7B) ## 🧩 Configuration ```yaml models: - model: Kukedlc/NeuralSynthesis-7b-v0.4-slerp - model: OpenPipe/mistral-ft-optimized-1227 parameters: density: 0.5 weight: 0.6 - model: mlabonne/NeuralHermes-2.5-Mistral-7B parameters: density: 0.5 weight: 0.4 merge_method: ties base_model: Kukedlc/NeuralSynthesis-7b-v0.4-slerp parameters: normalize: true dtype: float16 ``` ## LightEval | Task |Version| Metric |Value | |Stderr| |---------------------------|------:|--------|-----:|---|-----:| | | |acc |0.5870|± |0.0144| | | |acc_norm|0.6058|± |0.0143| |leaderboard:arc:challenge:0| 0|acc |0.5870|± |0.0144| | | |acc_norm|0.6058|± |0.0143| | | |acc |0.6000|± |0.0356| | | |acc_norm|0.5895|± |0.0358| |harness:bigbench:causal_judgment:0| 0|acc |0.6000|± |0.0356| | | |acc_norm|0.5895|± |0.0358| ## 💻 Usage ```python !pip install -qU transformers accelerate from transformers import AutoTokenizer import transformers import torch model = "bfuzzy1/llambses-1" chat_template = """{% for message in messages %} {% if message['role'] == 'user' %} {{ bos_token + '[INST] ' + message['content'] + ' [/INST]' }} {% elif message['role'] == 'assistant' %} {{ message['content'] + eos_token }} {% elif message['role'] == 'system' %} {{ '<>\\n' + message['content'] + '\\n<>\\n\\n' }} {% endif %} {% endfor %} """ messages = [ {"role": "system", "content": "You are a helpful AI assistant."}, {"role": "user", "content": "What is a large language model?"} ] tokenizer = AutoTokenizer.from_pretrained(model) template = tokenizer.chat_template = chat_template prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) pipeline = transformers.pipeline( "text-generation", model=model, torch_dtype=torch.float16, device_map="auto", ) outputs = pipeline(prompt, max_new_tokens=100, do_sample=True, temperature=0.7, top_k=3, top_p=0.95) print(outputs[0]["generated_text"]) ```