--- base_model: - OpenPipe/mistral-ft-optimized-1227 - mlabonne/NeuralHermes-2.5-Mistral-7B tags: - merge - mergekit - lazymergekit - OpenPipe/mistral-ft-optimized-1227 - mlabonne/NeuralHermes-2.5-Mistral-7B --- # llambses-1 llambses-1 is a merge of the following models using [LazyMergekit](https://colab.research.google.com/drive/1obulZ1ROXHjYLn6PPZJwRR6GzgQogxxb?usp=sharing): * [OpenPipe/mistral-ft-optimized-1227](https://huggingface.co/OpenPipe/mistral-ft-optimized-1227) * [mlabonne/NeuralHermes-2.5-Mistral-7B](https://huggingface.co/mlabonne/NeuralHermes-2.5-Mistral-7B) ## 🧩 Configuration ```yaml models: - model: Kukedlc/NeuralSynthesis-7b-v0.4-slerp # no parameters necessary for base model - model: OpenPipe/mistral-ft-optimized-1227 parameters: density: 0.5 weight: 0.6 - model: mlabonne/NeuralHermes-2.5-Mistral-7B parameters: density: 0.5 weight: 0.4 merge_method: ties base_model: Kukedlc/NeuralSynthesis-7b-v0.4-slerp parameters: normalize: true dtype: float16 ``` ## 💻 Usage ```python !pip install -qU transformers accelerate from transformers import AutoTokenizer import transformers import torch model = "bfuzzy1/llambses-1" messages = [{"role": "user", "content": "What is a large language model?"}] tokenizer = AutoTokenizer.from_pretrained(model) prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) pipeline = transformers.pipeline( "text-generation", model=model, torch_dtype=torch.float16, device_map="auto", ) outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95) print(outputs[0]["generated_text"]) ```