--- license: apache-2.0 tags: - generated_from_trainer datasets: - emotion metrics: - accuracy base_model: microsoft/xtremedistil-l6-h384-uncased model-index: - name: xtremedistil-l6-h384-emotion results: - task: type: text-classification name: Text Classification dataset: name: emotion type: emotion args: default metrics: - type: accuracy value: 0.928 name: Accuracy --- # xtremedistil-l6-h384-emotion This model is a fine-tuned version of [microsoft/xtremedistil-l6-h384-uncased](https://huggingface.co/microsoft/xtremedistil-l6-h384-uncased) on the emotion dataset. It achieves the following results on the evaluation set: - Accuracy: 0.928 This model can be quantized to int8 and retain accuracy - Accuracy 0.912
import transformers import transformers.convert_graph_to_onnx as onnx_convert from pathlib import Path pipeline = transformers.pipeline("text-classification",model=model,tokenizer=tokenizer) onnx_convert.convert_pytorch(pipeline, opset=11, output=Path("xtremedistil-l6-h384-emotion.onnx"), use_external_format=False) from onnxruntime.quantization import quantize_dynamic, QuantType quantize_dynamic("xtremedistil-l6-h384-emotion.onnx", "xtremedistil-l6-h384-emotion-int8.onnx", weight_type=QuantType.QUInt8)### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 128 - eval_batch_size: 8 - seed: 42 - num_epochs: 14 ### Training results
Epoch Training Loss Validation Loss Accuracy 1 No log 0.960511 0.689000 2 No log 0.620671 0.824000 3 No log 0.435741 0.880000 4 0.797900 0.341771 0.896000 5 0.797900 0.294780 0.916000 6 0.797900 0.250572 0.918000 7 0.797900 0.232976 0.924000 8 0.277300 0.216347 0.924000 9 0.277300 0.202306 0.930500 10 0.277300 0.192530 0.930000 11 0.277300 0.192500 0.926500 12 0.181700 0.187347 0.928500 13 0.181700 0.185896 0.929500 14 0.181700 0.185154 0.928000