# LayoutXLM finetuned on XFUN.ja ```python import torch import numpy as np from PIL import Image, ImageDraw, ImageFont from pathlib import Path from itertools import chain from tqdm.notebook import tqdm from pdf2image import convert_from_path from transformers import LayoutXLMProcessor, LayoutLMv2ForTokenClassification import os os.environ["TOKENIZERS_PARALLELISM"] = "false" labels = [ 'O', 'B-QUESTION', 'B-ANSWER', 'B-HEADER', 'I-ANSWER', 'I-QUESTION', 'I-HEADER' ] id2label = {v: k for v, k in enumerate(labels)} label2id = {k: v for v, k in enumerate(labels)} def unnormalize_box(bbox, width, height): return [ width * (bbox[0] / 1000), height * (bbox[1] / 1000), width * (bbox[2] / 1000), height * (bbox[3] / 1000), ] def iob_to_label(label): label = label[2:] if not label: return 'other' return label label2color = {'question':'blue', 'answer':'green', 'header':'orange', 'other':'violet'} def infer(image, processor, model, label2color): # Use this if you're loading images # image = Image.open(img_path).convert("RGB") image = image.convert("RGB") # loading PDFs encoding = processor(image, return_offsets_mapping=True, return_tensors="pt", truncation=True, max_length=514) offset_mapping = encoding.pop('offset_mapping') outputs = model(**encoding) predictions = outputs.logits.argmax(-1).squeeze().tolist() token_boxes = encoding.bbox.squeeze().tolist() width, height = image.size is_subword = np.array(offset_mapping.squeeze().tolist())[:,0] != 0 true_predictions = [id2label[pred] for idx, pred in enumerate(predictions) if not is_subword[idx]] true_boxes = [unnormalize_box(box, width, height) for idx, box in enumerate(token_boxes) if not is_subword[idx]] draw = ImageDraw.Draw(image) font = ImageFont.load_default() for prediction, box in zip(true_predictions, true_boxes): predicted_label = iob_to_label(prediction).lower() draw.rectangle(box, outline=label2color[predicted_label]) draw.text((box[0]+10, box[1]-10), text=predicted_label, fill=label2color[predicted_label], font=font) return image processor = LayoutXLMProcessor.from_pretrained('beomus/layoutxlm') model = LayoutLMv2ForTokenClassification.from_pretrained("beomus/layoutxlm") # imgs = [img_path for img_path in Path('/your/path/imgs/').glob('*.jpg')] imgs = [convert_from_path(img_path) for img_path in Path('/your/path/pdfs/').glob('*.pdf')] imgs = list(chain.from_iterable(imgs)) outputs = [infer(img_path, processor, model, label2color) for img_path in tqdm(imgs)] # type(outputs[0]) -> PIL.Image.Image ```