--- base_model: allenai/scibert_scivocab_uncased tags: - generated_from_trainer metrics: - accuracy - precision - recall - f1 model-index: - name: SciBERT_AsymmetricLoss_25K_bs64_P4_N1 results: [] --- # SciBERT_AsymmetricLoss_25K_bs64_P4_N1 This model is a fine-tuned version of [allenai/scibert_scivocab_uncased](https://huggingface.co/allenai/scibert_scivocab_uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 30.2502 - Accuracy: 0.9871 - Precision: 0.4247 - Recall: 0.8998 - F1: 0.5770 - Hamming: 0.0129 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - training_steps: 25000 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | Hamming | |:-------------:|:-----:|:-----:|:---------------:|:--------:|:---------:|:------:|:------:|:-------:| | 36.6287 | 0.16 | 5000 | 34.9978 | 0.9852 | 0.3863 | 0.8728 | 0.5355 | 0.0148 | | 33.8929 | 0.32 | 10000 | 32.4942 | 0.9857 | 0.3958 | 0.8901 | 0.5480 | 0.0143 | | 32.5419 | 0.47 | 15000 | 31.3170 | 0.9867 | 0.4162 | 0.8941 | 0.5680 | 0.0133 | | 31.565 | 0.63 | 20000 | 30.6092 | 0.9869 | 0.4201 | 0.8975 | 0.5723 | 0.0131 | | 31.105 | 0.79 | 25000 | 30.2502 | 0.9871 | 0.4247 | 0.8998 | 0.5770 | 0.0129 | ### Framework versions - Transformers 4.35.0.dev0 - Pytorch 2.0.1+cu118 - Datasets 2.7.1 - Tokenizers 0.14.1