--- base_model: allenai/scibert_scivocab_uncased tags: - generated_from_trainer metrics: - accuracy - precision - recall - f1 model-index: - name: SciBERT_25K_steps_bs64 results: [] --- # SciBERT_25K_steps_bs64 This model is a fine-tuned version of [allenai/scibert_scivocab_uncased](https://huggingface.co/allenai/scibert_scivocab_uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.0177 - Accuracy: 0.9941 - Precision: 0.7990 - Recall: 0.5288 - F1: 0.6364 - Hamming: 0.0059 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - training_steps: 25000 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | Hamming | |:-------------:|:-----:|:-----:|:---------------:|:--------:|:---------:|:------:|:------:|:-------:| | 0.0467 | 0.16 | 5000 | 0.0416 | 0.9902 | 0.0 | 0.0 | 0.0 | 0.0098 | | 0.0236 | 0.32 | 10000 | 0.0223 | 0.9932 | 0.8192 | 0.3929 | 0.5311 | 0.0068 | | 0.0198 | 0.47 | 15000 | 0.0190 | 0.9939 | 0.8015 | 0.4934 | 0.6108 | 0.0061 | | 0.0185 | 0.63 | 20000 | 0.0180 | 0.9940 | 0.7974 | 0.5220 | 0.6310 | 0.0060 | | 0.0181 | 0.79 | 25000 | 0.0177 | 0.9941 | 0.7990 | 0.5288 | 0.6364 | 0.0059 | ### Framework versions - Transformers 4.35.0.dev0 - Pytorch 2.0.1+cu118 - Datasets 2.7.1 - Tokenizers 0.14.1