--- license: apache-2.0 tags: - whisper-event - hf-asr-leaderboard - generated_from_trainer datasets: - mozilla-foundation/common_voice_11_0 - google/fleurs - bayartsogt/ulaanbal-v0 - bayartsogt/youtube-mongolian-v1 metrics: - wer - cer base_model: openai/whisper-small model-index: - name: whisper-small-mn-8-bayartsogt results: - task: type: automatic-speech-recognition name: Automatic Speech Recognition dataset: name: Common Voice 11.0 type: mozilla-foundation/common_voice_11_0 config: mn split: test args: language: mn metrics: - type: wer value: 26.518461874590344 name: Wer - type: cer value: 9.46811616603981 name: Cer --- # whisper-small-mn-8 This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.2421 - Wer: 26.5185 - Cer: 9.4681 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 15000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | Cer | |:-------------:|:-----:|:-----:|:---------------:|:-------:|:-------:| | 0.3717 | 0.35 | 1000 | 0.4004 | 46.9576 | 16.9664 | | 0.286 | 0.69 | 2000 | 0.3129 | 37.3935 | 13.5504 | | 0.2287 | 1.04 | 3000 | 0.2768 | 33.1931 | 11.7806 | | 0.2257 | 1.39 | 4000 | 0.2590 | 30.7243 | 11.0232 | | 0.2029 | 1.73 | 5000 | 0.2428 | 29.2003 | 10.4144 | | 0.1691 | 2.08 | 6000 | 0.2408 | 28.4357 | 10.0306 | | 0.1626 | 2.43 | 7000 | 0.2369 | 28.0588 | 10.0486 | | 0.1588 | 2.77 | 8000 | 0.2321 | 27.2340 | 9.6819 | | 0.1271 | 3.12 | 9000 | 0.2349 | 26.8407 | 9.5574 | | 0.1263 | 3.47 | 10000 | 0.2356 | 27.1630 | 9.6519 | | 0.1314 | 3.81 | 11000 | 0.2340 | 26.5567 | 9.4278 | | 0.1062 | 4.16 | 12000 | 0.2390 | 26.6332 | 9.5162 | | 0.1081 | 4.5 | 13000 | 0.2398 | 26.5840 | 9.5085 | | 0.1033 | 4.85 | 14000 | 0.2402 | 26.7096 | 9.4801 | | 0.097 | 5.2 | 15000 | 0.2421 | 26.5185 | 9.4681 | ### Framework versions - Transformers 4.26.0.dev0 - Pytorch 1.13.0+cu117 - Datasets 2.7.1.dev0 - Tokenizers 0.13.2