--- language: mn license: apache-2.0 tags: - whisper-event - hf-asr-leaderboard - generated_from_multiple_datasets datasets: - mozilla-foundation/common_voice_11_0 - google/fleurs - bayartsogt/ulaanbal-v0 - bayartsogt/youtube-mongolian-v1 metrics: - wer - cer model-index: - name: whisper-small-mn-12 results: - task: type: automatic-speech-recognition name: Automatic Speech Recognition dataset: name: Common Voice 11.0 type: mozilla-foundation/common_voice_11_0 config: mn split: test metrics: - type: wer value: 32.33012890539655 name: Wer - type: cer value: 13.34925204253124 name: Cer --- # whisper-small-mn-12 This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.2949 - Wer: 32.3301 - Cer: 13.3493 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 25000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | Cer | |:-------------:|:-----:|:-----:|:---------------:|:-------:|:-------:| | 0.3012 | 1.05 | 1000 | 0.3749 | 43.2379 | 17.6739 | | 0.2171 | 2.11 | 2000 | 0.3012 | 36.7435 | 15.2029 | | 0.1732 | 3.16 | 3000 | 0.2823 | 33.4225 | 13.7561 | | 0.145 | 4.21 | 4000 | 0.2822 | 32.4995 | 13.2436 | | 0.1159 | 5.27 | 5000 | 0.2949 | 32.3301 | 13.3493 | | 0.0863 | 6.32 | 6000 | 0.3116 | 32.7234 | 13.3892 | | 0.0685 | 7.38 | 7000 | 0.3343 | 32.4776 | 13.3077 | | 0.0506 | 8.43 | 8000 | 0.3584 | 33.3952 | 13.7736 | | 0.0336 | 9.48 | 9000 | 0.3861 | 33.7011 | 13.8493 | | 0.0215 | 10.54 | 10000 | 0.4193 | 33.7011 | 14.0140 | | 0.0141 | 11.59 | 11000 | 0.4463 | 34.0343 | 14.0298 | | 0.0089 | 12.64 | 12000 | 0.4660 | 33.6137 | 13.8052 | | 0.0057 | 13.7 | 13000 | 0.4913 | 33.9797 | 13.9849 | | 0.0039 | 14.75 | 14000 | 0.5078 | 33.9906 | 14.0656 | | 0.0033 | 15.81 | 15000 | 0.5244 | 33.7721 | 13.9192 | | 0.0024 | 16.86 | 16000 | 0.5358 | 33.7612 | 13.7910 | | 0.0018 | 17.91 | 17000 | 0.5469 | 33.6465 | 13.8468 | | 0.0013 | 18.97 | 18000 | 0.5614 | 33.6683 | 13.7553 | | 0.0014 | 20.02 | 19000 | 0.5707 | 33.6574 | 13.8884 | | 0.0006 | 21.07 | 20000 | 0.5835 | 34.0671 | 14.0764 | | 0.0007 | 22.13 | 21000 | 0.5927 | 33.9742 | 14.0772 | | 0.0005 | 23.18 | 22000 | 0.5994 | 34.0398 | 14.0290 | | 0.0004 | 24.24 | 23000 | 0.6067 | 33.9469 | 13.9217 | | 0.0003 | 25.29 | 24000 | 0.6109 | 33.9688 | 13.9591 | | 0.0003 | 26.34 | 25000 | 0.6130 | 33.8267 | 13.8360 | ### Framework versions - Transformers 4.26.0.dev0 - Pytorch 1.13.0+cu117 - Datasets 2.7.1.dev0 - Tokenizers 0.13.2