# CLIP-Based Break Dance Move Classifier A deep learning model for classifying break dance moves using CLIP (Contrastive Language-Image Pre-Training) embeddings. The model is fine-tuned on break dance videos to classify different power moves including windmills, halos, swipes, and baby mills. ## Features - Video-based classification using CLIP embeddings - Multi-frame temporal analysis - Configurable frame sampling and data augmentation - Real-time inference using Cog - Misclassification analysis tools - Hyperparameter tuning support ## Setup ```bash # Install dependencies pip install -r requirements.txt # Install Cog (if not already installed) curl -o /usr/local/bin/cog -L https://github.com/replicate/cog/releases/latest/download/cog_`uname -s`_`uname -m` chmod +x /usr/local/bin/cog ``` ## Cog build the image ```bash cog build --separate-weights ``` push the image ```bash cog push ``` ## Training ```bash # Run training with default configuration python scripts/train.py # Run hyperparameter tuning python scripts/hyperparameter_tuning.py ``` ## Inference ```bash # Using Cog for inference cog predict -i video=@path/to/your/video.mp4 # Using standard Python script python scripts/inference.py --video path/to/your/video.mp4 ``` ## Analysis ```bash # Generate misclassification report python scripts/visualization/miscalculations_report.py # Visualize model performance python scripts/visualization/visualize.py ``` ## Project Structure ``` clip/ ├── src/ # Source code │ ├── data/ # Dataset and data processing │ ├── models/ # Model architecture │ └── utils/ # Utility functions ├── scripts/ # Training and inference scripts │ └── visualization/ # Visualization tools ├── config/ # Configuration files ├── runs/ # Training runs and checkpoints ├── cog.yaml # Cog configuration └── requirements.txt # Python dependencies ``` ## Model Architecture - Base: CLIP ViT-Large/14 - Custom temporal pooling layer - Fine-tuned vision encoder (last 3 layers) - Output: 4-class classifier ## License [Your License Here] ## Citation If you use this model in your research, please cite: ```bibtex [Your Citation Here] ```