---
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:710
- loss:MultipleNegativesRankingLoss
base_model: sentence-transformers/multi-qa-MiniLM-L6-cos-v1
widget:
- source_sentence: Set Camera 4 to follow Ava at the top side
sentences:
- Camera 4 put Grace on the top side
- Set Camera 3 to put Michael at the bottom side
- Set Wyatt at the left side on group1
- source_sentence: Camera 1 put Hazel on the right side
sentences:
- Group2 move Elijah to the top side
- Camera 4 put Amelia on the left side
- Set Camera 2 to follow Ethan at the top side
- source_sentence: Group2 place Harper at the left side
sentences:
- Camera 1 put Zoe at the right side
- Camera group1 put Aiden at the right side
- Camera 1 put Chloe on the right side
- source_sentence: Camera 2 put Henry at the left side
sentences:
- group1 put Nathan at the left side
- Set Camera 2 to position Emma at the top side
- group1 put Wyatt at the left side
- source_sentence: group1 put Abigail on the right side
sentences:
- Set Evelyn at the right side on Camera 1
- Place James on the top side of Camera 4
- Move Charlotte to the right on Camera 4
pipeline_tag: sentence-similarity
library_name: sentence-transformers
---
# SentenceTransformer based on sentence-transformers/multi-qa-MiniLM-L6-cos-v1
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [sentence-transformers/multi-qa-MiniLM-L6-cos-v1](https://huggingface.co/sentence-transformers/multi-qa-MiniLM-L6-cos-v1). It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
## Model Details
### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [sentence-transformers/multi-qa-MiniLM-L6-cos-v1](https://huggingface.co/sentence-transformers/multi-qa-MiniLM-L6-cos-v1)
- **Maximum Sequence Length:** 512 tokens
- **Output Dimensionality:** 384 dimensions
- **Similarity Function:** Cosine Similarity
### Model Sources
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
### Full Model Architecture
```
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
```
## Usage
### Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
```bash
pip install -U sentence-transformers
```
Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("bau0221/ptz_embedding_2")
# Run inference
sentences = [
'group1 put Abigail on the right side',
'Move Charlotte to the right on Camera 4',
'Set Evelyn at the right side on Camera 1',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 384]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
```
## Training Details
### Training Dataset
#### Unnamed Dataset
* Size: 710 training samples
* Columns: query
, pos
, and neg
* Approximate statistics based on the first 710 samples:
| | query | pos | neg |
|:--------|:----------------------------------------------------------------------------------|:-----------------------------------|:-----------------------------------|
| type | string | list | list |
| details |
Set camera 1 to track target A at bottom_right with fast speed.
| ['Set camera 1 to track target A at bottom_right with fast speed.', 'Set camera 1 to track target A at bottom_right with fast speed.', 'Set camera 1 to track target A at bottom_right with fast speed.']
| ['Camera 2 tracking Kyle', 'Set camera 3 to track target B at the top with slow speed.', 'Turn camera 2 to the right for 5 seconds.']
|
| Camera 2 tracking Kyle
| ['Camera 2 tracking Kyle', 'Camera 4 tracking Kyle', 'Cam 2 tracking Kyle']
| ['Set camera 1 to track target A at bottom_right with fast speed.', 'Set camera 3 to track target B at the top with slow speed.', 'Turn camera 2 to the right for 5 seconds.']
|
| Set camera 3 to track target B at the top with slow speed.
| ['Set camera 3 to track target B at the top with slow speed.', 'Set camera 3 to track target B at the top with slow speed.', 'Set camera 3 to track target B at the top with slow speed.']
| ['Set camera 1 to track target A at bottom_right with fast speed.', 'Camera 2 tracking Kyle', 'Turn camera 2 to the right for 5 seconds.']
|
* Loss: [MultipleNegativesRankingLoss
](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:
```json
{
"scale": 20.0,
"similarity_fct": "cos_sim"
}
```
### Evaluation Dataset
#### Unnamed Dataset
* Size: 71 evaluation samples
* Columns: query
, pos
, and neg
* Approximate statistics based on the first 71 samples:
| | query | pos | neg |
|:--------|:----------------------------------------------------------------------------------|:-----------------------------------|:-----------------------------------|
| type | string | list | list |
| details | Camera 3 put Harper at the right side
| ['Camera 3 put Harper at the right side', 'Cam 3 put Harper at the right side', 'Camera 3 put Harper at the right side']
| ['Set camera 1 to track target A at bottom_right with fast speed.', 'Camera 2 tracking Kyle', 'Set camera 3 to track target B at the top with slow speed.']
|
| Camera 4 put Amelia on the left side
| ['Camera 4 put Amelia on the left side', 'Cam 4 put Amelia on the left side', 'Camera 4 put Amelia on the left side']
| ['Set camera 1 to track target A at bottom_right with fast speed.', 'Camera 2 tracking Kyle', 'Set camera 3 to track target B at the top with slow speed.']
|
| Group2 put Logan at the right side
| ['Group2 put Logan at the right side', 'Group2 put Logan at the right side', 'Group2 put Logan at the right side']
| ['Set camera 1 to track target A at bottom_right with fast speed.', 'Camera 2 tracking Kyle', 'Set camera 3 to track target B at the top with slow speed.']
|
* Loss: [MultipleNegativesRankingLoss
](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:
```json
{
"scale": 20.0,
"similarity_fct": "cos_sim"
}
```
### Training Hyperparameters
#### All Hyperparameters