Update README.md
Browse files
README.md
CHANGED
@@ -235,6 +235,9 @@ Today Date: 26 Jul 2024
|
|
235 |
| [Meta-Llama-3.1-8B-Instruct-Q4_K_M.gguf](https://huggingface.co/bartowski/Meta-Llama-3.1-8B-Instruct-GGUF/blob/main/Meta-Llama-3.1-8B-Instruct-Q4_K_M.gguf) | Q4_K_M | 4.92GB | false | Good quality, default size for must use cases, *recommended*. |
|
236 |
| [Meta-Llama-3.1-8B-Instruct-Q3_K_XL.gguf](https://huggingface.co/bartowski/Meta-Llama-3.1-8B-Instruct-GGUF/blob/main/Meta-Llama-3.1-8B-Instruct-Q3_K_XL.gguf) | Q3_K_XL | 4.78GB | false | Uses Q8_0 for embed and output weights. Lower quality but usable, good for low RAM availability. |
|
237 |
| [Meta-Llama-3.1-8B-Instruct-Q4_K_S.gguf](https://huggingface.co/bartowski/Meta-Llama-3.1-8B-Instruct-GGUF/blob/main/Meta-Llama-3.1-8B-Instruct-Q4_K_S.gguf) | Q4_K_S | 4.69GB | false | Slightly lower quality with more space savings, *recommended*. |
|
|
|
|
|
|
|
238 |
| [Meta-Llama-3.1-8B-Instruct-IQ4_XS.gguf](https://huggingface.co/bartowski/Meta-Llama-3.1-8B-Instruct-GGUF/blob/main/Meta-Llama-3.1-8B-Instruct-IQ4_XS.gguf) | IQ4_XS | 4.45GB | false | Decent quality, smaller than Q4_K_S with similar performance, *recommended*. |
|
239 |
| [Meta-Llama-3.1-8B-Instruct-Q3_K_L.gguf](https://huggingface.co/bartowski/Meta-Llama-3.1-8B-Instruct-GGUF/blob/main/Meta-Llama-3.1-8B-Instruct-Q3_K_L.gguf) | Q3_K_L | 4.32GB | false | Lower quality but usable, good for low RAM availability. |
|
240 |
| [Meta-Llama-3.1-8B-Instruct-Q3_K_M.gguf](https://huggingface.co/bartowski/Meta-Llama-3.1-8B-Instruct-GGUF/blob/main/Meta-Llama-3.1-8B-Instruct-Q3_K_M.gguf) | Q3_K_M | 4.02GB | false | Low quality. |
|
@@ -273,6 +276,44 @@ huggingface-cli download bartowski/Meta-Llama-3.1-8B-Instruct-GGUF --include "Me
|
|
273 |
|
274 |
You can either specify a new local-dir (Meta-Llama-3.1-8B-Instruct-Q8_0) or download them all in place (./)
|
275 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
276 |
## Which file should I choose?
|
277 |
|
278 |
A great write up with charts showing various performances is provided by Artefact2 [here](https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9)
|
|
|
235 |
| [Meta-Llama-3.1-8B-Instruct-Q4_K_M.gguf](https://huggingface.co/bartowski/Meta-Llama-3.1-8B-Instruct-GGUF/blob/main/Meta-Llama-3.1-8B-Instruct-Q4_K_M.gguf) | Q4_K_M | 4.92GB | false | Good quality, default size for must use cases, *recommended*. |
|
236 |
| [Meta-Llama-3.1-8B-Instruct-Q3_K_XL.gguf](https://huggingface.co/bartowski/Meta-Llama-3.1-8B-Instruct-GGUF/blob/main/Meta-Llama-3.1-8B-Instruct-Q3_K_XL.gguf) | Q3_K_XL | 4.78GB | false | Uses Q8_0 for embed and output weights. Lower quality but usable, good for low RAM availability. |
|
237 |
| [Meta-Llama-3.1-8B-Instruct-Q4_K_S.gguf](https://huggingface.co/bartowski/Meta-Llama-3.1-8B-Instruct-GGUF/blob/main/Meta-Llama-3.1-8B-Instruct-Q4_K_S.gguf) | Q4_K_S | 4.69GB | false | Slightly lower quality with more space savings, *recommended*. |
|
238 |
+
| [Meta-Llama-3.1-8B-Instruct-Q4_0_8_8.gguf](https://huggingface.co/bartowski/Meta-Llama-3.1-8B-Instruct-GGUF/blob/main/Meta-Llama-3.1-8B-Instruct-Q4_0_8_8.gguf) | Q4_0_8_8 | 4.67GB | false | Optimized for ARM and AVX inference. Requires 'sve' support for ARM (see details below). Don't use on Mac. |
|
239 |
+
| [Meta-Llama-3.1-8B-Instruct-Q4_0_4_8.gguf](https://huggingface.co/bartowski/Meta-Llama-3.1-8B-Instruct-GGUF/blob/main/Meta-Llama-3.1-8B-Instruct-Q4_0_4_8.gguf) | Q4_0_4_8 | 4.67GB | false | Optimized for ARM inference. Requires 'i8mm' support (see details below). Don't use on Mac. |
|
240 |
+
| [Meta-Llama-3.1-8B-Instruct-Q4_0_4_4.gguf](https://huggingface.co/bartowski/Meta-Llama-3.1-8B-Instruct-GGUF/blob/main/Meta-Llama-3.1-8B-Instruct-Q4_0_4_4.gguf) | Q4_0_4_4 | 4.67GB | false | Optimized for ARM inference. Should work well on all ARM chips, not for use with GPUs. Don't use on Mac. |
|
241 |
| [Meta-Llama-3.1-8B-Instruct-IQ4_XS.gguf](https://huggingface.co/bartowski/Meta-Llama-3.1-8B-Instruct-GGUF/blob/main/Meta-Llama-3.1-8B-Instruct-IQ4_XS.gguf) | IQ4_XS | 4.45GB | false | Decent quality, smaller than Q4_K_S with similar performance, *recommended*. |
|
242 |
| [Meta-Llama-3.1-8B-Instruct-Q3_K_L.gguf](https://huggingface.co/bartowski/Meta-Llama-3.1-8B-Instruct-GGUF/blob/main/Meta-Llama-3.1-8B-Instruct-Q3_K_L.gguf) | Q3_K_L | 4.32GB | false | Lower quality but usable, good for low RAM availability. |
|
243 |
| [Meta-Llama-3.1-8B-Instruct-Q3_K_M.gguf](https://huggingface.co/bartowski/Meta-Llama-3.1-8B-Instruct-GGUF/blob/main/Meta-Llama-3.1-8B-Instruct-Q3_K_M.gguf) | Q3_K_M | 4.02GB | false | Low quality. |
|
|
|
276 |
|
277 |
You can either specify a new local-dir (Meta-Llama-3.1-8B-Instruct-Q8_0) or download them all in place (./)
|
278 |
|
279 |
+
## Q4_0_X_X information
|
280 |
+
|
281 |
+
These are *NOT* for Metal (Apple) or GPU (nvidia/AMD/intel) offloading, only ARM chips (and certain AVX2/AVX512 CPUs).
|
282 |
+
|
283 |
+
If you're using an ARM chip, the Q4_0_X_X quants will have a substantial speedup. Check out Q4_0_4_4 speed comparisons [on the original pull request](https://github.com/ggerganov/llama.cpp/pull/5780#pullrequestreview-21657544660)
|
284 |
+
|
285 |
+
To check which one would work best for your ARM chip, you can check [AArch64 SoC features](https://gpages.juszkiewicz.com.pl/arm-socs-table/arm-socs.html) (thanks EloyOn!).
|
286 |
+
|
287 |
+
If you're using a CPU that supports AVX2 or AVX512 (typically server CPUs and AMD's latest Zen5 CPUs) and are not offloading to a GPU, the Q4_0_8_8 may offer a nice speed as well:
|
288 |
+
|
289 |
+
<details>
|
290 |
+
<summary>Click to view benchmarks on an AVX2 system (EPYC7702)</summary>
|
291 |
+
|
292 |
+
| model | size | params | backend | threads | test | t/s | % (vs Q4_0) |
|
293 |
+
| ------------------------------ | ---------: | ---------: | ---------- | ------: | ------------: | -------------------: |-------------: |
|
294 |
+
| qwen2 3B Q4_0 | 1.70 GiB | 3.09 B | CPU | 64 | pp512 | 204.03 ± 1.03 | 100% |
|
295 |
+
| qwen2 3B Q4_0 | 1.70 GiB | 3.09 B | CPU | 64 | pp1024 | 282.92 ± 0.19 | 100% |
|
296 |
+
| qwen2 3B Q4_0 | 1.70 GiB | 3.09 B | CPU | 64 | pp2048 | 259.49 ± 0.44 | 100% |
|
297 |
+
| qwen2 3B Q4_0 | 1.70 GiB | 3.09 B | CPU | 64 | tg128 | 39.12 ± 0.27 | 100% |
|
298 |
+
| qwen2 3B Q4_0 | 1.70 GiB | 3.09 B | CPU | 64 | tg256 | 39.31 ± 0.69 | 100% |
|
299 |
+
| qwen2 3B Q4_0 | 1.70 GiB | 3.09 B | CPU | 64 | tg512 | 40.52 ± 0.03 | 100% |
|
300 |
+
| qwen2 3B Q4_K_M | 1.79 GiB | 3.09 B | CPU | 64 | pp512 | 301.02 ± 1.74 | 147% |
|
301 |
+
| qwen2 3B Q4_K_M | 1.79 GiB | 3.09 B | CPU | 64 | pp1024 | 287.23 ± 0.20 | 101% |
|
302 |
+
| qwen2 3B Q4_K_M | 1.79 GiB | 3.09 B | CPU | 64 | pp2048 | 262.77 ± 1.81 | 101% |
|
303 |
+
| qwen2 3B Q4_K_M | 1.79 GiB | 3.09 B | CPU | 64 | tg128 | 18.80 ± 0.99 | 48% |
|
304 |
+
| qwen2 3B Q4_K_M | 1.79 GiB | 3.09 B | CPU | 64 | tg256 | 24.46 ± 3.04 | 83% |
|
305 |
+
| qwen2 3B Q4_K_M | 1.79 GiB | 3.09 B | CPU | 64 | tg512 | 36.32 ± 3.59 | 90% |
|
306 |
+
| qwen2 3B Q4_0_8_8 | 1.69 GiB | 3.09 B | CPU | 64 | pp512 | 271.71 ± 3.53 | 133% |
|
307 |
+
| qwen2 3B Q4_0_8_8 | 1.69 GiB | 3.09 B | CPU | 64 | pp1024 | 279.86 ± 45.63 | 100% |
|
308 |
+
| qwen2 3B Q4_0_8_8 | 1.69 GiB | 3.09 B | CPU | 64 | pp2048 | 320.77 ± 5.00 | 124% |
|
309 |
+
| qwen2 3B Q4_0_8_8 | 1.69 GiB | 3.09 B | CPU | 64 | tg128 | 43.51 ± 0.05 | 111% |
|
310 |
+
| qwen2 3B Q4_0_8_8 | 1.69 GiB | 3.09 B | CPU | 64 | tg256 | 43.35 ± 0.09 | 110% |
|
311 |
+
| qwen2 3B Q4_0_8_8 | 1.69 GiB | 3.09 B | CPU | 64 | tg512 | 42.60 ± 0.31 | 105% |
|
312 |
+
|
313 |
+
Q4_0_8_8 offers a nice bump to prompt processing and a small bump to text generation
|
314 |
+
|
315 |
+
</details>
|
316 |
+
|
317 |
## Which file should I choose?
|
318 |
|
319 |
A great write up with charts showing various performances is provided by Artefact2 [here](https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9)
|