---
license: apache-2.0
base_model:
- cognitivecomputations/dolphin-2.6-mistral-7b-dpo-laser
- Locutusque/Hyperion-1.5-Mistral-7B
- ibm/merlinite-7b
library_name: transformers
tags:
- mergekit
- merge
- code
model-index:
- name: Magic-Dolphin-7b
results:
- task:
type: text-generation
name: Text Generation
dataset:
name: AI2 Reasoning Challenge (25-Shot)
type: ai2_arc
config: ARC-Challenge
split: test
args:
num_few_shot: 25
metrics:
- type: acc_norm
value: 65.78
name: normalized accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=InferenceIllusionist/Magic-Dolphin-7b
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: HellaSwag (10-Shot)
type: hellaswag
split: validation
args:
num_few_shot: 10
metrics:
- type: acc_norm
value: 85.61
name: normalized accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=InferenceIllusionist/Magic-Dolphin-7b
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MMLU (5-Shot)
type: cais/mmlu
config: all
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 64.64
name: accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=InferenceIllusionist/Magic-Dolphin-7b
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: TruthfulQA (0-shot)
type: truthful_qa
config: multiple_choice
split: validation
args:
num_few_shot: 0
metrics:
- type: mc2
value: 58.01
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=InferenceIllusionist/Magic-Dolphin-7b
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: Winogrande (5-shot)
type: winogrande
config: winogrande_xl
split: validation
args:
num_few_shot: 5
metrics:
- type: acc
value: 79.64
name: accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=InferenceIllusionist/Magic-Dolphin-7b
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: GSM8k (5-shot)
type: gsm8k
config: main
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 51.18
name: accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=InferenceIllusionist/Magic-Dolphin-7b
name: Open LLM Leaderboard
quantized_by: bartowski
pipeline_tag: text-generation
---
## Exllama v2 Quantizations of Magic-Dolphin-7b
Using turboderp's ExLlamaV2 v0.0.14 for quantization.
The "main" branch only contains the measurement.json, download one of the other branches for the model (see below)
Each branch contains an individual bits per weight, with the main one containing only the meaurement.json for further conversions.
Original model: https://huggingface.co/InferenceIllusionist/Magic-Dolphin-7b
| Branch | Bits | lm_head bits | VRAM (4k) | VRAM (16k) | VRAM (32k) | Description |
| ----- | ---- | ------- | ------ | ------ | ------ | ------------ |
| [8_0](https://huggingface.co/bartowski/Magic-Dolphin-7b-exl2/tree/8_0) | 8.0 | 8.0 | 8.4 GB | 9.8 GB | 11.8 GB | Maximum quality that ExLlamaV2 can produce, near unquantized performance. |
| [6_5](https://huggingface.co/bartowski/Magic-Dolphin-7b-exl2/tree/6_5) | 6.5 | 8.0 | 7.2 GB | 8.6 GB | 10.6 GB | Very similar to 8.0, good tradeoff of size vs performance, **recommended**. |
| [5_0](https://huggingface.co/bartowski/Magic-Dolphin-7b-exl2/tree/5_0) | 5.0 | 6.0 | 6.0 GB | 7.4 GB | 9.4 GB | Slightly lower quality vs 6.5, but usable on 8GB cards. |
| [4_25](https://huggingface.co/bartowski/Magic-Dolphin-7b-exl2/tree/4_25) | 4.25 | 6.0 | 5.3 GB | 6.7 GB | 8.7 GB | GPTQ equivalent bits per weight, slightly higher quality. |
| [3_5](https://huggingface.co/bartowski/Magic-Dolphin-7b-exl2/tree/3_5) | 3.5 | 6.0 | 4.7 GB | 6.1 GB | 8.1 GB | Lower quality, only use if you have to. |
## Download instructions
With git:
```shell
git clone --single-branch --branch 6_5 https://huggingface.co/bartowski/Magic-Dolphin-7b-exl2 Magic-Dolphin-7b-exl2-6_5
```
With huggingface hub (credit to TheBloke for instructions):
```shell
pip3 install huggingface-hub
```
To download the `main` (only useful if you only care about measurement.json) branch to a folder called `Magic-Dolphin-7b-exl2`:
```shell
mkdir Magic-Dolphin-7b-exl2
huggingface-cli download bartowski/Magic-Dolphin-7b-exl2 --local-dir Magic-Dolphin-7b-exl2 --local-dir-use-symlinks False
```
To download from a different branch, add the `--revision` parameter:
Linux:
```shell
mkdir Magic-Dolphin-7b-exl2-6_5
huggingface-cli download bartowski/Magic-Dolphin-7b-exl2 --revision 6_5 --local-dir Magic-Dolphin-7b-exl2-6_5 --local-dir-use-symlinks False
```
Windows (which apparently doesn't like _ in folders sometimes?):
```shell
mkdir Magic-Dolphin-7b-exl2-6.5
huggingface-cli download bartowski/Magic-Dolphin-7b-exl2 --revision 6_5 --local-dir Magic-Dolphin-7b-exl2-6.5 --local-dir-use-symlinks False
```
Want to support my work? Visit my ko-fi page here: https://ko-fi.com/bartowski