barisaydin commited on
Commit
37b7458
1 Parent(s): 6065a2e

Upload folder using huggingface_hub

Browse files
1_Pooling/config.json ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 768,
3
+ "pooling_mode_cls_token": true,
4
+ "pooling_mode_mean_tokens": false,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false
7
+ }
README.md ADDED
@@ -0,0 +1,2992 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ tags:
3
+ - mteb
4
+ model-index:
5
+ - name: bge-base-en
6
+ results:
7
+ - task:
8
+ type: Classification
9
+ dataset:
10
+ type: mteb/amazon_counterfactual
11
+ name: MTEB AmazonCounterfactualClassification (en)
12
+ config: en
13
+ split: test
14
+ revision: e8379541af4e31359cca9fbcf4b00f2671dba205
15
+ metrics:
16
+ - type: accuracy
17
+ value: 75.73134328358209
18
+ - type: ap
19
+ value: 38.97277232632892
20
+ - type: f1
21
+ value: 69.81740361139785
22
+ - task:
23
+ type: Classification
24
+ dataset:
25
+ type: mteb/amazon_polarity
26
+ name: MTEB AmazonPolarityClassification
27
+ config: default
28
+ split: test
29
+ revision: e2d317d38cd51312af73b3d32a06d1a08b442046
30
+ metrics:
31
+ - type: accuracy
32
+ value: 92.56522500000001
33
+ - type: ap
34
+ value: 88.88821771869553
35
+ - type: f1
36
+ value: 92.54817512659696
37
+ - task:
38
+ type: Classification
39
+ dataset:
40
+ type: mteb/amazon_reviews_multi
41
+ name: MTEB AmazonReviewsClassification (en)
42
+ config: en
43
+ split: test
44
+ revision: 1399c76144fd37290681b995c656ef9b2e06e26d
45
+ metrics:
46
+ - type: accuracy
47
+ value: 46.91
48
+ - type: f1
49
+ value: 46.28536394320311
50
+ - task:
51
+ type: Retrieval
52
+ dataset:
53
+ type: arguana
54
+ name: MTEB ArguAna
55
+ config: default
56
+ split: test
57
+ revision: None
58
+ metrics:
59
+ - type: map_at_1
60
+ value: 38.834
61
+ - type: map_at_10
62
+ value: 53.564
63
+ - type: map_at_100
64
+ value: 54.230000000000004
65
+ - type: map_at_1000
66
+ value: 54.235
67
+ - type: map_at_3
68
+ value: 49.49
69
+ - type: map_at_5
70
+ value: 51.784
71
+ - type: mrr_at_1
72
+ value: 39.26
73
+ - type: mrr_at_10
74
+ value: 53.744
75
+ - type: mrr_at_100
76
+ value: 54.410000000000004
77
+ - type: mrr_at_1000
78
+ value: 54.415
79
+ - type: mrr_at_3
80
+ value: 49.656
81
+ - type: mrr_at_5
82
+ value: 52.018
83
+ - type: ndcg_at_1
84
+ value: 38.834
85
+ - type: ndcg_at_10
86
+ value: 61.487
87
+ - type: ndcg_at_100
88
+ value: 64.303
89
+ - type: ndcg_at_1000
90
+ value: 64.408
91
+ - type: ndcg_at_3
92
+ value: 53.116
93
+ - type: ndcg_at_5
94
+ value: 57.248
95
+ - type: precision_at_1
96
+ value: 38.834
97
+ - type: precision_at_10
98
+ value: 8.663
99
+ - type: precision_at_100
100
+ value: 0.989
101
+ - type: precision_at_1000
102
+ value: 0.1
103
+ - type: precision_at_3
104
+ value: 21.218999999999998
105
+ - type: precision_at_5
106
+ value: 14.737
107
+ - type: recall_at_1
108
+ value: 38.834
109
+ - type: recall_at_10
110
+ value: 86.629
111
+ - type: recall_at_100
112
+ value: 98.86200000000001
113
+ - type: recall_at_1000
114
+ value: 99.644
115
+ - type: recall_at_3
116
+ value: 63.656
117
+ - type: recall_at_5
118
+ value: 73.68400000000001
119
+ - task:
120
+ type: Clustering
121
+ dataset:
122
+ type: mteb/arxiv-clustering-p2p
123
+ name: MTEB ArxivClusteringP2P
124
+ config: default
125
+ split: test
126
+ revision: a122ad7f3f0291bf49cc6f4d32aa80929df69d5d
127
+ metrics:
128
+ - type: v_measure
129
+ value: 48.88475477433035
130
+ - task:
131
+ type: Clustering
132
+ dataset:
133
+ type: mteb/arxiv-clustering-s2s
134
+ name: MTEB ArxivClusteringS2S
135
+ config: default
136
+ split: test
137
+ revision: f910caf1a6075f7329cdf8c1a6135696f37dbd53
138
+ metrics:
139
+ - type: v_measure
140
+ value: 42.85053138403176
141
+ - task:
142
+ type: Reranking
143
+ dataset:
144
+ type: mteb/askubuntudupquestions-reranking
145
+ name: MTEB AskUbuntuDupQuestions
146
+ config: default
147
+ split: test
148
+ revision: 2000358ca161889fa9c082cb41daa8dcfb161a54
149
+ metrics:
150
+ - type: map
151
+ value: 62.23221013208242
152
+ - type: mrr
153
+ value: 74.64857318735436
154
+ - task:
155
+ type: STS
156
+ dataset:
157
+ type: mteb/biosses-sts
158
+ name: MTEB BIOSSES
159
+ config: default
160
+ split: test
161
+ revision: d3fb88f8f02e40887cd149695127462bbcf29b4a
162
+ metrics:
163
+ - type: cos_sim_pearson
164
+ value: 87.4403443247284
165
+ - type: cos_sim_spearman
166
+ value: 85.5326718115169
167
+ - type: euclidean_pearson
168
+ value: 86.0114007449595
169
+ - type: euclidean_spearman
170
+ value: 86.05979225604875
171
+ - type: manhattan_pearson
172
+ value: 86.05423806568598
173
+ - type: manhattan_spearman
174
+ value: 86.02485170086835
175
+ - task:
176
+ type: Classification
177
+ dataset:
178
+ type: mteb/banking77
179
+ name: MTEB Banking77Classification
180
+ config: default
181
+ split: test
182
+ revision: 0fd18e25b25c072e09e0d92ab615fda904d66300
183
+ metrics:
184
+ - type: accuracy
185
+ value: 86.44480519480518
186
+ - type: f1
187
+ value: 86.41301900941988
188
+ - task:
189
+ type: Clustering
190
+ dataset:
191
+ type: mteb/biorxiv-clustering-p2p
192
+ name: MTEB BiorxivClusteringP2P
193
+ config: default
194
+ split: test
195
+ revision: 65b79d1d13f80053f67aca9498d9402c2d9f1f40
196
+ metrics:
197
+ - type: v_measure
198
+ value: 40.17547250880036
199
+ - task:
200
+ type: Clustering
201
+ dataset:
202
+ type: mteb/biorxiv-clustering-s2s
203
+ name: MTEB BiorxivClusteringS2S
204
+ config: default
205
+ split: test
206
+ revision: 258694dd0231531bc1fd9de6ceb52a0853c6d908
207
+ metrics:
208
+ - type: v_measure
209
+ value: 37.74514172687293
210
+ - task:
211
+ type: Retrieval
212
+ dataset:
213
+ type: BeIR/cqadupstack
214
+ name: MTEB CQADupstackAndroidRetrieval
215
+ config: default
216
+ split: test
217
+ revision: None
218
+ metrics:
219
+ - type: map_at_1
220
+ value: 32.096000000000004
221
+ - type: map_at_10
222
+ value: 43.345
223
+ - type: map_at_100
224
+ value: 44.73
225
+ - type: map_at_1000
226
+ value: 44.85
227
+ - type: map_at_3
228
+ value: 39.956
229
+ - type: map_at_5
230
+ value: 41.727
231
+ - type: mrr_at_1
232
+ value: 38.769999999999996
233
+ - type: mrr_at_10
234
+ value: 48.742000000000004
235
+ - type: mrr_at_100
236
+ value: 49.474000000000004
237
+ - type: mrr_at_1000
238
+ value: 49.513
239
+ - type: mrr_at_3
240
+ value: 46.161
241
+ - type: mrr_at_5
242
+ value: 47.721000000000004
243
+ - type: ndcg_at_1
244
+ value: 38.769999999999996
245
+ - type: ndcg_at_10
246
+ value: 49.464999999999996
247
+ - type: ndcg_at_100
248
+ value: 54.632000000000005
249
+ - type: ndcg_at_1000
250
+ value: 56.52
251
+ - type: ndcg_at_3
252
+ value: 44.687
253
+ - type: ndcg_at_5
254
+ value: 46.814
255
+ - type: precision_at_1
256
+ value: 38.769999999999996
257
+ - type: precision_at_10
258
+ value: 9.471
259
+ - type: precision_at_100
260
+ value: 1.4909999999999999
261
+ - type: precision_at_1000
262
+ value: 0.194
263
+ - type: precision_at_3
264
+ value: 21.268
265
+ - type: precision_at_5
266
+ value: 15.079
267
+ - type: recall_at_1
268
+ value: 32.096000000000004
269
+ - type: recall_at_10
270
+ value: 60.99099999999999
271
+ - type: recall_at_100
272
+ value: 83.075
273
+ - type: recall_at_1000
274
+ value: 95.178
275
+ - type: recall_at_3
276
+ value: 47.009
277
+ - type: recall_at_5
278
+ value: 53.348
279
+ - task:
280
+ type: Retrieval
281
+ dataset:
282
+ type: BeIR/cqadupstack
283
+ name: MTEB CQADupstackEnglishRetrieval
284
+ config: default
285
+ split: test
286
+ revision: None
287
+ metrics:
288
+ - type: map_at_1
289
+ value: 32.588
290
+ - type: map_at_10
291
+ value: 42.251
292
+ - type: map_at_100
293
+ value: 43.478
294
+ - type: map_at_1000
295
+ value: 43.617
296
+ - type: map_at_3
297
+ value: 39.381
298
+ - type: map_at_5
299
+ value: 41.141
300
+ - type: mrr_at_1
301
+ value: 41.21
302
+ - type: mrr_at_10
303
+ value: 48.765
304
+ - type: mrr_at_100
305
+ value: 49.403000000000006
306
+ - type: mrr_at_1000
307
+ value: 49.451
308
+ - type: mrr_at_3
309
+ value: 46.73
310
+ - type: mrr_at_5
311
+ value: 47.965999999999994
312
+ - type: ndcg_at_1
313
+ value: 41.21
314
+ - type: ndcg_at_10
315
+ value: 47.704
316
+ - type: ndcg_at_100
317
+ value: 51.916
318
+ - type: ndcg_at_1000
319
+ value: 54.013999999999996
320
+ - type: ndcg_at_3
321
+ value: 44.007000000000005
322
+ - type: ndcg_at_5
323
+ value: 45.936
324
+ - type: precision_at_1
325
+ value: 41.21
326
+ - type: precision_at_10
327
+ value: 8.885
328
+ - type: precision_at_100
329
+ value: 1.409
330
+ - type: precision_at_1000
331
+ value: 0.189
332
+ - type: precision_at_3
333
+ value: 21.274
334
+ - type: precision_at_5
335
+ value: 15.045
336
+ - type: recall_at_1
337
+ value: 32.588
338
+ - type: recall_at_10
339
+ value: 56.333
340
+ - type: recall_at_100
341
+ value: 74.251
342
+ - type: recall_at_1000
343
+ value: 87.518
344
+ - type: recall_at_3
345
+ value: 44.962
346
+ - type: recall_at_5
347
+ value: 50.609
348
+ - task:
349
+ type: Retrieval
350
+ dataset:
351
+ type: BeIR/cqadupstack
352
+ name: MTEB CQADupstackGamingRetrieval
353
+ config: default
354
+ split: test
355
+ revision: None
356
+ metrics:
357
+ - type: map_at_1
358
+ value: 40.308
359
+ - type: map_at_10
360
+ value: 53.12
361
+ - type: map_at_100
362
+ value: 54.123
363
+ - type: map_at_1000
364
+ value: 54.173
365
+ - type: map_at_3
366
+ value: 50.017999999999994
367
+ - type: map_at_5
368
+ value: 51.902
369
+ - type: mrr_at_1
370
+ value: 46.394999999999996
371
+ - type: mrr_at_10
372
+ value: 56.531
373
+ - type: mrr_at_100
374
+ value: 57.19800000000001
375
+ - type: mrr_at_1000
376
+ value: 57.225
377
+ - type: mrr_at_3
378
+ value: 54.368
379
+ - type: mrr_at_5
380
+ value: 55.713
381
+ - type: ndcg_at_1
382
+ value: 46.394999999999996
383
+ - type: ndcg_at_10
384
+ value: 58.811
385
+ - type: ndcg_at_100
386
+ value: 62.834
387
+ - type: ndcg_at_1000
388
+ value: 63.849999999999994
389
+ - type: ndcg_at_3
390
+ value: 53.88699999999999
391
+ - type: ndcg_at_5
392
+ value: 56.477999999999994
393
+ - type: precision_at_1
394
+ value: 46.394999999999996
395
+ - type: precision_at_10
396
+ value: 9.398
397
+ - type: precision_at_100
398
+ value: 1.2309999999999999
399
+ - type: precision_at_1000
400
+ value: 0.136
401
+ - type: precision_at_3
402
+ value: 24.221999999999998
403
+ - type: precision_at_5
404
+ value: 16.539
405
+ - type: recall_at_1
406
+ value: 40.308
407
+ - type: recall_at_10
408
+ value: 72.146
409
+ - type: recall_at_100
410
+ value: 89.60900000000001
411
+ - type: recall_at_1000
412
+ value: 96.733
413
+ - type: recall_at_3
414
+ value: 58.91499999999999
415
+ - type: recall_at_5
416
+ value: 65.34299999999999
417
+ - task:
418
+ type: Retrieval
419
+ dataset:
420
+ type: BeIR/cqadupstack
421
+ name: MTEB CQADupstackGisRetrieval
422
+ config: default
423
+ split: test
424
+ revision: None
425
+ metrics:
426
+ - type: map_at_1
427
+ value: 27.383000000000003
428
+ - type: map_at_10
429
+ value: 35.802
430
+ - type: map_at_100
431
+ value: 36.756
432
+ - type: map_at_1000
433
+ value: 36.826
434
+ - type: map_at_3
435
+ value: 32.923
436
+ - type: map_at_5
437
+ value: 34.577999999999996
438
+ - type: mrr_at_1
439
+ value: 29.604999999999997
440
+ - type: mrr_at_10
441
+ value: 37.918
442
+ - type: mrr_at_100
443
+ value: 38.732
444
+ - type: mrr_at_1000
445
+ value: 38.786
446
+ - type: mrr_at_3
447
+ value: 35.198
448
+ - type: mrr_at_5
449
+ value: 36.808
450
+ - type: ndcg_at_1
451
+ value: 29.604999999999997
452
+ - type: ndcg_at_10
453
+ value: 40.836
454
+ - type: ndcg_at_100
455
+ value: 45.622
456
+ - type: ndcg_at_1000
457
+ value: 47.427
458
+ - type: ndcg_at_3
459
+ value: 35.208
460
+ - type: ndcg_at_5
461
+ value: 38.066
462
+ - type: precision_at_1
463
+ value: 29.604999999999997
464
+ - type: precision_at_10
465
+ value: 6.226
466
+ - type: precision_at_100
467
+ value: 0.9079999999999999
468
+ - type: precision_at_1000
469
+ value: 0.11
470
+ - type: precision_at_3
471
+ value: 14.463000000000001
472
+ - type: precision_at_5
473
+ value: 10.35
474
+ - type: recall_at_1
475
+ value: 27.383000000000003
476
+ - type: recall_at_10
477
+ value: 54.434000000000005
478
+ - type: recall_at_100
479
+ value: 76.632
480
+ - type: recall_at_1000
481
+ value: 90.25
482
+ - type: recall_at_3
483
+ value: 39.275
484
+ - type: recall_at_5
485
+ value: 46.225
486
+ - task:
487
+ type: Retrieval
488
+ dataset:
489
+ type: BeIR/cqadupstack
490
+ name: MTEB CQADupstackMathematicaRetrieval
491
+ config: default
492
+ split: test
493
+ revision: None
494
+ metrics:
495
+ - type: map_at_1
496
+ value: 17.885
497
+ - type: map_at_10
498
+ value: 25.724000000000004
499
+ - type: map_at_100
500
+ value: 26.992
501
+ - type: map_at_1000
502
+ value: 27.107999999999997
503
+ - type: map_at_3
504
+ value: 23.04
505
+ - type: map_at_5
506
+ value: 24.529
507
+ - type: mrr_at_1
508
+ value: 22.264
509
+ - type: mrr_at_10
510
+ value: 30.548
511
+ - type: mrr_at_100
512
+ value: 31.593
513
+ - type: mrr_at_1000
514
+ value: 31.657999999999998
515
+ - type: mrr_at_3
516
+ value: 27.756999999999998
517
+ - type: mrr_at_5
518
+ value: 29.398999999999997
519
+ - type: ndcg_at_1
520
+ value: 22.264
521
+ - type: ndcg_at_10
522
+ value: 30.902
523
+ - type: ndcg_at_100
524
+ value: 36.918
525
+ - type: ndcg_at_1000
526
+ value: 39.735
527
+ - type: ndcg_at_3
528
+ value: 25.915
529
+ - type: ndcg_at_5
530
+ value: 28.255999999999997
531
+ - type: precision_at_1
532
+ value: 22.264
533
+ - type: precision_at_10
534
+ value: 5.634
535
+ - type: precision_at_100
536
+ value: 0.9939999999999999
537
+ - type: precision_at_1000
538
+ value: 0.13699999999999998
539
+ - type: precision_at_3
540
+ value: 12.396
541
+ - type: precision_at_5
542
+ value: 9.055
543
+ - type: recall_at_1
544
+ value: 17.885
545
+ - type: recall_at_10
546
+ value: 42.237
547
+ - type: recall_at_100
548
+ value: 68.489
549
+ - type: recall_at_1000
550
+ value: 88.721
551
+ - type: recall_at_3
552
+ value: 28.283
553
+ - type: recall_at_5
554
+ value: 34.300000000000004
555
+ - task:
556
+ type: Retrieval
557
+ dataset:
558
+ type: BeIR/cqadupstack
559
+ name: MTEB CQADupstackPhysicsRetrieval
560
+ config: default
561
+ split: test
562
+ revision: None
563
+ metrics:
564
+ - type: map_at_1
565
+ value: 29.737000000000002
566
+ - type: map_at_10
567
+ value: 39.757
568
+ - type: map_at_100
569
+ value: 40.992
570
+ - type: map_at_1000
571
+ value: 41.102
572
+ - type: map_at_3
573
+ value: 36.612
574
+ - type: map_at_5
575
+ value: 38.413000000000004
576
+ - type: mrr_at_1
577
+ value: 35.804
578
+ - type: mrr_at_10
579
+ value: 45.178000000000004
580
+ - type: mrr_at_100
581
+ value: 45.975
582
+ - type: mrr_at_1000
583
+ value: 46.021
584
+ - type: mrr_at_3
585
+ value: 42.541000000000004
586
+ - type: mrr_at_5
587
+ value: 44.167
588
+ - type: ndcg_at_1
589
+ value: 35.804
590
+ - type: ndcg_at_10
591
+ value: 45.608
592
+ - type: ndcg_at_100
593
+ value: 50.746
594
+ - type: ndcg_at_1000
595
+ value: 52.839999999999996
596
+ - type: ndcg_at_3
597
+ value: 40.52
598
+ - type: ndcg_at_5
599
+ value: 43.051
600
+ - type: precision_at_1
601
+ value: 35.804
602
+ - type: precision_at_10
603
+ value: 8.104
604
+ - type: precision_at_100
605
+ value: 1.256
606
+ - type: precision_at_1000
607
+ value: 0.161
608
+ - type: precision_at_3
609
+ value: 19.121
610
+ - type: precision_at_5
611
+ value: 13.532
612
+ - type: recall_at_1
613
+ value: 29.737000000000002
614
+ - type: recall_at_10
615
+ value: 57.66
616
+ - type: recall_at_100
617
+ value: 79.121
618
+ - type: recall_at_1000
619
+ value: 93.023
620
+ - type: recall_at_3
621
+ value: 43.13
622
+ - type: recall_at_5
623
+ value: 49.836000000000006
624
+ - task:
625
+ type: Retrieval
626
+ dataset:
627
+ type: BeIR/cqadupstack
628
+ name: MTEB CQADupstackProgrammersRetrieval
629
+ config: default
630
+ split: test
631
+ revision: None
632
+ metrics:
633
+ - type: map_at_1
634
+ value: 26.299
635
+ - type: map_at_10
636
+ value: 35.617
637
+ - type: map_at_100
638
+ value: 36.972
639
+ - type: map_at_1000
640
+ value: 37.096000000000004
641
+ - type: map_at_3
642
+ value: 32.653999999999996
643
+ - type: map_at_5
644
+ value: 34.363
645
+ - type: mrr_at_1
646
+ value: 32.877
647
+ - type: mrr_at_10
648
+ value: 41.423
649
+ - type: mrr_at_100
650
+ value: 42.333999999999996
651
+ - type: mrr_at_1000
652
+ value: 42.398
653
+ - type: mrr_at_3
654
+ value: 39.193
655
+ - type: mrr_at_5
656
+ value: 40.426
657
+ - type: ndcg_at_1
658
+ value: 32.877
659
+ - type: ndcg_at_10
660
+ value: 41.271
661
+ - type: ndcg_at_100
662
+ value: 46.843
663
+ - type: ndcg_at_1000
664
+ value: 49.366
665
+ - type: ndcg_at_3
666
+ value: 36.735
667
+ - type: ndcg_at_5
668
+ value: 38.775999999999996
669
+ - type: precision_at_1
670
+ value: 32.877
671
+ - type: precision_at_10
672
+ value: 7.580000000000001
673
+ - type: precision_at_100
674
+ value: 1.192
675
+ - type: precision_at_1000
676
+ value: 0.158
677
+ - type: precision_at_3
678
+ value: 17.541999999999998
679
+ - type: precision_at_5
680
+ value: 12.443
681
+ - type: recall_at_1
682
+ value: 26.299
683
+ - type: recall_at_10
684
+ value: 52.256
685
+ - type: recall_at_100
686
+ value: 75.919
687
+ - type: recall_at_1000
688
+ value: 93.185
689
+ - type: recall_at_3
690
+ value: 39.271
691
+ - type: recall_at_5
692
+ value: 44.901
693
+ - task:
694
+ type: Retrieval
695
+ dataset:
696
+ type: BeIR/cqadupstack
697
+ name: MTEB CQADupstackRetrieval
698
+ config: default
699
+ split: test
700
+ revision: None
701
+ metrics:
702
+ - type: map_at_1
703
+ value: 27.05741666666667
704
+ - type: map_at_10
705
+ value: 36.086416666666665
706
+ - type: map_at_100
707
+ value: 37.26916666666667
708
+ - type: map_at_1000
709
+ value: 37.38191666666666
710
+ - type: map_at_3
711
+ value: 33.34225
712
+ - type: map_at_5
713
+ value: 34.86425
714
+ - type: mrr_at_1
715
+ value: 32.06008333333333
716
+ - type: mrr_at_10
717
+ value: 40.36658333333333
718
+ - type: mrr_at_100
719
+ value: 41.206500000000005
720
+ - type: mrr_at_1000
721
+ value: 41.261083333333325
722
+ - type: mrr_at_3
723
+ value: 38.01208333333334
724
+ - type: mrr_at_5
725
+ value: 39.36858333333333
726
+ - type: ndcg_at_1
727
+ value: 32.06008333333333
728
+ - type: ndcg_at_10
729
+ value: 41.3535
730
+ - type: ndcg_at_100
731
+ value: 46.42066666666666
732
+ - type: ndcg_at_1000
733
+ value: 48.655166666666666
734
+ - type: ndcg_at_3
735
+ value: 36.78041666666667
736
+ - type: ndcg_at_5
737
+ value: 38.91783333333334
738
+ - type: precision_at_1
739
+ value: 32.06008333333333
740
+ - type: precision_at_10
741
+ value: 7.169833333333332
742
+ - type: precision_at_100
743
+ value: 1.1395
744
+ - type: precision_at_1000
745
+ value: 0.15158333333333332
746
+ - type: precision_at_3
747
+ value: 16.852
748
+ - type: precision_at_5
749
+ value: 11.8645
750
+ - type: recall_at_1
751
+ value: 27.05741666666667
752
+ - type: recall_at_10
753
+ value: 52.64491666666666
754
+ - type: recall_at_100
755
+ value: 74.99791666666667
756
+ - type: recall_at_1000
757
+ value: 90.50524999999999
758
+ - type: recall_at_3
759
+ value: 39.684000000000005
760
+ - type: recall_at_5
761
+ value: 45.37225
762
+ - task:
763
+ type: Retrieval
764
+ dataset:
765
+ type: BeIR/cqadupstack
766
+ name: MTEB CQADupstackStatsRetrieval
767
+ config: default
768
+ split: test
769
+ revision: None
770
+ metrics:
771
+ - type: map_at_1
772
+ value: 25.607999999999997
773
+ - type: map_at_10
774
+ value: 32.28
775
+ - type: map_at_100
776
+ value: 33.261
777
+ - type: map_at_1000
778
+ value: 33.346
779
+ - type: map_at_3
780
+ value: 30.514999999999997
781
+ - type: map_at_5
782
+ value: 31.415
783
+ - type: mrr_at_1
784
+ value: 28.988000000000003
785
+ - type: mrr_at_10
786
+ value: 35.384
787
+ - type: mrr_at_100
788
+ value: 36.24
789
+ - type: mrr_at_1000
790
+ value: 36.299
791
+ - type: mrr_at_3
792
+ value: 33.717000000000006
793
+ - type: mrr_at_5
794
+ value: 34.507
795
+ - type: ndcg_at_1
796
+ value: 28.988000000000003
797
+ - type: ndcg_at_10
798
+ value: 36.248000000000005
799
+ - type: ndcg_at_100
800
+ value: 41.034
801
+ - type: ndcg_at_1000
802
+ value: 43.35
803
+ - type: ndcg_at_3
804
+ value: 32.987
805
+ - type: ndcg_at_5
806
+ value: 34.333999999999996
807
+ - type: precision_at_1
808
+ value: 28.988000000000003
809
+ - type: precision_at_10
810
+ value: 5.506
811
+ - type: precision_at_100
812
+ value: 0.853
813
+ - type: precision_at_1000
814
+ value: 0.11199999999999999
815
+ - type: precision_at_3
816
+ value: 14.11
817
+ - type: precision_at_5
818
+ value: 9.417
819
+ - type: recall_at_1
820
+ value: 25.607999999999997
821
+ - type: recall_at_10
822
+ value: 45.344
823
+ - type: recall_at_100
824
+ value: 67.132
825
+ - type: recall_at_1000
826
+ value: 84.676
827
+ - type: recall_at_3
828
+ value: 36.02
829
+ - type: recall_at_5
830
+ value: 39.613
831
+ - task:
832
+ type: Retrieval
833
+ dataset:
834
+ type: BeIR/cqadupstack
835
+ name: MTEB CQADupstackTexRetrieval
836
+ config: default
837
+ split: test
838
+ revision: None
839
+ metrics:
840
+ - type: map_at_1
841
+ value: 18.44
842
+ - type: map_at_10
843
+ value: 25.651000000000003
844
+ - type: map_at_100
845
+ value: 26.735
846
+ - type: map_at_1000
847
+ value: 26.86
848
+ - type: map_at_3
849
+ value: 23.409
850
+ - type: map_at_5
851
+ value: 24.604
852
+ - type: mrr_at_1
853
+ value: 22.195
854
+ - type: mrr_at_10
855
+ value: 29.482000000000003
856
+ - type: mrr_at_100
857
+ value: 30.395
858
+ - type: mrr_at_1000
859
+ value: 30.471999999999998
860
+ - type: mrr_at_3
861
+ value: 27.409
862
+ - type: mrr_at_5
863
+ value: 28.553
864
+ - type: ndcg_at_1
865
+ value: 22.195
866
+ - type: ndcg_at_10
867
+ value: 30.242
868
+ - type: ndcg_at_100
869
+ value: 35.397
870
+ - type: ndcg_at_1000
871
+ value: 38.287
872
+ - type: ndcg_at_3
873
+ value: 26.201
874
+ - type: ndcg_at_5
875
+ value: 28.008
876
+ - type: precision_at_1
877
+ value: 22.195
878
+ - type: precision_at_10
879
+ value: 5.372
880
+ - type: precision_at_100
881
+ value: 0.9259999999999999
882
+ - type: precision_at_1000
883
+ value: 0.135
884
+ - type: precision_at_3
885
+ value: 12.228
886
+ - type: precision_at_5
887
+ value: 8.727
888
+ - type: recall_at_1
889
+ value: 18.44
890
+ - type: recall_at_10
891
+ value: 40.325
892
+ - type: recall_at_100
893
+ value: 63.504000000000005
894
+ - type: recall_at_1000
895
+ value: 83.909
896
+ - type: recall_at_3
897
+ value: 28.925
898
+ - type: recall_at_5
899
+ value: 33.641
900
+ - task:
901
+ type: Retrieval
902
+ dataset:
903
+ type: BeIR/cqadupstack
904
+ name: MTEB CQADupstackUnixRetrieval
905
+ config: default
906
+ split: test
907
+ revision: None
908
+ metrics:
909
+ - type: map_at_1
910
+ value: 26.535999999999998
911
+ - type: map_at_10
912
+ value: 35.358000000000004
913
+ - type: map_at_100
914
+ value: 36.498999999999995
915
+ - type: map_at_1000
916
+ value: 36.597
917
+ - type: map_at_3
918
+ value: 32.598
919
+ - type: map_at_5
920
+ value: 34.185
921
+ - type: mrr_at_1
922
+ value: 31.25
923
+ - type: mrr_at_10
924
+ value: 39.593
925
+ - type: mrr_at_100
926
+ value: 40.443
927
+ - type: mrr_at_1000
928
+ value: 40.498
929
+ - type: mrr_at_3
930
+ value: 37.018
931
+ - type: mrr_at_5
932
+ value: 38.492
933
+ - type: ndcg_at_1
934
+ value: 31.25
935
+ - type: ndcg_at_10
936
+ value: 40.71
937
+ - type: ndcg_at_100
938
+ value: 46.079
939
+ - type: ndcg_at_1000
940
+ value: 48.287
941
+ - type: ndcg_at_3
942
+ value: 35.667
943
+ - type: ndcg_at_5
944
+ value: 38.080000000000005
945
+ - type: precision_at_1
946
+ value: 31.25
947
+ - type: precision_at_10
948
+ value: 6.847
949
+ - type: precision_at_100
950
+ value: 1.079
951
+ - type: precision_at_1000
952
+ value: 0.13699999999999998
953
+ - type: precision_at_3
954
+ value: 16.262
955
+ - type: precision_at_5
956
+ value: 11.455
957
+ - type: recall_at_1
958
+ value: 26.535999999999998
959
+ - type: recall_at_10
960
+ value: 52.92099999999999
961
+ - type: recall_at_100
962
+ value: 76.669
963
+ - type: recall_at_1000
964
+ value: 92.096
965
+ - type: recall_at_3
966
+ value: 38.956
967
+ - type: recall_at_5
968
+ value: 45.239000000000004
969
+ - task:
970
+ type: Retrieval
971
+ dataset:
972
+ type: BeIR/cqadupstack
973
+ name: MTEB CQADupstackWebmastersRetrieval
974
+ config: default
975
+ split: test
976
+ revision: None
977
+ metrics:
978
+ - type: map_at_1
979
+ value: 24.691
980
+ - type: map_at_10
981
+ value: 33.417
982
+ - type: map_at_100
983
+ value: 35.036
984
+ - type: map_at_1000
985
+ value: 35.251
986
+ - type: map_at_3
987
+ value: 30.646
988
+ - type: map_at_5
989
+ value: 32.177
990
+ - type: mrr_at_1
991
+ value: 30.04
992
+ - type: mrr_at_10
993
+ value: 37.905
994
+ - type: mrr_at_100
995
+ value: 38.929
996
+ - type: mrr_at_1000
997
+ value: 38.983000000000004
998
+ - type: mrr_at_3
999
+ value: 35.276999999999994
1000
+ - type: mrr_at_5
1001
+ value: 36.897000000000006
1002
+ - type: ndcg_at_1
1003
+ value: 30.04
1004
+ - type: ndcg_at_10
1005
+ value: 39.037
1006
+ - type: ndcg_at_100
1007
+ value: 44.944
1008
+ - type: ndcg_at_1000
1009
+ value: 47.644
1010
+ - type: ndcg_at_3
1011
+ value: 34.833999999999996
1012
+ - type: ndcg_at_5
1013
+ value: 36.83
1014
+ - type: precision_at_1
1015
+ value: 30.04
1016
+ - type: precision_at_10
1017
+ value: 7.4510000000000005
1018
+ - type: precision_at_100
1019
+ value: 1.492
1020
+ - type: precision_at_1000
1021
+ value: 0.234
1022
+ - type: precision_at_3
1023
+ value: 16.337
1024
+ - type: precision_at_5
1025
+ value: 11.897
1026
+ - type: recall_at_1
1027
+ value: 24.691
1028
+ - type: recall_at_10
1029
+ value: 49.303999999999995
1030
+ - type: recall_at_100
1031
+ value: 76.20400000000001
1032
+ - type: recall_at_1000
1033
+ value: 93.30000000000001
1034
+ - type: recall_at_3
1035
+ value: 36.594
1036
+ - type: recall_at_5
1037
+ value: 42.41
1038
+ - task:
1039
+ type: Retrieval
1040
+ dataset:
1041
+ type: BeIR/cqadupstack
1042
+ name: MTEB CQADupstackWordpressRetrieval
1043
+ config: default
1044
+ split: test
1045
+ revision: None
1046
+ metrics:
1047
+ - type: map_at_1
1048
+ value: 23.118
1049
+ - type: map_at_10
1050
+ value: 30.714999999999996
1051
+ - type: map_at_100
1052
+ value: 31.656000000000002
1053
+ - type: map_at_1000
1054
+ value: 31.757
1055
+ - type: map_at_3
1056
+ value: 28.355000000000004
1057
+ - type: map_at_5
1058
+ value: 29.337000000000003
1059
+ - type: mrr_at_1
1060
+ value: 25.323
1061
+ - type: mrr_at_10
1062
+ value: 32.93
1063
+ - type: mrr_at_100
1064
+ value: 33.762
1065
+ - type: mrr_at_1000
1066
+ value: 33.829
1067
+ - type: mrr_at_3
1068
+ value: 30.775999999999996
1069
+ - type: mrr_at_5
1070
+ value: 31.774
1071
+ - type: ndcg_at_1
1072
+ value: 25.323
1073
+ - type: ndcg_at_10
1074
+ value: 35.408
1075
+ - type: ndcg_at_100
1076
+ value: 40.083
1077
+ - type: ndcg_at_1000
1078
+ value: 42.542
1079
+ - type: ndcg_at_3
1080
+ value: 30.717
1081
+ - type: ndcg_at_5
1082
+ value: 32.385000000000005
1083
+ - type: precision_at_1
1084
+ value: 25.323
1085
+ - type: precision_at_10
1086
+ value: 5.564
1087
+ - type: precision_at_100
1088
+ value: 0.843
1089
+ - type: precision_at_1000
1090
+ value: 0.116
1091
+ - type: precision_at_3
1092
+ value: 13.001
1093
+ - type: precision_at_5
1094
+ value: 8.834999999999999
1095
+ - type: recall_at_1
1096
+ value: 23.118
1097
+ - type: recall_at_10
1098
+ value: 47.788000000000004
1099
+ - type: recall_at_100
1100
+ value: 69.37
1101
+ - type: recall_at_1000
1102
+ value: 87.47399999999999
1103
+ - type: recall_at_3
1104
+ value: 34.868
1105
+ - type: recall_at_5
1106
+ value: 39.001999999999995
1107
+ - task:
1108
+ type: Retrieval
1109
+ dataset:
1110
+ type: climate-fever
1111
+ name: MTEB ClimateFEVER
1112
+ config: default
1113
+ split: test
1114
+ revision: None
1115
+ metrics:
1116
+ - type: map_at_1
1117
+ value: 14.288
1118
+ - type: map_at_10
1119
+ value: 23.256
1120
+ - type: map_at_100
1121
+ value: 25.115
1122
+ - type: map_at_1000
1123
+ value: 25.319000000000003
1124
+ - type: map_at_3
1125
+ value: 20.005
1126
+ - type: map_at_5
1127
+ value: 21.529999999999998
1128
+ - type: mrr_at_1
1129
+ value: 31.401
1130
+ - type: mrr_at_10
1131
+ value: 42.251
1132
+ - type: mrr_at_100
1133
+ value: 43.236999999999995
1134
+ - type: mrr_at_1000
1135
+ value: 43.272
1136
+ - type: mrr_at_3
1137
+ value: 39.164
1138
+ - type: mrr_at_5
1139
+ value: 40.881
1140
+ - type: ndcg_at_1
1141
+ value: 31.401
1142
+ - type: ndcg_at_10
1143
+ value: 31.615
1144
+ - type: ndcg_at_100
1145
+ value: 38.982
1146
+ - type: ndcg_at_1000
1147
+ value: 42.496
1148
+ - type: ndcg_at_3
1149
+ value: 26.608999999999998
1150
+ - type: ndcg_at_5
1151
+ value: 28.048000000000002
1152
+ - type: precision_at_1
1153
+ value: 31.401
1154
+ - type: precision_at_10
1155
+ value: 9.536999999999999
1156
+ - type: precision_at_100
1157
+ value: 1.763
1158
+ - type: precision_at_1000
1159
+ value: 0.241
1160
+ - type: precision_at_3
1161
+ value: 19.153000000000002
1162
+ - type: precision_at_5
1163
+ value: 14.228
1164
+ - type: recall_at_1
1165
+ value: 14.288
1166
+ - type: recall_at_10
1167
+ value: 36.717
1168
+ - type: recall_at_100
1169
+ value: 61.9
1170
+ - type: recall_at_1000
1171
+ value: 81.676
1172
+ - type: recall_at_3
1173
+ value: 24.203
1174
+ - type: recall_at_5
1175
+ value: 28.793999999999997
1176
+ - task:
1177
+ type: Retrieval
1178
+ dataset:
1179
+ type: dbpedia-entity
1180
+ name: MTEB DBPedia
1181
+ config: default
1182
+ split: test
1183
+ revision: None
1184
+ metrics:
1185
+ - type: map_at_1
1186
+ value: 9.019
1187
+ - type: map_at_10
1188
+ value: 19.963
1189
+ - type: map_at_100
1190
+ value: 28.834
1191
+ - type: map_at_1000
1192
+ value: 30.537999999999997
1193
+ - type: map_at_3
1194
+ value: 14.45
1195
+ - type: map_at_5
1196
+ value: 16.817999999999998
1197
+ - type: mrr_at_1
1198
+ value: 65.75
1199
+ - type: mrr_at_10
1200
+ value: 74.646
1201
+ - type: mrr_at_100
1202
+ value: 74.946
1203
+ - type: mrr_at_1000
1204
+ value: 74.95100000000001
1205
+ - type: mrr_at_3
1206
+ value: 72.625
1207
+ - type: mrr_at_5
1208
+ value: 74.012
1209
+ - type: ndcg_at_1
1210
+ value: 54
1211
+ - type: ndcg_at_10
1212
+ value: 42.014
1213
+ - type: ndcg_at_100
1214
+ value: 47.527
1215
+ - type: ndcg_at_1000
1216
+ value: 54.911
1217
+ - type: ndcg_at_3
1218
+ value: 46.586
1219
+ - type: ndcg_at_5
1220
+ value: 43.836999999999996
1221
+ - type: precision_at_1
1222
+ value: 65.75
1223
+ - type: precision_at_10
1224
+ value: 33.475
1225
+ - type: precision_at_100
1226
+ value: 11.16
1227
+ - type: precision_at_1000
1228
+ value: 2.145
1229
+ - type: precision_at_3
1230
+ value: 50.083
1231
+ - type: precision_at_5
1232
+ value: 42.55
1233
+ - type: recall_at_1
1234
+ value: 9.019
1235
+ - type: recall_at_10
1236
+ value: 25.558999999999997
1237
+ - type: recall_at_100
1238
+ value: 53.937999999999995
1239
+ - type: recall_at_1000
1240
+ value: 77.67399999999999
1241
+ - type: recall_at_3
1242
+ value: 15.456
1243
+ - type: recall_at_5
1244
+ value: 19.259
1245
+ - task:
1246
+ type: Classification
1247
+ dataset:
1248
+ type: mteb/emotion
1249
+ name: MTEB EmotionClassification
1250
+ config: default
1251
+ split: test
1252
+ revision: 4f58c6b202a23cf9a4da393831edf4f9183cad37
1253
+ metrics:
1254
+ - type: accuracy
1255
+ value: 52.635
1256
+ - type: f1
1257
+ value: 47.692783881403926
1258
+ - task:
1259
+ type: Retrieval
1260
+ dataset:
1261
+ type: fever
1262
+ name: MTEB FEVER
1263
+ config: default
1264
+ split: test
1265
+ revision: None
1266
+ metrics:
1267
+ - type: map_at_1
1268
+ value: 76.893
1269
+ - type: map_at_10
1270
+ value: 84.897
1271
+ - type: map_at_100
1272
+ value: 85.122
1273
+ - type: map_at_1000
1274
+ value: 85.135
1275
+ - type: map_at_3
1276
+ value: 83.88
1277
+ - type: map_at_5
1278
+ value: 84.565
1279
+ - type: mrr_at_1
1280
+ value: 83.003
1281
+ - type: mrr_at_10
1282
+ value: 89.506
1283
+ - type: mrr_at_100
1284
+ value: 89.574
1285
+ - type: mrr_at_1000
1286
+ value: 89.575
1287
+ - type: mrr_at_3
1288
+ value: 88.991
1289
+ - type: mrr_at_5
1290
+ value: 89.349
1291
+ - type: ndcg_at_1
1292
+ value: 83.003
1293
+ - type: ndcg_at_10
1294
+ value: 88.351
1295
+ - type: ndcg_at_100
1296
+ value: 89.128
1297
+ - type: ndcg_at_1000
1298
+ value: 89.34100000000001
1299
+ - type: ndcg_at_3
1300
+ value: 86.92
1301
+ - type: ndcg_at_5
1302
+ value: 87.78200000000001
1303
+ - type: precision_at_1
1304
+ value: 83.003
1305
+ - type: precision_at_10
1306
+ value: 10.517999999999999
1307
+ - type: precision_at_100
1308
+ value: 1.115
1309
+ - type: precision_at_1000
1310
+ value: 0.11499999999999999
1311
+ - type: precision_at_3
1312
+ value: 33.062999999999995
1313
+ - type: precision_at_5
1314
+ value: 20.498
1315
+ - type: recall_at_1
1316
+ value: 76.893
1317
+ - type: recall_at_10
1318
+ value: 94.374
1319
+ - type: recall_at_100
1320
+ value: 97.409
1321
+ - type: recall_at_1000
1322
+ value: 98.687
1323
+ - type: recall_at_3
1324
+ value: 90.513
1325
+ - type: recall_at_5
1326
+ value: 92.709
1327
+ - task:
1328
+ type: Retrieval
1329
+ dataset:
1330
+ type: fiqa
1331
+ name: MTEB FiQA2018
1332
+ config: default
1333
+ split: test
1334
+ revision: None
1335
+ metrics:
1336
+ - type: map_at_1
1337
+ value: 20.829
1338
+ - type: map_at_10
1339
+ value: 32.86
1340
+ - type: map_at_100
1341
+ value: 34.838
1342
+ - type: map_at_1000
1343
+ value: 35.006
1344
+ - type: map_at_3
1345
+ value: 28.597
1346
+ - type: map_at_5
1347
+ value: 31.056
1348
+ - type: mrr_at_1
1349
+ value: 41.358
1350
+ - type: mrr_at_10
1351
+ value: 49.542
1352
+ - type: mrr_at_100
1353
+ value: 50.29900000000001
1354
+ - type: mrr_at_1000
1355
+ value: 50.334999999999994
1356
+ - type: mrr_at_3
1357
+ value: 46.579
1358
+ - type: mrr_at_5
1359
+ value: 48.408
1360
+ - type: ndcg_at_1
1361
+ value: 41.358
1362
+ - type: ndcg_at_10
1363
+ value: 40.758
1364
+ - type: ndcg_at_100
1365
+ value: 47.799
1366
+ - type: ndcg_at_1000
1367
+ value: 50.589
1368
+ - type: ndcg_at_3
1369
+ value: 36.695
1370
+ - type: ndcg_at_5
1371
+ value: 38.193
1372
+ - type: precision_at_1
1373
+ value: 41.358
1374
+ - type: precision_at_10
1375
+ value: 11.142000000000001
1376
+ - type: precision_at_100
1377
+ value: 1.8350000000000002
1378
+ - type: precision_at_1000
1379
+ value: 0.234
1380
+ - type: precision_at_3
1381
+ value: 24.023
1382
+ - type: precision_at_5
1383
+ value: 17.963
1384
+ - type: recall_at_1
1385
+ value: 20.829
1386
+ - type: recall_at_10
1387
+ value: 47.467999999999996
1388
+ - type: recall_at_100
1389
+ value: 73.593
1390
+ - type: recall_at_1000
1391
+ value: 90.122
1392
+ - type: recall_at_3
1393
+ value: 32.74
1394
+ - type: recall_at_5
1395
+ value: 39.608
1396
+ - task:
1397
+ type: Retrieval
1398
+ dataset:
1399
+ type: hotpotqa
1400
+ name: MTEB HotpotQA
1401
+ config: default
1402
+ split: test
1403
+ revision: None
1404
+ metrics:
1405
+ - type: map_at_1
1406
+ value: 40.324
1407
+ - type: map_at_10
1408
+ value: 64.183
1409
+ - type: map_at_100
1410
+ value: 65.037
1411
+ - type: map_at_1000
1412
+ value: 65.094
1413
+ - type: map_at_3
1414
+ value: 60.663
1415
+ - type: map_at_5
1416
+ value: 62.951
1417
+ - type: mrr_at_1
1418
+ value: 80.648
1419
+ - type: mrr_at_10
1420
+ value: 86.005
1421
+ - type: mrr_at_100
1422
+ value: 86.157
1423
+ - type: mrr_at_1000
1424
+ value: 86.162
1425
+ - type: mrr_at_3
1426
+ value: 85.116
1427
+ - type: mrr_at_5
1428
+ value: 85.703
1429
+ - type: ndcg_at_1
1430
+ value: 80.648
1431
+ - type: ndcg_at_10
1432
+ value: 72.351
1433
+ - type: ndcg_at_100
1434
+ value: 75.279
1435
+ - type: ndcg_at_1000
1436
+ value: 76.357
1437
+ - type: ndcg_at_3
1438
+ value: 67.484
1439
+ - type: ndcg_at_5
1440
+ value: 70.31500000000001
1441
+ - type: precision_at_1
1442
+ value: 80.648
1443
+ - type: precision_at_10
1444
+ value: 15.103
1445
+ - type: precision_at_100
1446
+ value: 1.7399999999999998
1447
+ - type: precision_at_1000
1448
+ value: 0.188
1449
+ - type: precision_at_3
1450
+ value: 43.232
1451
+ - type: precision_at_5
1452
+ value: 28.165000000000003
1453
+ - type: recall_at_1
1454
+ value: 40.324
1455
+ - type: recall_at_10
1456
+ value: 75.517
1457
+ - type: recall_at_100
1458
+ value: 86.982
1459
+ - type: recall_at_1000
1460
+ value: 94.072
1461
+ - type: recall_at_3
1462
+ value: 64.848
1463
+ - type: recall_at_5
1464
+ value: 70.41199999999999
1465
+ - task:
1466
+ type: Classification
1467
+ dataset:
1468
+ type: mteb/imdb
1469
+ name: MTEB ImdbClassification
1470
+ config: default
1471
+ split: test
1472
+ revision: 3d86128a09e091d6018b6d26cad27f2739fc2db7
1473
+ metrics:
1474
+ - type: accuracy
1475
+ value: 91.4
1476
+ - type: ap
1477
+ value: 87.4422032289312
1478
+ - type: f1
1479
+ value: 91.39249564302281
1480
+ - task:
1481
+ type: Retrieval
1482
+ dataset:
1483
+ type: msmarco
1484
+ name: MTEB MSMARCO
1485
+ config: default
1486
+ split: dev
1487
+ revision: None
1488
+ metrics:
1489
+ - type: map_at_1
1490
+ value: 22.03
1491
+ - type: map_at_10
1492
+ value: 34.402
1493
+ - type: map_at_100
1494
+ value: 35.599
1495
+ - type: map_at_1000
1496
+ value: 35.648
1497
+ - type: map_at_3
1498
+ value: 30.603
1499
+ - type: map_at_5
1500
+ value: 32.889
1501
+ - type: mrr_at_1
1502
+ value: 22.679
1503
+ - type: mrr_at_10
1504
+ value: 35.021
1505
+ - type: mrr_at_100
1506
+ value: 36.162
1507
+ - type: mrr_at_1000
1508
+ value: 36.205
1509
+ - type: mrr_at_3
1510
+ value: 31.319999999999997
1511
+ - type: mrr_at_5
1512
+ value: 33.562
1513
+ - type: ndcg_at_1
1514
+ value: 22.692999999999998
1515
+ - type: ndcg_at_10
1516
+ value: 41.258
1517
+ - type: ndcg_at_100
1518
+ value: 46.967
1519
+ - type: ndcg_at_1000
1520
+ value: 48.175000000000004
1521
+ - type: ndcg_at_3
1522
+ value: 33.611000000000004
1523
+ - type: ndcg_at_5
1524
+ value: 37.675
1525
+ - type: precision_at_1
1526
+ value: 22.692999999999998
1527
+ - type: precision_at_10
1528
+ value: 6.5089999999999995
1529
+ - type: precision_at_100
1530
+ value: 0.936
1531
+ - type: precision_at_1000
1532
+ value: 0.104
1533
+ - type: precision_at_3
1534
+ value: 14.413
1535
+ - type: precision_at_5
1536
+ value: 10.702
1537
+ - type: recall_at_1
1538
+ value: 22.03
1539
+ - type: recall_at_10
1540
+ value: 62.248000000000005
1541
+ - type: recall_at_100
1542
+ value: 88.524
1543
+ - type: recall_at_1000
1544
+ value: 97.714
1545
+ - type: recall_at_3
1546
+ value: 41.617
1547
+ - type: recall_at_5
1548
+ value: 51.359
1549
+ - task:
1550
+ type: Classification
1551
+ dataset:
1552
+ type: mteb/mtop_domain
1553
+ name: MTEB MTOPDomainClassification (en)
1554
+ config: en
1555
+ split: test
1556
+ revision: d80d48c1eb48d3562165c59d59d0034df9fff0bf
1557
+ metrics:
1558
+ - type: accuracy
1559
+ value: 94.36844505243957
1560
+ - type: f1
1561
+ value: 94.12408743818202
1562
+ - task:
1563
+ type: Classification
1564
+ dataset:
1565
+ type: mteb/mtop_intent
1566
+ name: MTEB MTOPIntentClassification (en)
1567
+ config: en
1568
+ split: test
1569
+ revision: ae001d0e6b1228650b7bd1c2c65fb50ad11a8aba
1570
+ metrics:
1571
+ - type: accuracy
1572
+ value: 76.43410852713177
1573
+ - type: f1
1574
+ value: 58.501855709435624
1575
+ - task:
1576
+ type: Classification
1577
+ dataset:
1578
+ type: mteb/amazon_massive_intent
1579
+ name: MTEB MassiveIntentClassification (en)
1580
+ config: en
1581
+ split: test
1582
+ revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
1583
+ metrics:
1584
+ - type: accuracy
1585
+ value: 76.04909213180902
1586
+ - type: f1
1587
+ value: 74.1800860395823
1588
+ - task:
1589
+ type: Classification
1590
+ dataset:
1591
+ type: mteb/amazon_massive_scenario
1592
+ name: MTEB MassiveScenarioClassification (en)
1593
+ config: en
1594
+ split: test
1595
+ revision: 7d571f92784cd94a019292a1f45445077d0ef634
1596
+ metrics:
1597
+ - type: accuracy
1598
+ value: 79.76126429051781
1599
+ - type: f1
1600
+ value: 79.85705217473232
1601
+ - task:
1602
+ type: Clustering
1603
+ dataset:
1604
+ type: mteb/medrxiv-clustering-p2p
1605
+ name: MTEB MedrxivClusteringP2P
1606
+ config: default
1607
+ split: test
1608
+ revision: e7a26af6f3ae46b30dde8737f02c07b1505bcc73
1609
+ metrics:
1610
+ - type: v_measure
1611
+ value: 34.70119520292863
1612
+ - task:
1613
+ type: Clustering
1614
+ dataset:
1615
+ type: mteb/medrxiv-clustering-s2s
1616
+ name: MTEB MedrxivClusteringS2S
1617
+ config: default
1618
+ split: test
1619
+ revision: 35191c8c0dca72d8ff3efcd72aa802307d469663
1620
+ metrics:
1621
+ - type: v_measure
1622
+ value: 32.33544316467486
1623
+ - task:
1624
+ type: Reranking
1625
+ dataset:
1626
+ type: mteb/mind_small
1627
+ name: MTEB MindSmallReranking
1628
+ config: default
1629
+ split: test
1630
+ revision: 3bdac13927fdc888b903db93b2ffdbd90b295a69
1631
+ metrics:
1632
+ - type: map
1633
+ value: 30.75499243990726
1634
+ - type: mrr
1635
+ value: 31.70602251821063
1636
+ - task:
1637
+ type: Retrieval
1638
+ dataset:
1639
+ type: nfcorpus
1640
+ name: MTEB NFCorpus
1641
+ config: default
1642
+ split: test
1643
+ revision: None
1644
+ metrics:
1645
+ - type: map_at_1
1646
+ value: 6.451999999999999
1647
+ - type: map_at_10
1648
+ value: 13.918
1649
+ - type: map_at_100
1650
+ value: 17.316000000000003
1651
+ - type: map_at_1000
1652
+ value: 18.747
1653
+ - type: map_at_3
1654
+ value: 10.471
1655
+ - type: map_at_5
1656
+ value: 12.104
1657
+ - type: mrr_at_1
1658
+ value: 46.749
1659
+ - type: mrr_at_10
1660
+ value: 55.717000000000006
1661
+ - type: mrr_at_100
1662
+ value: 56.249
1663
+ - type: mrr_at_1000
1664
+ value: 56.288000000000004
1665
+ - type: mrr_at_3
1666
+ value: 53.818
1667
+ - type: mrr_at_5
1668
+ value: 55.103
1669
+ - type: ndcg_at_1
1670
+ value: 45.201
1671
+ - type: ndcg_at_10
1672
+ value: 35.539
1673
+ - type: ndcg_at_100
1674
+ value: 32.586
1675
+ - type: ndcg_at_1000
1676
+ value: 41.486000000000004
1677
+ - type: ndcg_at_3
1678
+ value: 41.174
1679
+ - type: ndcg_at_5
1680
+ value: 38.939
1681
+ - type: precision_at_1
1682
+ value: 46.749
1683
+ - type: precision_at_10
1684
+ value: 25.944
1685
+ - type: precision_at_100
1686
+ value: 8.084
1687
+ - type: precision_at_1000
1688
+ value: 2.076
1689
+ - type: precision_at_3
1690
+ value: 38.7
1691
+ - type: precision_at_5
1692
+ value: 33.56
1693
+ - type: recall_at_1
1694
+ value: 6.451999999999999
1695
+ - type: recall_at_10
1696
+ value: 17.302
1697
+ - type: recall_at_100
1698
+ value: 32.14
1699
+ - type: recall_at_1000
1700
+ value: 64.12
1701
+ - type: recall_at_3
1702
+ value: 11.219
1703
+ - type: recall_at_5
1704
+ value: 13.993
1705
+ - task:
1706
+ type: Retrieval
1707
+ dataset:
1708
+ type: nq
1709
+ name: MTEB NQ
1710
+ config: default
1711
+ split: test
1712
+ revision: None
1713
+ metrics:
1714
+ - type: map_at_1
1715
+ value: 32.037
1716
+ - type: map_at_10
1717
+ value: 46.565
1718
+ - type: map_at_100
1719
+ value: 47.606
1720
+ - type: map_at_1000
1721
+ value: 47.636
1722
+ - type: map_at_3
1723
+ value: 42.459
1724
+ - type: map_at_5
1725
+ value: 44.762
1726
+ - type: mrr_at_1
1727
+ value: 36.181999999999995
1728
+ - type: mrr_at_10
1729
+ value: 49.291000000000004
1730
+ - type: mrr_at_100
1731
+ value: 50.059
1732
+ - type: mrr_at_1000
1733
+ value: 50.078
1734
+ - type: mrr_at_3
1735
+ value: 45.829
1736
+ - type: mrr_at_5
1737
+ value: 47.797
1738
+ - type: ndcg_at_1
1739
+ value: 36.153
1740
+ - type: ndcg_at_10
1741
+ value: 53.983000000000004
1742
+ - type: ndcg_at_100
1743
+ value: 58.347
1744
+ - type: ndcg_at_1000
1745
+ value: 59.058
1746
+ - type: ndcg_at_3
1747
+ value: 46.198
1748
+ - type: ndcg_at_5
1749
+ value: 50.022
1750
+ - type: precision_at_1
1751
+ value: 36.153
1752
+ - type: precision_at_10
1753
+ value: 8.763
1754
+ - type: precision_at_100
1755
+ value: 1.123
1756
+ - type: precision_at_1000
1757
+ value: 0.11900000000000001
1758
+ - type: precision_at_3
1759
+ value: 20.751
1760
+ - type: precision_at_5
1761
+ value: 14.646999999999998
1762
+ - type: recall_at_1
1763
+ value: 32.037
1764
+ - type: recall_at_10
1765
+ value: 74.008
1766
+ - type: recall_at_100
1767
+ value: 92.893
1768
+ - type: recall_at_1000
1769
+ value: 98.16
1770
+ - type: recall_at_3
1771
+ value: 53.705999999999996
1772
+ - type: recall_at_5
1773
+ value: 62.495
1774
+ - task:
1775
+ type: Retrieval
1776
+ dataset:
1777
+ type: quora
1778
+ name: MTEB QuoraRetrieval
1779
+ config: default
1780
+ split: test
1781
+ revision: None
1782
+ metrics:
1783
+ - type: map_at_1
1784
+ value: 71.152
1785
+ - type: map_at_10
1786
+ value: 85.104
1787
+ - type: map_at_100
1788
+ value: 85.745
1789
+ - type: map_at_1000
1790
+ value: 85.761
1791
+ - type: map_at_3
1792
+ value: 82.175
1793
+ - type: map_at_5
1794
+ value: 84.066
1795
+ - type: mrr_at_1
1796
+ value: 82.03
1797
+ - type: mrr_at_10
1798
+ value: 88.115
1799
+ - type: mrr_at_100
1800
+ value: 88.21
1801
+ - type: mrr_at_1000
1802
+ value: 88.211
1803
+ - type: mrr_at_3
1804
+ value: 87.19200000000001
1805
+ - type: mrr_at_5
1806
+ value: 87.85
1807
+ - type: ndcg_at_1
1808
+ value: 82.03
1809
+ - type: ndcg_at_10
1810
+ value: 88.78
1811
+ - type: ndcg_at_100
1812
+ value: 89.96300000000001
1813
+ - type: ndcg_at_1000
1814
+ value: 90.056
1815
+ - type: ndcg_at_3
1816
+ value: 86.051
1817
+ - type: ndcg_at_5
1818
+ value: 87.63499999999999
1819
+ - type: precision_at_1
1820
+ value: 82.03
1821
+ - type: precision_at_10
1822
+ value: 13.450000000000001
1823
+ - type: precision_at_100
1824
+ value: 1.5310000000000001
1825
+ - type: precision_at_1000
1826
+ value: 0.157
1827
+ - type: precision_at_3
1828
+ value: 37.627
1829
+ - type: precision_at_5
1830
+ value: 24.784
1831
+ - type: recall_at_1
1832
+ value: 71.152
1833
+ - type: recall_at_10
1834
+ value: 95.649
1835
+ - type: recall_at_100
1836
+ value: 99.58200000000001
1837
+ - type: recall_at_1000
1838
+ value: 99.981
1839
+ - type: recall_at_3
1840
+ value: 87.767
1841
+ - type: recall_at_5
1842
+ value: 92.233
1843
+ - task:
1844
+ type: Clustering
1845
+ dataset:
1846
+ type: mteb/reddit-clustering
1847
+ name: MTEB RedditClustering
1848
+ config: default
1849
+ split: test
1850
+ revision: 24640382cdbf8abc73003fb0fa6d111a705499eb
1851
+ metrics:
1852
+ - type: v_measure
1853
+ value: 56.48713646277477
1854
+ - task:
1855
+ type: Clustering
1856
+ dataset:
1857
+ type: mteb/reddit-clustering-p2p
1858
+ name: MTEB RedditClusteringP2P
1859
+ config: default
1860
+ split: test
1861
+ revision: 282350215ef01743dc01b456c7f5241fa8937f16
1862
+ metrics:
1863
+ - type: v_measure
1864
+ value: 63.394940772438545
1865
+ - task:
1866
+ type: Retrieval
1867
+ dataset:
1868
+ type: scidocs
1869
+ name: MTEB SCIDOCS
1870
+ config: default
1871
+ split: test
1872
+ revision: None
1873
+ metrics:
1874
+ - type: map_at_1
1875
+ value: 5.043
1876
+ - type: map_at_10
1877
+ value: 12.949
1878
+ - type: map_at_100
1879
+ value: 15.146
1880
+ - type: map_at_1000
1881
+ value: 15.495000000000001
1882
+ - type: map_at_3
1883
+ value: 9.333
1884
+ - type: map_at_5
1885
+ value: 11.312999999999999
1886
+ - type: mrr_at_1
1887
+ value: 24.9
1888
+ - type: mrr_at_10
1889
+ value: 35.958
1890
+ - type: mrr_at_100
1891
+ value: 37.152
1892
+ - type: mrr_at_1000
1893
+ value: 37.201
1894
+ - type: mrr_at_3
1895
+ value: 32.667
1896
+ - type: mrr_at_5
1897
+ value: 34.567
1898
+ - type: ndcg_at_1
1899
+ value: 24.9
1900
+ - type: ndcg_at_10
1901
+ value: 21.298000000000002
1902
+ - type: ndcg_at_100
1903
+ value: 29.849999999999998
1904
+ - type: ndcg_at_1000
1905
+ value: 35.506
1906
+ - type: ndcg_at_3
1907
+ value: 20.548
1908
+ - type: ndcg_at_5
1909
+ value: 18.064
1910
+ - type: precision_at_1
1911
+ value: 24.9
1912
+ - type: precision_at_10
1913
+ value: 10.9
1914
+ - type: precision_at_100
1915
+ value: 2.331
1916
+ - type: precision_at_1000
1917
+ value: 0.367
1918
+ - type: precision_at_3
1919
+ value: 19.267
1920
+ - type: precision_at_5
1921
+ value: 15.939999999999998
1922
+ - type: recall_at_1
1923
+ value: 5.043
1924
+ - type: recall_at_10
1925
+ value: 22.092
1926
+ - type: recall_at_100
1927
+ value: 47.323
1928
+ - type: recall_at_1000
1929
+ value: 74.553
1930
+ - type: recall_at_3
1931
+ value: 11.728
1932
+ - type: recall_at_5
1933
+ value: 16.188
1934
+ - task:
1935
+ type: STS
1936
+ dataset:
1937
+ type: mteb/sickr-sts
1938
+ name: MTEB SICK-R
1939
+ config: default
1940
+ split: test
1941
+ revision: a6ea5a8cab320b040a23452cc28066d9beae2cee
1942
+ metrics:
1943
+ - type: cos_sim_pearson
1944
+ value: 83.7007085938325
1945
+ - type: cos_sim_spearman
1946
+ value: 80.0171084446234
1947
+ - type: euclidean_pearson
1948
+ value: 81.28133218355893
1949
+ - type: euclidean_spearman
1950
+ value: 79.99291731740131
1951
+ - type: manhattan_pearson
1952
+ value: 81.22926922327846
1953
+ - type: manhattan_spearman
1954
+ value: 79.94444878127038
1955
+ - task:
1956
+ type: STS
1957
+ dataset:
1958
+ type: mteb/sts12-sts
1959
+ name: MTEB STS12
1960
+ config: default
1961
+ split: test
1962
+ revision: a0d554a64d88156834ff5ae9920b964011b16384
1963
+ metrics:
1964
+ - type: cos_sim_pearson
1965
+ value: 85.7411883252923
1966
+ - type: cos_sim_spearman
1967
+ value: 77.93462937801245
1968
+ - type: euclidean_pearson
1969
+ value: 83.00858563882404
1970
+ - type: euclidean_spearman
1971
+ value: 77.82717362433257
1972
+ - type: manhattan_pearson
1973
+ value: 82.92887645790769
1974
+ - type: manhattan_spearman
1975
+ value: 77.78807488222115
1976
+ - task:
1977
+ type: STS
1978
+ dataset:
1979
+ type: mteb/sts13-sts
1980
+ name: MTEB STS13
1981
+ config: default
1982
+ split: test
1983
+ revision: 7e90230a92c190f1bf69ae9002b8cea547a64cca
1984
+ metrics:
1985
+ - type: cos_sim_pearson
1986
+ value: 82.04222459361023
1987
+ - type: cos_sim_spearman
1988
+ value: 83.85931509330395
1989
+ - type: euclidean_pearson
1990
+ value: 83.26916063876055
1991
+ - type: euclidean_spearman
1992
+ value: 83.98621985648353
1993
+ - type: manhattan_pearson
1994
+ value: 83.14935679184327
1995
+ - type: manhattan_spearman
1996
+ value: 83.87938828586304
1997
+ - task:
1998
+ type: STS
1999
+ dataset:
2000
+ type: mteb/sts14-sts
2001
+ name: MTEB STS14
2002
+ config: default
2003
+ split: test
2004
+ revision: 6031580fec1f6af667f0bd2da0a551cf4f0b2375
2005
+ metrics:
2006
+ - type: cos_sim_pearson
2007
+ value: 81.41136639535318
2008
+ - type: cos_sim_spearman
2009
+ value: 81.51200091040481
2010
+ - type: euclidean_pearson
2011
+ value: 81.45382456114775
2012
+ - type: euclidean_spearman
2013
+ value: 81.46201181707931
2014
+ - type: manhattan_pearson
2015
+ value: 81.37243088439584
2016
+ - type: manhattan_spearman
2017
+ value: 81.39828421893426
2018
+ - task:
2019
+ type: STS
2020
+ dataset:
2021
+ type: mteb/sts15-sts
2022
+ name: MTEB STS15
2023
+ config: default
2024
+ split: test
2025
+ revision: ae752c7c21bf194d8b67fd573edf7ae58183cbe3
2026
+ metrics:
2027
+ - type: cos_sim_pearson
2028
+ value: 85.71942451732227
2029
+ - type: cos_sim_spearman
2030
+ value: 87.33044482064973
2031
+ - type: euclidean_pearson
2032
+ value: 86.58580899365178
2033
+ - type: euclidean_spearman
2034
+ value: 87.09206723832895
2035
+ - type: manhattan_pearson
2036
+ value: 86.47460784157013
2037
+ - type: manhattan_spearman
2038
+ value: 86.98367656583076
2039
+ - task:
2040
+ type: STS
2041
+ dataset:
2042
+ type: mteb/sts16-sts
2043
+ name: MTEB STS16
2044
+ config: default
2045
+ split: test
2046
+ revision: 4d8694f8f0e0100860b497b999b3dbed754a0513
2047
+ metrics:
2048
+ - type: cos_sim_pearson
2049
+ value: 83.55868078863449
2050
+ - type: cos_sim_spearman
2051
+ value: 85.38299230074065
2052
+ - type: euclidean_pearson
2053
+ value: 84.64715256244595
2054
+ - type: euclidean_spearman
2055
+ value: 85.49112229604047
2056
+ - type: manhattan_pearson
2057
+ value: 84.60814346792462
2058
+ - type: manhattan_spearman
2059
+ value: 85.44886026766822
2060
+ - task:
2061
+ type: STS
2062
+ dataset:
2063
+ type: mteb/sts17-crosslingual-sts
2064
+ name: MTEB STS17 (en-en)
2065
+ config: en-en
2066
+ split: test
2067
+ revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d
2068
+ metrics:
2069
+ - type: cos_sim_pearson
2070
+ value: 84.99292526370614
2071
+ - type: cos_sim_spearman
2072
+ value: 85.58139465695983
2073
+ - type: euclidean_pearson
2074
+ value: 86.51325066734084
2075
+ - type: euclidean_spearman
2076
+ value: 85.56736418284562
2077
+ - type: manhattan_pearson
2078
+ value: 86.48190836601357
2079
+ - type: manhattan_spearman
2080
+ value: 85.51616256224258
2081
+ - task:
2082
+ type: STS
2083
+ dataset:
2084
+ type: mteb/sts22-crosslingual-sts
2085
+ name: MTEB STS22 (en)
2086
+ config: en
2087
+ split: test
2088
+ revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80
2089
+ metrics:
2090
+ - type: cos_sim_pearson
2091
+ value: 64.54124715078807
2092
+ - type: cos_sim_spearman
2093
+ value: 65.32134275948374
2094
+ - type: euclidean_pearson
2095
+ value: 67.09791698300816
2096
+ - type: euclidean_spearman
2097
+ value: 65.79468982468465
2098
+ - type: manhattan_pearson
2099
+ value: 67.13304723693966
2100
+ - type: manhattan_spearman
2101
+ value: 65.68439995849283
2102
+ - task:
2103
+ type: STS
2104
+ dataset:
2105
+ type: mteb/stsbenchmark-sts
2106
+ name: MTEB STSBenchmark
2107
+ config: default
2108
+ split: test
2109
+ revision: b0fddb56ed78048fa8b90373c8a3cfc37b684831
2110
+ metrics:
2111
+ - type: cos_sim_pearson
2112
+ value: 83.4231099581624
2113
+ - type: cos_sim_spearman
2114
+ value: 85.95475815226862
2115
+ - type: euclidean_pearson
2116
+ value: 85.00339401999706
2117
+ - type: euclidean_spearman
2118
+ value: 85.74133081802971
2119
+ - type: manhattan_pearson
2120
+ value: 85.00407987181666
2121
+ - type: manhattan_spearman
2122
+ value: 85.77509596397363
2123
+ - task:
2124
+ type: Reranking
2125
+ dataset:
2126
+ type: mteb/scidocs-reranking
2127
+ name: MTEB SciDocsRR
2128
+ config: default
2129
+ split: test
2130
+ revision: d3c5e1fc0b855ab6097bf1cda04dd73947d7caab
2131
+ metrics:
2132
+ - type: map
2133
+ value: 87.25666719585716
2134
+ - type: mrr
2135
+ value: 96.32769917083642
2136
+ - task:
2137
+ type: Retrieval
2138
+ dataset:
2139
+ type: scifact
2140
+ name: MTEB SciFact
2141
+ config: default
2142
+ split: test
2143
+ revision: None
2144
+ metrics:
2145
+ - type: map_at_1
2146
+ value: 57.828
2147
+ - type: map_at_10
2148
+ value: 68.369
2149
+ - type: map_at_100
2150
+ value: 68.83399999999999
2151
+ - type: map_at_1000
2152
+ value: 68.856
2153
+ - type: map_at_3
2154
+ value: 65.38000000000001
2155
+ - type: map_at_5
2156
+ value: 67.06299999999999
2157
+ - type: mrr_at_1
2158
+ value: 61
2159
+ - type: mrr_at_10
2160
+ value: 69.45400000000001
2161
+ - type: mrr_at_100
2162
+ value: 69.785
2163
+ - type: mrr_at_1000
2164
+ value: 69.807
2165
+ - type: mrr_at_3
2166
+ value: 67
2167
+ - type: mrr_at_5
2168
+ value: 68.43299999999999
2169
+ - type: ndcg_at_1
2170
+ value: 61
2171
+ - type: ndcg_at_10
2172
+ value: 73.258
2173
+ - type: ndcg_at_100
2174
+ value: 75.173
2175
+ - type: ndcg_at_1000
2176
+ value: 75.696
2177
+ - type: ndcg_at_3
2178
+ value: 68.162
2179
+ - type: ndcg_at_5
2180
+ value: 70.53399999999999
2181
+ - type: precision_at_1
2182
+ value: 61
2183
+ - type: precision_at_10
2184
+ value: 9.8
2185
+ - type: precision_at_100
2186
+ value: 1.087
2187
+ - type: precision_at_1000
2188
+ value: 0.11299999999999999
2189
+ - type: precision_at_3
2190
+ value: 27
2191
+ - type: precision_at_5
2192
+ value: 17.666999999999998
2193
+ - type: recall_at_1
2194
+ value: 57.828
2195
+ - type: recall_at_10
2196
+ value: 87.122
2197
+ - type: recall_at_100
2198
+ value: 95.667
2199
+ - type: recall_at_1000
2200
+ value: 99.667
2201
+ - type: recall_at_3
2202
+ value: 73.139
2203
+ - type: recall_at_5
2204
+ value: 79.361
2205
+ - task:
2206
+ type: PairClassification
2207
+ dataset:
2208
+ type: mteb/sprintduplicatequestions-pairclassification
2209
+ name: MTEB SprintDuplicateQuestions
2210
+ config: default
2211
+ split: test
2212
+ revision: d66bd1f72af766a5cc4b0ca5e00c162f89e8cc46
2213
+ metrics:
2214
+ - type: cos_sim_accuracy
2215
+ value: 99.85247524752475
2216
+ - type: cos_sim_ap
2217
+ value: 96.25640197639723
2218
+ - type: cos_sim_f1
2219
+ value: 92.37851662404091
2220
+ - type: cos_sim_precision
2221
+ value: 94.55497382198953
2222
+ - type: cos_sim_recall
2223
+ value: 90.3
2224
+ - type: dot_accuracy
2225
+ value: 99.76138613861386
2226
+ - type: dot_ap
2227
+ value: 93.40295864389073
2228
+ - type: dot_f1
2229
+ value: 87.64267990074441
2230
+ - type: dot_precision
2231
+ value: 86.99507389162562
2232
+ - type: dot_recall
2233
+ value: 88.3
2234
+ - type: euclidean_accuracy
2235
+ value: 99.85049504950496
2236
+ - type: euclidean_ap
2237
+ value: 96.24254350525462
2238
+ - type: euclidean_f1
2239
+ value: 92.32323232323232
2240
+ - type: euclidean_precision
2241
+ value: 93.26530612244898
2242
+ - type: euclidean_recall
2243
+ value: 91.4
2244
+ - type: manhattan_accuracy
2245
+ value: 99.85346534653465
2246
+ - type: manhattan_ap
2247
+ value: 96.2635334753325
2248
+ - type: manhattan_f1
2249
+ value: 92.37899073120495
2250
+ - type: manhattan_precision
2251
+ value: 95.22292993630573
2252
+ - type: manhattan_recall
2253
+ value: 89.7
2254
+ - type: max_accuracy
2255
+ value: 99.85346534653465
2256
+ - type: max_ap
2257
+ value: 96.2635334753325
2258
+ - type: max_f1
2259
+ value: 92.37899073120495
2260
+ - task:
2261
+ type: Clustering
2262
+ dataset:
2263
+ type: mteb/stackexchange-clustering
2264
+ name: MTEB StackExchangeClustering
2265
+ config: default
2266
+ split: test
2267
+ revision: 6cbc1f7b2bc0622f2e39d2c77fa502909748c259
2268
+ metrics:
2269
+ - type: v_measure
2270
+ value: 65.83905786483794
2271
+ - task:
2272
+ type: Clustering
2273
+ dataset:
2274
+ type: mteb/stackexchange-clustering-p2p
2275
+ name: MTEB StackExchangeClusteringP2P
2276
+ config: default
2277
+ split: test
2278
+ revision: 815ca46b2622cec33ccafc3735d572c266efdb44
2279
+ metrics:
2280
+ - type: v_measure
2281
+ value: 35.031896152126436
2282
+ - task:
2283
+ type: Reranking
2284
+ dataset:
2285
+ type: mteb/stackoverflowdupquestions-reranking
2286
+ name: MTEB StackOverflowDupQuestions
2287
+ config: default
2288
+ split: test
2289
+ revision: e185fbe320c72810689fc5848eb6114e1ef5ec69
2290
+ metrics:
2291
+ - type: map
2292
+ value: 54.551326709447146
2293
+ - type: mrr
2294
+ value: 55.43758222986165
2295
+ - task:
2296
+ type: Summarization
2297
+ dataset:
2298
+ type: mteb/summeval
2299
+ name: MTEB SummEval
2300
+ config: default
2301
+ split: test
2302
+ revision: cda12ad7615edc362dbf25a00fdd61d3b1eaf93c
2303
+ metrics:
2304
+ - type: cos_sim_pearson
2305
+ value: 30.305688567308874
2306
+ - type: cos_sim_spearman
2307
+ value: 29.27135743434515
2308
+ - type: dot_pearson
2309
+ value: 30.336741878796563
2310
+ - type: dot_spearman
2311
+ value: 30.513365725895937
2312
+ - task:
2313
+ type: Retrieval
2314
+ dataset:
2315
+ type: trec-covid
2316
+ name: MTEB TRECCOVID
2317
+ config: default
2318
+ split: test
2319
+ revision: None
2320
+ metrics:
2321
+ - type: map_at_1
2322
+ value: 0.245
2323
+ - type: map_at_10
2324
+ value: 1.92
2325
+ - type: map_at_100
2326
+ value: 10.519
2327
+ - type: map_at_1000
2328
+ value: 23.874000000000002
2329
+ - type: map_at_3
2330
+ value: 0.629
2331
+ - type: map_at_5
2332
+ value: 1.0290000000000001
2333
+ - type: mrr_at_1
2334
+ value: 88
2335
+ - type: mrr_at_10
2336
+ value: 93.5
2337
+ - type: mrr_at_100
2338
+ value: 93.5
2339
+ - type: mrr_at_1000
2340
+ value: 93.5
2341
+ - type: mrr_at_3
2342
+ value: 93
2343
+ - type: mrr_at_5
2344
+ value: 93.5
2345
+ - type: ndcg_at_1
2346
+ value: 84
2347
+ - type: ndcg_at_10
2348
+ value: 76.447
2349
+ - type: ndcg_at_100
2350
+ value: 56.516
2351
+ - type: ndcg_at_1000
2352
+ value: 48.583999999999996
2353
+ - type: ndcg_at_3
2354
+ value: 78.877
2355
+ - type: ndcg_at_5
2356
+ value: 79.174
2357
+ - type: precision_at_1
2358
+ value: 88
2359
+ - type: precision_at_10
2360
+ value: 80.60000000000001
2361
+ - type: precision_at_100
2362
+ value: 57.64
2363
+ - type: precision_at_1000
2364
+ value: 21.227999999999998
2365
+ - type: precision_at_3
2366
+ value: 82
2367
+ - type: precision_at_5
2368
+ value: 83.6
2369
+ - type: recall_at_1
2370
+ value: 0.245
2371
+ - type: recall_at_10
2372
+ value: 2.128
2373
+ - type: recall_at_100
2374
+ value: 13.767
2375
+ - type: recall_at_1000
2376
+ value: 44.958
2377
+ - type: recall_at_3
2378
+ value: 0.654
2379
+ - type: recall_at_5
2380
+ value: 1.111
2381
+ - task:
2382
+ type: Retrieval
2383
+ dataset:
2384
+ type: webis-touche2020
2385
+ name: MTEB Touche2020
2386
+ config: default
2387
+ split: test
2388
+ revision: None
2389
+ metrics:
2390
+ - type: map_at_1
2391
+ value: 2.5170000000000003
2392
+ - type: map_at_10
2393
+ value: 10.915
2394
+ - type: map_at_100
2395
+ value: 17.535
2396
+ - type: map_at_1000
2397
+ value: 19.042
2398
+ - type: map_at_3
2399
+ value: 5.689
2400
+ - type: map_at_5
2401
+ value: 7.837
2402
+ - type: mrr_at_1
2403
+ value: 34.694
2404
+ - type: mrr_at_10
2405
+ value: 49.547999999999995
2406
+ - type: mrr_at_100
2407
+ value: 50.653000000000006
2408
+ - type: mrr_at_1000
2409
+ value: 50.653000000000006
2410
+ - type: mrr_at_3
2411
+ value: 44.558
2412
+ - type: mrr_at_5
2413
+ value: 48.333
2414
+ - type: ndcg_at_1
2415
+ value: 32.653
2416
+ - type: ndcg_at_10
2417
+ value: 26.543
2418
+ - type: ndcg_at_100
2419
+ value: 38.946
2420
+ - type: ndcg_at_1000
2421
+ value: 49.406
2422
+ - type: ndcg_at_3
2423
+ value: 29.903000000000002
2424
+ - type: ndcg_at_5
2425
+ value: 29.231
2426
+ - type: precision_at_1
2427
+ value: 34.694
2428
+ - type: precision_at_10
2429
+ value: 23.265
2430
+ - type: precision_at_100
2431
+ value: 8.102
2432
+ - type: precision_at_1000
2433
+ value: 1.5
2434
+ - type: precision_at_3
2435
+ value: 31.293
2436
+ - type: precision_at_5
2437
+ value: 29.796
2438
+ - type: recall_at_1
2439
+ value: 2.5170000000000003
2440
+ - type: recall_at_10
2441
+ value: 16.88
2442
+ - type: recall_at_100
2443
+ value: 49.381
2444
+ - type: recall_at_1000
2445
+ value: 81.23899999999999
2446
+ - type: recall_at_3
2447
+ value: 6.965000000000001
2448
+ - type: recall_at_5
2449
+ value: 10.847999999999999
2450
+ - task:
2451
+ type: Classification
2452
+ dataset:
2453
+ type: mteb/toxic_conversations_50k
2454
+ name: MTEB ToxicConversationsClassification
2455
+ config: default
2456
+ split: test
2457
+ revision: d7c0de2777da35d6aae2200a62c6e0e5af397c4c
2458
+ metrics:
2459
+ - type: accuracy
2460
+ value: 71.5942
2461
+ - type: ap
2462
+ value: 13.92074156956546
2463
+ - type: f1
2464
+ value: 54.671999698839066
2465
+ - task:
2466
+ type: Classification
2467
+ dataset:
2468
+ type: mteb/tweet_sentiment_extraction
2469
+ name: MTEB TweetSentimentExtractionClassification
2470
+ config: default
2471
+ split: test
2472
+ revision: d604517c81ca91fe16a244d1248fc021f9ecee7a
2473
+ metrics:
2474
+ - type: accuracy
2475
+ value: 59.39728353140916
2476
+ - type: f1
2477
+ value: 59.68980496759517
2478
+ - task:
2479
+ type: Clustering
2480
+ dataset:
2481
+ type: mteb/twentynewsgroups-clustering
2482
+ name: MTEB TwentyNewsgroupsClustering
2483
+ config: default
2484
+ split: test
2485
+ revision: 6125ec4e24fa026cec8a478383ee943acfbd5449
2486
+ metrics:
2487
+ - type: v_measure
2488
+ value: 52.11181870104935
2489
+ - task:
2490
+ type: PairClassification
2491
+ dataset:
2492
+ type: mteb/twittersemeval2015-pairclassification
2493
+ name: MTEB TwitterSemEval2015
2494
+ config: default
2495
+ split: test
2496
+ revision: 70970daeab8776df92f5ea462b6173c0b46fd2d1
2497
+ metrics:
2498
+ - type: cos_sim_accuracy
2499
+ value: 86.46957143708649
2500
+ - type: cos_sim_ap
2501
+ value: 76.16120197845457
2502
+ - type: cos_sim_f1
2503
+ value: 69.69919295671315
2504
+ - type: cos_sim_precision
2505
+ value: 64.94986326344576
2506
+ - type: cos_sim_recall
2507
+ value: 75.19788918205805
2508
+ - type: dot_accuracy
2509
+ value: 83.0780234845324
2510
+ - type: dot_ap
2511
+ value: 64.21717343541934
2512
+ - type: dot_f1
2513
+ value: 59.48375497624245
2514
+ - type: dot_precision
2515
+ value: 57.94345759319489
2516
+ - type: dot_recall
2517
+ value: 61.108179419525065
2518
+ - type: euclidean_accuracy
2519
+ value: 86.6543482148179
2520
+ - type: euclidean_ap
2521
+ value: 76.4527555010203
2522
+ - type: euclidean_f1
2523
+ value: 70.10156056477584
2524
+ - type: euclidean_precision
2525
+ value: 66.05975723622782
2526
+ - type: euclidean_recall
2527
+ value: 74.67018469656992
2528
+ - type: manhattan_accuracy
2529
+ value: 86.66030875603504
2530
+ - type: manhattan_ap
2531
+ value: 76.40304567255436
2532
+ - type: manhattan_f1
2533
+ value: 70.05275426328058
2534
+ - type: manhattan_precision
2535
+ value: 65.4666360926393
2536
+ - type: manhattan_recall
2537
+ value: 75.32981530343008
2538
+ - type: max_accuracy
2539
+ value: 86.66030875603504
2540
+ - type: max_ap
2541
+ value: 76.4527555010203
2542
+ - type: max_f1
2543
+ value: 70.10156056477584
2544
+ - task:
2545
+ type: PairClassification
2546
+ dataset:
2547
+ type: mteb/twitterurlcorpus-pairclassification
2548
+ name: MTEB TwitterURLCorpus
2549
+ config: default
2550
+ split: test
2551
+ revision: 8b6510b0b1fa4e4c4f879467980e9be563ec1cdf
2552
+ metrics:
2553
+ - type: cos_sim_accuracy
2554
+ value: 88.42123646524624
2555
+ - type: cos_sim_ap
2556
+ value: 85.15431437761646
2557
+ - type: cos_sim_f1
2558
+ value: 76.98069301530742
2559
+ - type: cos_sim_precision
2560
+ value: 72.9314502239063
2561
+ - type: cos_sim_recall
2562
+ value: 81.50600554357868
2563
+ - type: dot_accuracy
2564
+ value: 86.70974502270346
2565
+ - type: dot_ap
2566
+ value: 80.77621563599457
2567
+ - type: dot_f1
2568
+ value: 73.87058697285117
2569
+ - type: dot_precision
2570
+ value: 68.98256396552877
2571
+ - type: dot_recall
2572
+ value: 79.50415768401602
2573
+ - type: euclidean_accuracy
2574
+ value: 88.46392672798541
2575
+ - type: euclidean_ap
2576
+ value: 85.20370297495491
2577
+ - type: euclidean_f1
2578
+ value: 77.01372369624886
2579
+ - type: euclidean_precision
2580
+ value: 73.39052800446397
2581
+ - type: euclidean_recall
2582
+ value: 81.01324299353249
2583
+ - type: manhattan_accuracy
2584
+ value: 88.43481973066325
2585
+ - type: manhattan_ap
2586
+ value: 85.16318289864545
2587
+ - type: manhattan_f1
2588
+ value: 76.90884877182597
2589
+ - type: manhattan_precision
2590
+ value: 74.01737396753062
2591
+ - type: manhattan_recall
2592
+ value: 80.03541730828458
2593
+ - type: max_accuracy
2594
+ value: 88.46392672798541
2595
+ - type: max_ap
2596
+ value: 85.20370297495491
2597
+ - type: max_f1
2598
+ value: 77.01372369624886
2599
+ license: mit
2600
+ language:
2601
+ - en
2602
+ ---
2603
+
2604
+
2605
+ **Recommend switching to newest [BAAI/bge-base-en-v1.5](https://huggingface.co/BAAI/bge-base-en-v1.5), which has more reasonable similarity distribution and same method of usage.**
2606
+
2607
+ <h1 align="center">FlagEmbedding</h1>
2608
+
2609
+
2610
+ <h4 align="center">
2611
+ <p>
2612
+ <a href=#model-list>Model List</a> |
2613
+ <a href=#frequently-asked-questions>FAQ</a> |
2614
+ <a href=#usage>Usage</a> |
2615
+ <a href="#evaluation">Evaluation</a> |
2616
+ <a href="#train">Train</a> |
2617
+ <a href="#contact">Contact</a> |
2618
+ <a href="#citation">Citation</a> |
2619
+ <a href="#license">License</a>
2620
+ <p>
2621
+ </h4>
2622
+
2623
+ More details please refer to our Github: [FlagEmbedding](https://github.com/FlagOpen/FlagEmbedding).
2624
+
2625
+
2626
+ [English](README.md) | [中文](https://github.com/FlagOpen/FlagEmbedding/blob/master/README_zh.md)
2627
+
2628
+ FlagEmbedding can map any text to a low-dimensional dense vector which can be used for tasks like retrieval, classification, clustering, or semantic search.
2629
+ And it also can be used in vector databases for LLMs.
2630
+
2631
+ ************* 🌟**Updates**🌟 *************
2632
+ - 09/15/2023: Release [paper](https://arxiv.org/pdf/2309.07597.pdf) and [dataset](https://data.baai.ac.cn/details/BAAI-MTP).
2633
+ - 09/12/2023: New Release:
2634
+ - **New reranker model**: release cross-encoder models `BAAI/bge-reranker-base` and `BAAI/bge-reranker-large`, which are more powerful than embedding model. We recommend to use/fine-tune them to re-rank top-k documents returned by embedding models.
2635
+ - **update embedding model**: release `bge-*-v1.5` embedding model to alleviate the issue of the similarity distribution, and enhance its retrieval ability without instruction.
2636
+ - 09/07/2023: Update [fine-tune code](https://github.com/FlagOpen/FlagEmbedding/blob/master/FlagEmbedding/baai_general_embedding/README.md): Add script to mine hard negatives and support adding instruction during fine-tuning.
2637
+ - 08/09/2023: BGE Models are integrated into **Langchain**, you can use it like [this](#using-langchain); C-MTEB **leaderboard** is [available](https://huggingface.co/spaces/mteb/leaderboard).
2638
+ - 08/05/2023: Release base-scale and small-scale models, **best performance among the models of the same size 🤗**
2639
+ - 08/02/2023: Release `bge-large-*`(short for BAAI General Embedding) Models, **rank 1st on MTEB and C-MTEB benchmark!** :tada: :tada:
2640
+ - 08/01/2023: We release the [Chinese Massive Text Embedding Benchmark](https://github.com/FlagOpen/FlagEmbedding/blob/master/C_MTEB) (**C-MTEB**), consisting of 31 test dataset.
2641
+
2642
+
2643
+ ## Model List
2644
+
2645
+ `bge` is short for `BAAI general embedding`.
2646
+
2647
+ | Model | Language | | Description | query instruction for retrieval\* |
2648
+ |:-------------------------------|:--------:| :--------:| :--------:|:--------:|
2649
+ | [BAAI/bge-reranker-large](https://huggingface.co/BAAI/bge-reranker-large) | Chinese and English | [Inference](#usage-for-reranker) [Fine-tune](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/reranker) | a cross-encoder model which is more accurate but less efficient \** | |
2650
+ | [BAAI/bge-reranker-base](https://huggingface.co/BAAI/bge-reranker-base) | Chinese and English | [Inference](#usage-for-reranker) [Fine-tune](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/reranker) | a cross-encoder model which is more accurate but less efficient \** | |
2651
+ | [BAAI/bge-large-en-v1.5](https://huggingface.co/BAAI/bge-large-en-v1.5) | English | [Inference](#usage-for-embedding-model) [Fine-tune](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/finetune) | version 1.5 with more reasonable similarity distribution | `Represent this sentence for searching relevant passages: ` |
2652
+ | [BAAI/bge-base-en-v1.5](https://huggingface.co/BAAI/bge-base-en-v1.5) | English | [Inference](#usage-for-embedding-model) [Fine-tune](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/finetune) | version 1.5 with more reasonable similarity distribution | `Represent this sentence for searching relevant passages: ` |
2653
+ | [BAAI/bge-small-en-v1.5](https://huggingface.co/BAAI/bge-small-en-v1.5) | English | [Inference](#usage-for-embedding-model) [Fine-tune](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/finetune) | version 1.5 with more reasonable similarity distribution | `Represent this sentence for searching relevant passages: ` |
2654
+ | [BAAI/bge-large-zh-v1.5](https://huggingface.co/BAAI/bge-large-zh-v1.5) | Chinese | [Inference](#usage-for-embedding-model) [Fine-tune](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/finetune) | version 1.5 with more reasonable similarity distribution | `为这个句子生成表示以用于检索相关文章:` |
2655
+ | [BAAI/bge-base-zh-v1.5](https://huggingface.co/BAAI/bge-base-zh-v1.5) | Chinese | [Inference](#usage-for-embedding-model) [Fine-tune](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/finetune) | version 1.5 with more reasonable similarity distribution | `为这个句子生成表示以用于检索相关文章:` |
2656
+ | [BAAI/bge-small-zh-v1.5](https://huggingface.co/BAAI/bge-small-zh-v1.5) | Chinese | [Inference](#usage-for-embedding-model) [Fine-tune](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/finetune) | version 1.5 with more reasonable similarity distribution | `为这个句子生成表示以用于检索相关文章:` |
2657
+ | [BAAI/bge-large-en](https://huggingface.co/BAAI/bge-large-en) | English | [Inference](#usage-for-embedding-model) [Fine-tune](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/finetune) | :trophy: rank **1st** in [MTEB](https://huggingface.co/spaces/mteb/leaderboard) leaderboard | `Represent this sentence for searching relevant passages: ` |
2658
+ | [BAAI/bge-base-en](https://huggingface.co/BAAI/bge-base-en) | English | [Inference](#usage-for-embedding-model) [Fine-tune](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/finetune) | a base-scale model but with similar ability to `bge-large-en` | `Represent this sentence for searching relevant passages: ` |
2659
+ | [BAAI/bge-small-en](https://huggingface.co/BAAI/bge-small-en) | English | [Inference](#usage-for-embedding-model) [Fine-tune](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/finetune) |a small-scale model but with competitive performance | `Represent this sentence for searching relevant passages: ` |
2660
+ | [BAAI/bge-large-zh](https://huggingface.co/BAAI/bge-large-zh) | Chinese | [Inference](#usage-for-embedding-model) [Fine-tune](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/finetune) | :trophy: rank **1st** in [C-MTEB](https://github.com/FlagOpen/FlagEmbedding/tree/master/C_MTEB) benchmark | `为这个句子生成表示以用���检索相关文章:` |
2661
+ | [BAAI/bge-base-zh](https://huggingface.co/BAAI/bge-base-zh) | Chinese | [Inference](#usage-for-embedding-model) [Fine-tune](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/finetune) | a base-scale model but with similar ability to `bge-large-zh` | `为这个句子生成表示以用于检索相关文章:` |
2662
+ | [BAAI/bge-small-zh](https://huggingface.co/BAAI/bge-small-zh) | Chinese | [Inference](#usage-for-embedding-model) [Fine-tune](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/finetune) | a small-scale model but with competitive performance | `为这个句子生成表示以用于检索相关文章:` |
2663
+
2664
+
2665
+ \*: If you need to search the relevant passages to a query, we suggest to add the instruction to the query; in other cases, no instruction is needed, just use the original query directly. In all cases, **no instruction** needs to be added to passages.
2666
+
2667
+ \**: Different from embedding model, reranker uses question and document as input and directly output similarity instead of embedding. To balance the accuracy and time cost, cross-encoder is widely used to re-rank top-k documents retrieved by other simple models.
2668
+ For examples, use bge embedding model to retrieve top 100 relevant documents, and then use bge reranker to re-rank the top 100 document to get the final top-3 results.
2669
+
2670
+ ## Frequently asked questions
2671
+
2672
+ <details>
2673
+ <summary>1. How to fine-tune bge embedding model?</summary>
2674
+
2675
+ <!-- ### How to fine-tune bge embedding model? -->
2676
+ Following this [example](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/finetune) to prepare data and fine-tune your model.
2677
+ Some suggestions:
2678
+ - Mine hard negatives following this [example](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/finetune#hard-negatives), which can improve the retrieval performance.
2679
+ - If you pre-train bge on your data, the pre-trained model cannot be directly used to calculate similarity, and it must be fine-tuned with contrastive learning before computing similarity.
2680
+ - If the accuracy of the fine-tuned model is still not high, it is recommended to use/fine-tune the cross-encoder model (bge-reranker) to re-rank top-k results. Hard negatives also are needed to fine-tune reranker.
2681
+
2682
+
2683
+ </details>
2684
+
2685
+ <details>
2686
+ <summary>2. The similarity score between two dissimilar sentences is higher than 0.5</summary>
2687
+
2688
+ <!-- ### The similarity score between two dissimilar sentences is higher than 0.5 -->
2689
+ **Suggest to use bge v1.5, which alleviates the issue of the similarity distribution.**
2690
+
2691
+ Since we finetune the models by contrastive learning with a temperature of 0.01,
2692
+ the similarity distribution of the current BGE model is about in the interval \[0.6, 1\].
2693
+ So a similarity score greater than 0.5 does not indicate that the two sentences are similar.
2694
+
2695
+ For downstream tasks, such as passage retrieval or semantic similarity,
2696
+ **what matters is the relative order of the scores, not the absolute value.**
2697
+ If you need to filter similar sentences based on a similarity threshold,
2698
+ please select an appropriate similarity threshold based on the similarity distribution on your data (such as 0.8, 0.85, or even 0.9).
2699
+
2700
+ </details>
2701
+
2702
+ <details>
2703
+ <summary>3. When does the query instruction need to be used</summary>
2704
+
2705
+ <!-- ### When does the query instruction need to be used -->
2706
+
2707
+ For a retrieval task that uses short queries to find long related documents,
2708
+ it is recommended to add instructions for these short queries.
2709
+ **The best method to decide whether to add instructions for queries is choosing the setting that achieves better performance on your task.**
2710
+ In all cases, the documents/passages do not need to add the instruction.
2711
+
2712
+ </details>
2713
+
2714
+
2715
+ ## Usage
2716
+
2717
+ ### Usage for Embedding Model
2718
+
2719
+ Here are some examples for using `bge` models with
2720
+ [FlagEmbedding](#using-flagembedding), [Sentence-Transformers](#using-sentence-transformers), [Langchain](#using-langchain), or [Huggingface Transformers](#using-huggingface-transformers).
2721
+
2722
+ #### Using FlagEmbedding
2723
+ ```
2724
+ pip install -U FlagEmbedding
2725
+ ```
2726
+ If it doesn't work for you, you can see [FlagEmbedding](https://github.com/FlagOpen/FlagEmbedding/blob/master/FlagEmbedding/baai_general_embedding/README.md) for more methods to install FlagEmbedding.
2727
+
2728
+ ```python
2729
+ from FlagEmbedding import FlagModel
2730
+ sentences_1 = ["样例数据-1", "样例数据-2"]
2731
+ sentences_2 = ["样例数据-3", "样例数据-4"]
2732
+ model = FlagModel('BAAI/bge-large-zh-v1.5',
2733
+ query_instruction_for_retrieval="为这个句子生成表示以用于检索相关文章:",
2734
+ use_fp16=True) # Setting use_fp16 to True speeds up computation with a slight performance degradation
2735
+ embeddings_1 = model.encode(sentences_1)
2736
+ embeddings_2 = model.encode(sentences_2)
2737
+ similarity = embeddings_1 @ embeddings_2.T
2738
+ print(similarity)
2739
+
2740
+ # for s2p(short query to long passage) retrieval task, suggest to use encode_queries() which will automatically add the instruction to each query
2741
+ # corpus in retrieval task can still use encode() or encode_corpus(), since they don't need instruction
2742
+ queries = ['query_1', 'query_2']
2743
+ passages = ["样例文档-1", "样例文档-2"]
2744
+ q_embeddings = model.encode_queries(queries)
2745
+ p_embeddings = model.encode(passages)
2746
+ scores = q_embeddings @ p_embeddings.T
2747
+ ```
2748
+ For the value of the argument `query_instruction_for_retrieval`, see [Model List](https://github.com/FlagOpen/FlagEmbedding/tree/master#model-list).
2749
+
2750
+ By default, FlagModel will use all available GPUs when encoding. Please set `os.environ["CUDA_VISIBLE_DEVICES"]` to select specific GPUs.
2751
+ You also can set `os.environ["CUDA_VISIBLE_DEVICES"]=""` to make all GPUs unavailable.
2752
+
2753
+
2754
+ #### Using Sentence-Transformers
2755
+
2756
+ You can also use the `bge` models with [sentence-transformers](https://www.SBERT.net):
2757
+
2758
+ ```
2759
+ pip install -U sentence-transformers
2760
+ ```
2761
+ ```python
2762
+ from sentence_transformers import SentenceTransformer
2763
+ sentences_1 = ["样例数据-1", "样例数据-2"]
2764
+ sentences_2 = ["样例数据-3", "样例数据-4"]
2765
+ model = SentenceTransformer('BAAI/bge-large-zh-v1.5')
2766
+ embeddings_1 = model.encode(sentences_1, normalize_embeddings=True)
2767
+ embeddings_2 = model.encode(sentences_2, normalize_embeddings=True)
2768
+ similarity = embeddings_1 @ embeddings_2.T
2769
+ print(similarity)
2770
+ ```
2771
+ For s2p(short query to long passage) retrieval task,
2772
+ each short query should start with an instruction (instructions see [Model List](https://github.com/FlagOpen/FlagEmbedding/tree/master#model-list)).
2773
+ But the instruction is not needed for passages.
2774
+ ```python
2775
+ from sentence_transformers import SentenceTransformer
2776
+ queries = ['query_1', 'query_2']
2777
+ passages = ["样例文档-1", "样例文档-2"]
2778
+ instruction = "为这个句子生成表示以用于检索相关文章:"
2779
+
2780
+ model = SentenceTransformer('BAAI/bge-large-zh-v1.5')
2781
+ q_embeddings = model.encode([instruction+q for q in queries], normalize_embeddings=True)
2782
+ p_embeddings = model.encode(passages, normalize_embeddings=True)
2783
+ scores = q_embeddings @ p_embeddings.T
2784
+ ```
2785
+
2786
+ #### Using Langchain
2787
+
2788
+ You can use `bge` in langchain like this:
2789
+ ```python
2790
+ from langchain.embeddings import HuggingFaceBgeEmbeddings
2791
+ model_name = "BAAI/bge-large-en-v1.5"
2792
+ model_kwargs = {'device': 'cuda'}
2793
+ encode_kwargs = {'normalize_embeddings': True} # set True to compute cosine similarity
2794
+ model = HuggingFaceBgeEmbeddings(
2795
+ model_name=model_name,
2796
+ model_kwargs=model_kwargs,
2797
+ encode_kwargs=encode_kwargs,
2798
+ query_instruction="为这个句子生成表示以用于检索相关文章:"
2799
+ )
2800
+ model.query_instruction = "为这个句子生成表示以用于检索相关文章:"
2801
+ ```
2802
+
2803
+
2804
+ #### Using HuggingFace Transformers
2805
+
2806
+ With the transformers package, you can use the model like this: First, you pass your input through the transformer model, then you select the last hidden state of the first token (i.e., [CLS]) as the sentence embedding.
2807
+
2808
+ ```python
2809
+ from transformers import AutoTokenizer, AutoModel
2810
+ import torch
2811
+ # Sentences we want sentence embeddings for
2812
+ sentences = ["样例数据-1", "样例数据-2"]
2813
+
2814
+ # Load model from HuggingFace Hub
2815
+ tokenizer = AutoTokenizer.from_pretrained('BAAI/bge-large-zh-v1.5')
2816
+ model = AutoModel.from_pretrained('BAAI/bge-large-zh-v1.5')
2817
+ model.eval()
2818
+
2819
+ # Tokenize sentences
2820
+ encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')
2821
+ # for s2p(short query to long passage) retrieval task, add an instruction to query (not add instruction for passages)
2822
+ # encoded_input = tokenizer([instruction + q for q in queries], padding=True, truncation=True, return_tensors='pt')
2823
+
2824
+ # Compute token embeddings
2825
+ with torch.no_grad():
2826
+ model_output = model(**encoded_input)
2827
+ # Perform pooling. In this case, cls pooling.
2828
+ sentence_embeddings = model_output[0][:, 0]
2829
+ # normalize embeddings
2830
+ sentence_embeddings = torch.nn.functional.normalize(sentence_embeddings, p=2, dim=1)
2831
+ print("Sentence embeddings:", sentence_embeddings)
2832
+ ```
2833
+
2834
+ ### Usage for Reranker
2835
+
2836
+ Different from embedding model, reranker uses question and document as input and directly output similarity instead of embedding.
2837
+ You can get a relevance score by inputting query and passage to the reranker.
2838
+ The reranker is optimized based cross-entropy loss, so the relevance score is not bounded to a specific range.
2839
+
2840
+
2841
+ #### Using FlagEmbedding
2842
+ ```
2843
+ pip install -U FlagEmbedding
2844
+ ```
2845
+
2846
+ Get relevance scores (higher scores indicate more relevance):
2847
+ ```python
2848
+ from FlagEmbedding import FlagReranker
2849
+ reranker = FlagReranker('BAAI/bge-reranker-large', use_fp16=True) # Setting use_fp16 to True speeds up computation with a slight performance degradation
2850
+
2851
+ score = reranker.compute_score(['query', 'passage'])
2852
+ print(score)
2853
+
2854
+ scores = reranker.compute_score([['what is panda?', 'hi'], ['what is panda?', 'The giant panda (Ailuropoda melanoleuca), sometimes called a panda bear or simply panda, is a bear species endemic to China.']])
2855
+ print(scores)
2856
+ ```
2857
+
2858
+
2859
+ #### Using Huggingface transformers
2860
+
2861
+ ```python
2862
+ import torch
2863
+ from transformers import AutoModelForSequenceClassification, AutoTokenizer
2864
+
2865
+ tokenizer = AutoTokenizer.from_pretrained('BAAI/bge-reranker-large')
2866
+ model = AutoModelForSequenceClassification.from_pretrained('BAAI/bge-reranker-large')
2867
+ model.eval()
2868
+
2869
+ pairs = [['what is panda?', 'hi'], ['what is panda?', 'The giant panda (Ailuropoda melanoleuca), sometimes called a panda bear or simply panda, is a bear species endemic to China.']]
2870
+ with torch.no_grad():
2871
+ inputs = tokenizer(pairs, padding=True, truncation=True, return_tensors='pt', max_length=512)
2872
+ scores = model(**inputs, return_dict=True).logits.view(-1, ).float()
2873
+ print(scores)
2874
+ ```
2875
+
2876
+ ## Evaluation
2877
+
2878
+ `baai-general-embedding` models achieve **state-of-the-art performance on both MTEB and C-MTEB leaderboard!**
2879
+ For more details and evaluation tools see our [scripts](https://github.com/FlagOpen/FlagEmbedding/blob/master/C_MTEB/README.md).
2880
+
2881
+ - **MTEB**:
2882
+
2883
+ | Model Name | Dimension | Sequence Length | Average (56) | Retrieval (15) |Clustering (11) | Pair Classification (3) | Reranking (4) | STS (10) | Summarization (1) | Classification (12) |
2884
+ |:----:|:---:|:---:|:---:|:---:|:---:|:---:|:---:|:---:|:---:|:---:|
2885
+ | [BAAI/bge-large-en-v1.5](https://huggingface.co/BAAI/bge-large-en-v1.5) | 1024 | 512 | **64.23** | **54.29** | 46.08 | 87.12 | 60.03 | 83.11 | 31.61 | 75.97 |
2886
+ | [BAAI/bge-base-en-v1.5](https://huggingface.co/BAAI/bge-base-en-v1.5) | 768 | 512 | 63.55 | 53.25 | 45.77 | 86.55 | 58.86 | 82.4 | 31.07 | 75.53 |
2887
+ | [BAAI/bge-small-en-v1.5](https://huggingface.co/BAAI/bge-small-en-v1.5) | 384 | 512 | 62.17 |51.68 | 43.82 | 84.92 | 58.36 | 81.59 | 30.12 | 74.14 |
2888
+ | [bge-large-en](https://huggingface.co/BAAI/bge-large-en) | 1024 | 512 | 63.98 | 53.9 | 46.98 | 85.8 | 59.48 | 81.56 | 32.06 | 76.21 |
2889
+ | [bge-base-en](https://huggingface.co/BAAI/bge-base-en) | 768 | 512 | 63.36 | 53.0 | 46.32 | 85.86 | 58.7 | 81.84 | 29.27 | 75.27 |
2890
+ | [gte-large](https://huggingface.co/thenlper/gte-large) | 1024 | 512 | 63.13 | 52.22 | 46.84 | 85.00 | 59.13 | 83.35 | 31.66 | 73.33 |
2891
+ | [gte-base](https://huggingface.co/thenlper/gte-base) | 768 | 512 | 62.39 | 51.14 | 46.2 | 84.57 | 58.61 | 82.3 | 31.17 | 73.01 |
2892
+ | [e5-large-v2](https://huggingface.co/intfloat/e5-large-v2) | 1024| 512 | 62.25 | 50.56 | 44.49 | 86.03 | 56.61 | 82.05 | 30.19 | 75.24 |
2893
+ | [bge-small-en](https://huggingface.co/BAAI/bge-small-en) | 384 | 512 | 62.11 | 51.82 | 44.31 | 83.78 | 57.97 | 80.72 | 30.53 | 74.37 |
2894
+ | [instructor-xl](https://huggingface.co/hkunlp/instructor-xl) | 768 | 512 | 61.79 | 49.26 | 44.74 | 86.62 | 57.29 | 83.06 | 32.32 | 61.79 |
2895
+ | [e5-base-v2](https://huggingface.co/intfloat/e5-base-v2) | 768 | 512 | 61.5 | 50.29 | 43.80 | 85.73 | 55.91 | 81.05 | 30.28 | 73.84 |
2896
+ | [gte-small](https://huggingface.co/thenlper/gte-small) | 384 | 512 | 61.36 | 49.46 | 44.89 | 83.54 | 57.7 | 82.07 | 30.42 | 72.31 |
2897
+ | [text-embedding-ada-002](https://platform.openai.com/docs/guides/embeddings) | 1536 | 8192 | 60.99 | 49.25 | 45.9 | 84.89 | 56.32 | 80.97 | 30.8 | 70.93 |
2898
+ | [e5-small-v2](https://huggingface.co/intfloat/e5-base-v2) | 384 | 512 | 59.93 | 49.04 | 39.92 | 84.67 | 54.32 | 80.39 | 31.16 | 72.94 |
2899
+ | [sentence-t5-xxl](https://huggingface.co/sentence-transformers/sentence-t5-xxl) | 768 | 512 | 59.51 | 42.24 | 43.72 | 85.06 | 56.42 | 82.63 | 30.08 | 73.42 |
2900
+ | [all-mpnet-base-v2](https://huggingface.co/sentence-transformers/all-mpnet-base-v2) | 768 | 514 | 57.78 | 43.81 | 43.69 | 83.04 | 59.36 | 80.28 | 27.49 | 65.07 |
2901
+ | [sgpt-bloom-7b1-msmarco](https://huggingface.co/bigscience/sgpt-bloom-7b1-msmarco) | 4096 | 2048 | 57.59 | 48.22 | 38.93 | 81.9 | 55.65 | 77.74 | 33.6 | 66.19 |
2902
+
2903
+
2904
+
2905
+ - **C-MTEB**:
2906
+ We create the benchmark C-MTEB for Chinese text embedding which consists of 31 datasets from 6 tasks.
2907
+ Please refer to [C_MTEB](https://github.com/FlagOpen/FlagEmbedding/blob/master/C_MTEB/README.md) for a detailed introduction.
2908
+
2909
+ | Model | Embedding dimension | Avg | Retrieval | STS | PairClassification | Classification | Reranking | Clustering |
2910
+ |:-------------------------------|:--------:|:--------:|:--------:|:--------:|:--------:|:--------:|:--------:|:--------:|
2911
+ | [**BAAI/bge-large-zh-v1.5**](https://huggingface.co/BAAI/bge-large-zh-v1.5) | 1024 | **64.53** | 70.46 | 56.25 | 81.6 | 69.13 | 65.84 | 48.99 |
2912
+ | [BAAI/bge-base-zh-v1.5](https://huggingface.co/BAAI/bge-base-zh-v1.5) | 768 | 63.13 | 69.49 | 53.72 | 79.75 | 68.07 | 65.39 | 47.53 |
2913
+ | [BAAI/bge-small-zh-v1.5](https://huggingface.co/BAAI/bge-small-zh-v1.5) | 512 | 57.82 | 61.77 | 49.11 | 70.41 | 63.96 | 60.92 | 44.18 |
2914
+ | [BAAI/bge-large-zh](https://huggingface.co/BAAI/bge-large-zh) | 1024 | 64.20 | 71.53 | 54.98 | 78.94 | 68.32 | 65.11 | 48.39 |
2915
+ | [bge-large-zh-noinstruct](https://huggingface.co/BAAI/bge-large-zh-noinstruct) | 1024 | 63.53 | 70.55 | 53 | 76.77 | 68.58 | 64.91 | 50.01 |
2916
+ | [BAAI/bge-base-zh](https://huggingface.co/BAAI/bge-base-zh) | 768 | 62.96 | 69.53 | 54.12 | 77.5 | 67.07 | 64.91 | 47.63 |
2917
+ | [multilingual-e5-large](https://huggingface.co/intfloat/multilingual-e5-large) | 1024 | 58.79 | 63.66 | 48.44 | 69.89 | 67.34 | 56.00 | 48.23 |
2918
+ | [BAAI/bge-small-zh](https://huggingface.co/BAAI/bge-small-zh) | 512 | 58.27 | 63.07 | 49.45 | 70.35 | 63.64 | 61.48 | 45.09 |
2919
+ | [m3e-base](https://huggingface.co/moka-ai/m3e-base) | 768 | 57.10 | 56.91 | 50.47 | 63.99 | 67.52 | 59.34 | 47.68 |
2920
+ | [m3e-large](https://huggingface.co/moka-ai/m3e-large) | 1024 | 57.05 | 54.75 | 50.42 | 64.3 | 68.2 | 59.66 | 48.88 |
2921
+ | [multilingual-e5-base](https://huggingface.co/intfloat/multilingual-e5-base) | 768 | 55.48 | 61.63 | 46.49 | 67.07 | 65.35 | 54.35 | 40.68 |
2922
+ | [multilingual-e5-small](https://huggingface.co/intfloat/multilingual-e5-small) | 384 | 55.38 | 59.95 | 45.27 | 66.45 | 65.85 | 53.86 | 45.26 |
2923
+ | [text-embedding-ada-002(OpenAI)](https://platform.openai.com/docs/guides/embeddings/what-are-embeddings) | 1536 | 53.02 | 52.0 | 43.35 | 69.56 | 64.31 | 54.28 | 45.68 |
2924
+ | [luotuo](https://huggingface.co/silk-road/luotuo-bert-medium) | 1024 | 49.37 | 44.4 | 42.78 | 66.62 | 61 | 49.25 | 44.39 |
2925
+ | [text2vec-base](https://huggingface.co/shibing624/text2vec-base-chinese) | 768 | 47.63 | 38.79 | 43.41 | 67.41 | 62.19 | 49.45 | 37.66 |
2926
+ | [text2vec-large](https://huggingface.co/GanymedeNil/text2vec-large-chinese) | 1024 | 47.36 | 41.94 | 44.97 | 70.86 | 60.66 | 49.16 | 30.02 |
2927
+
2928
+
2929
+ - **Reranking**:
2930
+ See [C_MTEB](https://github.com/FlagOpen/FlagEmbedding/blob/master/C_MTEB/) for evaluation script.
2931
+
2932
+ | Model | T2Reranking | T2RerankingZh2En\* | T2RerankingEn2Zh\* | MMarcoReranking | CMedQAv1 | CMedQAv2 | Avg |
2933
+ |:-------------------------------|:--------:|:--------:|:--------:|:--------:|:--------:|:--------:|:--------:|
2934
+ | text2vec-base-multilingual | 64.66 | 62.94 | 62.51 | 14.37 | 48.46 | 48.6 | 50.26 |
2935
+ | multilingual-e5-small | 65.62 | 60.94 | 56.41 | 29.91 | 67.26 | 66.54 | 57.78 |
2936
+ | multilingual-e5-large | 64.55 | 61.61 | 54.28 | 28.6 | 67.42 | 67.92 | 57.4 |
2937
+ | multilingual-e5-base | 64.21 | 62.13 | 54.68 | 29.5 | 66.23 | 66.98 | 57.29 |
2938
+ | m3e-base | 66.03 | 62.74 | 56.07 | 17.51 | 77.05 | 76.76 | 59.36 |
2939
+ | m3e-large | 66.13 | 62.72 | 56.1 | 16.46 | 77.76 | 78.27 | 59.57 |
2940
+ | bge-base-zh-v1.5 | 66.49 | 63.25 | 57.02 | 29.74 | 80.47 | 84.88 | 63.64 |
2941
+ | bge-large-zh-v1.5 | 65.74 | 63.39 | 57.03 | 28.74 | 83.45 | 85.44 | 63.97 |
2942
+ | [BAAI/bge-reranker-base](https://huggingface.co/BAAI/bge-reranker-base) | 67.28 | 63.95 | 60.45 | 35.46 | 81.26 | 84.1 | 65.42 |
2943
+ | [BAAI/bge-reranker-large](https://huggingface.co/BAAI/bge-reranker-large) | 67.6 | 64.03 | 61.44 | 37.16 | 82.15 | 84.18 | 66.09 |
2944
+
2945
+ \* : T2RerankingZh2En and T2RerankingEn2Zh are cross-language retrieval tasks
2946
+
2947
+ ## Train
2948
+
2949
+ ### BAAI Embedding
2950
+
2951
+ We pre-train the models using [retromae](https://github.com/staoxiao/RetroMAE) and train them on large-scale pairs data using contrastive learning.
2952
+ **You can fine-tune the embedding model on your data following our [examples](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/finetune).**
2953
+ We also provide a [pre-train example](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/pretrain).
2954
+ Note that the goal of pre-training is to reconstruct the text, and the pre-trained model cannot be used for similarity calculation directly, it needs to be fine-tuned.
2955
+ More training details for bge see [baai_general_embedding](https://github.com/FlagOpen/FlagEmbedding/blob/master/FlagEmbedding/baai_general_embedding/README.md).
2956
+
2957
+
2958
+
2959
+ ### BGE Reranker
2960
+
2961
+ Cross-encoder will perform full-attention over the input pair,
2962
+ which is more accurate than embedding model (i.e., bi-encoder) but more time-consuming than embedding model.
2963
+ Therefore, it can be used to re-rank the top-k documents returned by embedding model.
2964
+ We train the cross-encoder on a multilingual pair data,
2965
+ The data format is the same as embedding model, so you can fine-tune it easily following our [example](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/reranker).
2966
+ More details pelease refer to [./FlagEmbedding/reranker/README.md](https://github.com/FlagOpen/FlagEmbedding/tree/master/FlagEmbedding/reranker)
2967
+
2968
+
2969
+ ## Contact
2970
+ If you have any question or suggestion related to this project, feel free to open an issue or pull request.
2971
+ You also can email Shitao Xiao(stxiao@baai.ac.cn) and Zheng Liu(liuzheng@baai.ac.cn).
2972
+
2973
+
2974
+ ## Citation
2975
+
2976
+ If you find our work helpful, please cite us:
2977
+ ```
2978
+ @misc{bge_embedding,
2979
+ title={C-Pack: Packaged Resources To Advance General Chinese Embedding},
2980
+ author={Shitao Xiao and Zheng Liu and Peitian Zhang and Niklas Muennighoff},
2981
+ year={2023},
2982
+ eprint={2309.07597},
2983
+ archivePrefix={arXiv},
2984
+ primaryClass={cs.CL}
2985
+ }
2986
+ ```
2987
+
2988
+ ## License
2989
+ FlagEmbedding is licensed under the [MIT License](https://github.com/FlagOpen/FlagEmbedding/blob/master/LICENSE). The released models can be used for commercial purposes free of charge.
2990
+
2991
+
2992
+
config.json ADDED
@@ -0,0 +1,32 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "",
3
+ "architectures": [
4
+ "BertModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "classifier_dropout": null,
8
+ "gradient_checkpointing": false,
9
+ "hidden_act": "gelu",
10
+ "hidden_dropout_prob": 0.1,
11
+ "hidden_size": 768,
12
+ "id2label": {
13
+ "0": "LABEL_0"
14
+ },
15
+ "initializer_range": 0.02,
16
+ "intermediate_size": 3072,
17
+ "label2id": {
18
+ "LABEL_0": 0
19
+ },
20
+ "layer_norm_eps": 1e-12,
21
+ "max_position_embeddings": 512,
22
+ "model_type": "bert",
23
+ "num_attention_heads": 12,
24
+ "num_hidden_layers": 12,
25
+ "pad_token_id": 0,
26
+ "position_embedding_type": "absolute",
27
+ "torch_dtype": "float32",
28
+ "transformers_version": "4.28.1",
29
+ "type_vocab_size": 2,
30
+ "use_cache": true,
31
+ "vocab_size": 30522
32
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "2.2.2",
4
+ "transformers": "4.28.1",
5
+ "pytorch": "1.13.0+cu117"
6
+ }
7
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4628723bc5928711fe915d2a089cd19fb76edca0a2b0e51a587e1b466d1e03a5
3
+ size 437955512
modules.json ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ }
14
+ ]
pytorch_model.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:28fc2b9645965168920a1d7fdfeda96b9c1f189c84adb71a7ffe586c26d2e3e5
3
+ size 437997357
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 512,
3
+ "do_lower_case": true
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ {
2
+ "cls_token": "[CLS]",
3
+ "mask_token": "[MASK]",
4
+ "pad_token": "[PAD]",
5
+ "sep_token": "[SEP]",
6
+ "unk_token": "[UNK]"
7
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,15 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "clean_up_tokenization_spaces": true,
3
+ "cls_token": "[CLS]",
4
+ "do_basic_tokenize": true,
5
+ "do_lower_case": true,
6
+ "mask_token": "[MASK]",
7
+ "model_max_length": 512,
8
+ "never_split": null,
9
+ "pad_token": "[PAD]",
10
+ "sep_token": "[SEP]",
11
+ "strip_accents": null,
12
+ "tokenize_chinese_chars": true,
13
+ "tokenizer_class": "BertTokenizer",
14
+ "unk_token": "[UNK]"
15
+ }
vocab.txt ADDED
The diff for this file is too large to render. See raw diff