base_configs: - config/base.yaml - config/paths.yaml name: swin_v2_large_1e-5_mamba_512_256 fsdp: off fp16: off data: dataset: inaturalist crop_size: 512 val_crop_size: 512 batch_size: ${train.batch_size} val_batch_size: ${train.val_batch_size} num_workers: 1 num_classes: 284 interpolation: bilinear test_crop: False aug: auto_augment: rand-m9-mstd0.5-inc1 color_jitter: 0.4 reprob: 0.0 remode: pixel recount: 1 mixup: 0.0 cutmix: 0.0 label_smoothing: 0.3 random_resized_crop: False mean: [0.485, 0.456, 0.406] std: [0.229, 0.224, 0.225] supercategories: - Reptilia model: name: EncoderDecoderV2 num_classes: ${data.num_classes} mlp_ratio: 4 backbone_class: swinv2_large_window16_256_timm backbone: img_size: 256 input_dim: 3 use_vanilla_backward: False pretrained: ${oc.env:PRETRAINED_CKPT_PATH, "./ckpts"}/swinv2_large_patch4_window16_256.pth upsample: False cls_head: xl xl_context: skip_connection: off enabled: off hidden_size: 768 classification_mode: off attention_method: mamba tiling: naive_two_stream n_layer: 4 resume: '' optimizer: name: adamw base_lr: 1e-5 lr: 1e-5 classifier_ratio: 1.0 warmup_epochs: 0 train: epochs: 100 batch_size: 8 val_batch_size: 1 freeze_epochs: 0 test_every: 1 test_reset: True clip_grad: 5.0 val: False losses: losses: - name: cls type: CrossEntropy params: field: label weight: 1.0 display: on