--- license: apache-2.0 base_model: facebook/wav2vec2-xls-r-300m tags: - generated_from_trainer datasets: - common_voice_17_0 metrics: - wer model-index: - name: xls-r-300-cv17-upper-sorbian-adap-pl results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: common_voice_17_0 type: common_voice_17_0 config: hsb split: validation args: hsb metrics: - name: Wer type: wer value: 0.7246835443037974 --- [Visualize in Weights & Biases](https://wandb.ai/badr-nlp/xlsr-continual-finetuning-polish/runs/kcnysagl) # xls-r-300-cv17-upper-sorbian-adap-pl This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the common_voice_17_0 dataset. It achieves the following results on the evaluation set: - Loss: 1.0564 - Wer: 0.7247 - Cer: 0.1754 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 100 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | Cer | |:-------------:|:-------:|:----:|:---------------:|:------:|:------:| | 3.5302 | 3.9216 | 100 | 3.5256 | 1.0 | 1.0 | | 3.2181 | 7.8431 | 200 | 3.2314 | 1.0 | 1.0 | | 1.5479 | 11.7647 | 300 | 1.6991 | 0.9797 | 0.3943 | | 0.3971 | 15.6863 | 400 | 0.9388 | 0.8582 | 0.2274 | | 0.2782 | 19.6078 | 500 | 0.9310 | 0.8291 | 0.2203 | | 0.1388 | 23.5294 | 600 | 0.9292 | 0.8 | 0.2045 | | 0.1438 | 27.4510 | 700 | 0.9533 | 0.8006 | 0.2011 | | 0.0815 | 31.3725 | 800 | 0.9446 | 0.7816 | 0.1975 | | 0.0873 | 35.2941 | 900 | 0.9855 | 0.7728 | 0.1913 | | 0.1213 | 39.2157 | 1000 | 0.9705 | 0.7652 | 0.1955 | | 0.0589 | 43.1373 | 1100 | 0.9832 | 0.7614 | 0.1876 | | 0.0865 | 47.0588 | 1200 | 1.0001 | 0.7582 | 0.1875 | | 0.0762 | 50.9804 | 1300 | 1.0280 | 0.7538 | 0.1854 | | 0.0564 | 54.9020 | 1400 | 0.9799 | 0.7468 | 0.1820 | | 0.0607 | 58.8235 | 1500 | 1.0192 | 0.7443 | 0.1793 | | 0.0729 | 62.7451 | 1600 | 1.0057 | 0.7424 | 0.1762 | | 0.0518 | 66.6667 | 1700 | 1.0240 | 0.7437 | 0.1765 | | 0.059 | 70.5882 | 1800 | 1.0379 | 0.7278 | 0.1759 | | 0.031 | 74.5098 | 1900 | 1.0444 | 0.7152 | 0.1718 | | 0.051 | 78.4314 | 2000 | 1.0530 | 0.7335 | 0.1773 | | 0.0539 | 82.3529 | 2100 | 1.0402 | 0.7241 | 0.1773 | | 0.0399 | 86.2745 | 2200 | 1.0495 | 0.7177 | 0.1744 | | 0.06 | 90.1961 | 2300 | 1.0674 | 0.7222 | 0.1764 | | 0.0459 | 94.1176 | 2400 | 1.0576 | 0.7222 | 0.1747 | | 0.0614 | 98.0392 | 2500 | 1.0564 | 0.7247 | 0.1754 | ### Framework versions - Transformers 4.42.0.dev0 - Pytorch 2.3.1+cu121 - Datasets 2.19.2 - Tokenizers 0.19.1