File size: 2,113 Bytes
d007fd3 cbcb30c d007fd3 cbcb30c d007fd3 cbcb30c d007fd3 cbcb30c d007fd3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 |
---
license: apache-2.0
base_model: distilbert-base-cased-distilled-squad
tags:
- generated_from_trainer
model-index:
- name: distilbert-base-cased-distilled-squad-231123
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# distilbert-base-cased-distilled-squad-231123
This model is a fine-tuned version of [distilbert-base-cased-distilled-squad](https://huggingface.co/distilbert-base-cased-distilled-squad) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 3.5287
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 15
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| No log | 1.0 | 116 | 1.9383 |
| No log | 2.0 | 232 | 1.9901 |
| No log | 3.0 | 348 | 2.0780 |
| No log | 4.0 | 464 | 2.2501 |
| 1.4804 | 5.0 | 580 | 2.4190 |
| 1.4804 | 6.0 | 696 | 2.5925 |
| 1.4804 | 7.0 | 812 | 2.7649 |
| 1.4804 | 8.0 | 928 | 2.9029 |
| 0.5119 | 9.0 | 1044 | 3.0296 |
| 0.5119 | 10.0 | 1160 | 3.1669 |
| 0.5119 | 11.0 | 1276 | 3.3412 |
| 0.5119 | 12.0 | 1392 | 3.3165 |
| 0.2287 | 13.0 | 1508 | 3.4167 |
| 0.2287 | 14.0 | 1624 | 3.5039 |
| 0.2287 | 15.0 | 1740 | 3.5287 |
### Framework versions
- Transformers 4.35.2
- Pytorch 2.1.0+cu121
- Datasets 2.16.1
- Tokenizers 0.15.0
|