--- library_name: peft tags: - generated_from_trainer base_model: meta-llama/Llama-2-7b-hf model-index: - name: models/auto-improving-run results: [] --- [Built with Axolotl](https://github.com/OpenAccess-AI-Collective/axolotl)
See axolotl config axolotl version: `0.4.0` ```yaml # This file is used by the training script in train.ipynb. You can read more about # the format and see more examples at https://github.com/OpenAccess-AI-Collective/axolotl. # One of the parameters you might want to play around with is `num_epochs`: if you have a # smaller dataset size, making that large can have good results. base_model: meta-llama/Llama-2-7b-hf base_model_config: meta-llama/Llama-2-7b-hf model_type: LlamaForCausalLM tokenizer_type: LlamaTokenizer is_llama_derived_model: true load_in_8bit: true load_in_4bit: false strict: false datasets: - path: ./resources/train_aug.jsonl type: alpaca dataset_prepared_path: ./resources/last_run_prepared val_set_size: 0.05 output_dir: ./models/auto-improving-run sequence_len: 4096 sample_packing: true adapter: lora lora_model_dir: lora_r: 32 lora_alpha: 16 lora_dropout: 0.05 lora_target_linear: true lora_fan_in_fan_out: # This will report stats from your training run to https://wandb.ai/. If you don't want to create a wandb account you can comment this section out. wandb_project: google-boolq wandb_entity: wandb_watch: wandb_run_id: auto-improving-run wandb_log_model: gradient_accumulation_steps: 4 micro_batch_size: 2 num_epochs: 5 optimizer: adamw_bnb_8bit lr_scheduler: cosine learning_rate: 0.0002 train_on_inputs: false group_by_length: false bf16: true fp16: false tf32: false gradient_checkpointing: true early_stopping_patience: resume_from_checkpoint: local_rank: logging_steps: 1 xformers_attention: flash_attention: false warmup_steps: 10 eval_steps: 20 save_steps: 60 debug: deepspeed: weight_decay: 0.0 fsdp: fsdp_config: special_tokens: bos_token: "" eos_token: "" unk_token: "" ```

# models/auto-improving-run This model is a fine-tuned version of [meta-llama/Llama-2-7b-hf](https://huggingface.co/meta-llama/Llama-2-7b-hf) on the google/boolq dataset with a research platform that iterates on the model inaccuracies, gets refined by expert, and re-performs training. It achieves the following results on the evaluation set: - Loss: 0.3435 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 7.9638 | 0.01 | 1 | 8.3163 | | 0.3508 | 0.28 | 20 | 0.3923 | | 0.3166 | 0.55 | 40 | 0.3505 | | 0.3363 | 0.83 | 60 | 0.3775 | | 0.3295 | 1.09 | 80 | 0.3478 | | 0.3232 | 1.36 | 100 | 0.3514 | | 0.3569 | 1.64 | 120 | 0.3504 | | 0.3379 | 1.92 | 140 | 0.3475 | | 0.3234 | 2.17 | 160 | 0.3623 | | 0.3442 | 2.45 | 180 | 0.3580 | | 0.3103 | 2.73 | 200 | 0.3426 | | 0.3253 | 3.0 | 220 | 0.3415 | | 0.3291 | 3.26 | 240 | 0.3457 | | 0.3248 | 3.54 | 260 | 0.3427 | | 0.3463 | 3.81 | 280 | 0.3486 | | 0.3273 | 4.07 | 300 | 0.3431 | | 0.3071 | 4.35 | 320 | 0.3416 | | 0.3227 | 4.62 | 340 | 0.3433 | | 0.3333 | 4.9 | 360 | 0.3435 | ### Framework versions - PEFT 0.9.0 - Transformers 4.40.0.dev0 - Pytorch 2.1.2+cu121 - Datasets 2.18.0 - Tokenizers 0.15.0 ### Evaluation These are the metrics reported on the test data (10% of boolq) model='auto-improving-llama' accuracy=0.8629969418960245 avg_time=0.044935779816513415 avg_cost=1.6101987767584347e-05