---
license: llama3.1
base_model: meta-llama/Meta-Llama-3.1-70B
tags:
- generated_from_trainer
model-index:
- name: home/ubuntu/ml-1cc/axolotl/outputs/llama3_1-70b-finetome
results: []
---
[](https://github.com/axolotl-ai-cloud/axolotl)
See axolotl config
axolotl version: `0.4.1`
```yaml
base_model: meta-llama/Meta-Llama-3.1-70B
tokenizer_type: AutoTokenizer
strict: false
chat_template: llama3
datasets:
- path: mlabonne/FineTome-100k
type: chat_template
split: train
dataset_prepared_path: /home/ubuntu/ml-1cc/axolotl/last_run_prepared
val_set_size: 0.0
output_dir: /home/ubuntu/ml-1cc/axolotl/outputs/llama3_1-70b-finetome
save_safetensors: false
wandb_project: llama-3.1-70b-fft-finetome
wandb_entity: axolotl-ai
sequence_len: 4096
sample_packing: true
pad_to_sequence_len: true
gradient_accumulation_steps: 1
micro_batch_size: 3
num_epochs: 2
optimizer: adamw_torch
lr_scheduler: cosine
learning_rate: 3.0e-5
train_on_inputs: false
group_by_length: false
bf16: true
tf32: true
gradient_checkpointing: true
gradient_checkpointing_kwargs:
use_reentrant: false
logging_steps: 1
flash_attention: true
warmup_steps: 30
saves_per_epoch: 1
weight_decay: 0.1
fsdp_final_state_dict_type: SHARDED_STATE_DICT
fsdp:
- full_shard
- auto_wrap
fsdp_config:
fsdp_limit_all_gathers: true
fsdp_sync_module_states: true
fsdp_offload_params: true
fsdp_use_orig_params: false
fsdp_cpu_ram_efficient_loading: true
fsdp_auto_wrap_policy: TRANSFORMER_BASED_WRAP
fsdp_transformer_layer_cls_to_wrap: LlamaDecoderLayer
fsdp_state_dict_type: SHARDED_STATE_DICT
fsdp_sharding_strategy: FULL_SHARD
fsdp_backward_prefetch: BACKWARD_PRE
special_tokens:
pad_token: <|finetune_right_pad_id|>
eos_token: <|eot_id|>
```
# home/ubuntu/ml-1cc/axolotl/outputs/llama3_1-70b-finetome
This model is a fine-tuned version of [meta-llama/Meta-Llama-3.1-70B](https://huggingface.co/meta-llama/Meta-Llama-3.1-70B) on the None dataset.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 3
- eval_batch_size: 3
- seed: 42
- distributed_type: multi-GPU
- num_devices: 64
- total_train_batch_size: 192
- total_eval_batch_size: 192
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 30
- num_epochs: 2
### Training results
### Framework versions
- Transformers 4.44.0
- Pytorch 2.3.1
- Datasets 2.20.0
- Tokenizers 0.19.1