--- license: llama3.1 base_model: meta-llama/Meta-Llama-3.1-70B tags: - generated_from_trainer model-index: - name: home/ubuntu/ml-1cc/axolotl/outputs/llama3_1-70b-finetome results: [] --- [Built with Axolotl](https://github.com/axolotl-ai-cloud/axolotl)
See axolotl config axolotl version: `0.4.1` ```yaml base_model: meta-llama/Meta-Llama-3.1-70B tokenizer_type: AutoTokenizer strict: false chat_template: llama3 datasets: - path: mlabonne/FineTome-100k type: chat_template split: train dataset_prepared_path: /home/ubuntu/ml-1cc/axolotl/last_run_prepared val_set_size: 0.0 output_dir: /home/ubuntu/ml-1cc/axolotl/outputs/llama3_1-70b-finetome save_safetensors: false wandb_project: llama-3.1-70b-fft-finetome wandb_entity: axolotl-ai sequence_len: 4096 sample_packing: true pad_to_sequence_len: true gradient_accumulation_steps: 1 micro_batch_size: 3 num_epochs: 2 optimizer: adamw_torch lr_scheduler: cosine learning_rate: 3.0e-5 train_on_inputs: false group_by_length: false bf16: true tf32: true gradient_checkpointing: true gradient_checkpointing_kwargs: use_reentrant: false logging_steps: 1 flash_attention: true warmup_steps: 30 saves_per_epoch: 1 weight_decay: 0.1 fsdp_final_state_dict_type: SHARDED_STATE_DICT fsdp: - full_shard - auto_wrap fsdp_config: fsdp_limit_all_gathers: true fsdp_sync_module_states: true fsdp_offload_params: true fsdp_use_orig_params: false fsdp_cpu_ram_efficient_loading: true fsdp_auto_wrap_policy: TRANSFORMER_BASED_WRAP fsdp_transformer_layer_cls_to_wrap: LlamaDecoderLayer fsdp_state_dict_type: SHARDED_STATE_DICT fsdp_sharding_strategy: FULL_SHARD fsdp_backward_prefetch: BACKWARD_PRE special_tokens: pad_token: <|finetune_right_pad_id|> eos_token: <|eot_id|> ```

# home/ubuntu/ml-1cc/axolotl/outputs/llama3_1-70b-finetome This model is a fine-tuned version of [meta-llama/Meta-Llama-3.1-70B](https://huggingface.co/meta-llama/Meta-Llama-3.1-70B) on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 3 - eval_batch_size: 3 - seed: 42 - distributed_type: multi-GPU - num_devices: 64 - total_train_batch_size: 192 - total_eval_batch_size: 192 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 30 - num_epochs: 2 ### Training results ### Framework versions - Transformers 4.44.0 - Pytorch 2.3.1 - Datasets 2.20.0 - Tokenizers 0.19.1