--- language: de datasets: - common_voice metrics: - wer - cer tags: - audio - automatic-speech-recognition - speech - xlsr-fine-tuning-week license: apache-2.0 model-index: - name: wav2vec2-xls-r-1b-5gram-german with LM by Florian Zimmermeister results: - task: name: Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice de type: common_voice args: de metrics: - name: Test WER type: wer value: 4.382541642219636 - name: Test CER type: cer value: 1.6235493024026488 --- **Test Result** | Model | WER | CER | | ------------- | ------------- | ------------- | | flozi00/wav2vec2-large-xlsr-53-german-with-lm | **4.382541642219636%** | **1.6235493024026488%** | ## Evaluation The model can be evaluated as follows on the German test data of Common Voice. ```python import torch from transformers import AutoModelForCTC, AutoProcessor from unidecode import unidecode import re from datasets import load_dataset, load_metric import datasets counter = 0 wer_counter = 0 cer_counter = 0 device = "cuda" if torch.cuda.is_available() else "cpu" special_chars = [["Ä"," AE "], ["Ö"," OE "], ["Ü"," UE "], ["ä"," ae "], ["ö"," oe "], ["ü"," ue "]] def clean_text(sentence): for special in special_chars: sentence = sentence.replace(special[0], special[1]) sentence = unidecode(sentence) for special in special_chars: sentence = sentence.replace(special[1], special[0]) sentence = re.sub("[^a-zA-Z0-9öäüÖÄÜ ,.!?]", " ", sentence) return sentence def main(model_id): print("load model") model = AutoModelForCTC.from_pretrained(model_id).to(device) print("load processor") processor = AutoProcessor.from_pretrained(processor_id) print("load metrics") wer = load_metric("wer") cer = load_metric("cer") ds = load_dataset("mozilla-foundation/common_voice_8_0","de") ds = ds["test"] ds = ds.cast_column( "audio", datasets.features.Audio(sampling_rate=16_000) ) def calculate_metrics(batch): global counter, wer_counter, cer_counter resampled_audio = batch["audio"]["array"] input_values = processor(resampled_audio, return_tensors="pt", sampling_rate=16_000).input_values with torch.no_grad(): logits = model(input_values.to(device)).logits.cpu().numpy()[0] decoded = processor.decode(logits) pred = decoded.text.lower() ref = clean_text(batch["sentence"]).lower() wer_result = wer.compute(predictions=[pred], references=[ref]) cer_result = cer.compute(predictions=[pred], references=[ref]) counter += 1 wer_counter += wer_result cer_counter += cer_result if counter % 100 == True: print(f"WER: {(wer_counter/counter)*100} | CER: {(cer_counter/counter)*100}") return batch ds.map(calculate_metrics, remove_columns=ds.column_names) print(f"WER: {(wer_counter/counter)*100} | CER: {(cer_counter/counter)*100}") model_id = "flozi00/wav2vec2-xls-r-1b-5gram-german" main(model_id) ```