--- language: - en library_name: sentence-transformers license: mit pipeline_tag: sentence-similarity tags: - feature-extraction - mteb - sentence-similarity - sentence-transformers model-index: - name: GIST-small-Embedding-v0 results: - task: type: Classification dataset: type: mteb/amazon_counterfactual name: MTEB AmazonCounterfactualClassification (en) config: en split: test revision: e8379541af4e31359cca9fbcf4b00f2671dba205 metrics: - type: accuracy value: 73.40298507462688 - type: ap value: 36.01661955459773 - type: f1 value: 67.35688942295793 - task: type: Classification dataset: type: mteb/amazon_polarity name: MTEB AmazonPolarityClassification config: default split: test revision: e2d317d38cd51312af73b3d32a06d1a08b442046 metrics: - type: accuracy value: 92.71195000000002 - type: ap value: 89.33528835459364 - type: f1 value: 92.69653287380515 - task: type: Classification dataset: type: mteb/amazon_reviews_multi name: MTEB AmazonReviewsClassification (en) config: en split: test revision: 1399c76144fd37290681b995c656ef9b2e06e26d metrics: - type: accuracy value: 49.007999999999996 - type: f1 value: 48.44310279702607 - task: type: Retrieval dataset: type: arguana name: MTEB ArguAna config: default split: test revision: None metrics: - type: map_at_1 value: 36.272999999999996 - type: map_at_10 value: 52.059999999999995 - type: map_at_100 value: 52.75300000000001 - type: map_at_1000 value: 52.756 - type: map_at_3 value: 47.57 - type: map_at_5 value: 50.236999999999995 - type: mrr_at_1 value: 36.272999999999996 - type: mrr_at_10 value: 51.942 - type: mrr_at_100 value: 52.634 - type: mrr_at_1000 value: 52.637 - type: mrr_at_3 value: 47.475 - type: mrr_at_5 value: 50.11 - type: ndcg_at_1 value: 36.272999999999996 - type: ndcg_at_10 value: 60.558 - type: ndcg_at_100 value: 63.293 - type: ndcg_at_1000 value: 63.375 - type: ndcg_at_3 value: 51.364 - type: ndcg_at_5 value: 56.154 - type: precision_at_1 value: 36.272999999999996 - type: precision_at_10 value: 8.755 - type: precision_at_100 value: 0.9900000000000001 - type: precision_at_1000 value: 0.1 - type: precision_at_3 value: 20.791999999999998 - type: precision_at_5 value: 14.793999999999999 - type: recall_at_1 value: 36.272999999999996 - type: recall_at_10 value: 87.553 - type: recall_at_100 value: 99.004 - type: recall_at_1000 value: 99.644 - type: recall_at_3 value: 62.376 - type: recall_at_5 value: 73.969 - task: type: Clustering dataset: type: mteb/arxiv-clustering-p2p name: MTEB ArxivClusteringP2P config: default split: test revision: a122ad7f3f0291bf49cc6f4d32aa80929df69d5d metrics: - type: v_measure value: 47.79137102109872 - task: type: Clustering dataset: type: mteb/arxiv-clustering-s2s name: MTEB ArxivClusteringS2S config: default split: test revision: f910caf1a6075f7329cdf8c1a6135696f37dbd53 metrics: - type: v_measure value: 40.03049595085257 - task: type: Reranking dataset: type: mteb/askubuntudupquestions-reranking name: MTEB AskUbuntuDupQuestions config: default split: test revision: 2000358ca161889fa9c082cb41daa8dcfb161a54 metrics: - type: map value: 62.868157850825256 - type: mrr value: 75.33922525612276 - task: type: STS dataset: type: mteb/biosses-sts name: MTEB BIOSSES config: default split: test revision: d3fb88f8f02e40887cd149695127462bbcf29b4a metrics: - type: cos_sim_pearson value: 88.96056116438724 - type: cos_sim_spearman value: 87.32608616965557 - type: euclidean_pearson value: 87.40536769084146 - type: euclidean_spearman value: 87.39235273982528 - type: manhattan_pearson value: 87.4496043849794 - type: manhattan_spearman value: 87.1128282983821 - task: type: Classification dataset: type: mteb/banking77 name: MTEB Banking77Classification config: default split: test revision: 0fd18e25b25c072e09e0d92ab615fda904d66300 metrics: - type: accuracy value: 86.16883116883116 - type: f1 value: 86.1338488750026 - task: type: Clustering dataset: type: mteb/biorxiv-clustering-p2p name: MTEB BiorxivClusteringP2P config: default split: test revision: 65b79d1d13f80053f67aca9498d9402c2d9f1f40 metrics: - type: v_measure value: 38.950791675044 - task: type: Clustering dataset: type: mteb/biorxiv-clustering-s2s name: MTEB BiorxivClusteringS2S config: default split: test revision: 258694dd0231531bc1fd9de6ceb52a0853c6d908 metrics: - type: v_measure value: 35.40686850755838 - task: type: Retrieval dataset: type: BeIR/cqadupstack name: MTEB CQADupstackAndroidRetrieval config: default split: test revision: None metrics: - type: map_at_1 value: 30.891000000000002 - type: map_at_10 value: 42.624 - type: map_at_100 value: 44.205 - type: map_at_1000 value: 44.336999999999996 - type: map_at_3 value: 38.81 - type: map_at_5 value: 41.152 - type: mrr_at_1 value: 38.196999999999996 - type: mrr_at_10 value: 48.641 - type: mrr_at_100 value: 49.329 - type: mrr_at_1000 value: 49.376 - type: mrr_at_3 value: 45.637 - type: mrr_at_5 value: 47.611 - type: ndcg_at_1 value: 38.196999999999996 - type: ndcg_at_10 value: 49.274 - type: ndcg_at_100 value: 54.716 - type: ndcg_at_1000 value: 56.654 - type: ndcg_at_3 value: 43.787 - type: ndcg_at_5 value: 46.719 - type: precision_at_1 value: 38.196999999999996 - type: precision_at_10 value: 9.585 - type: precision_at_100 value: 1.545 - type: precision_at_1000 value: 0.20400000000000001 - type: precision_at_3 value: 21.173000000000002 - type: precision_at_5 value: 15.536 - type: recall_at_1 value: 30.891000000000002 - type: recall_at_10 value: 61.792 - type: recall_at_100 value: 84.526 - type: recall_at_1000 value: 96.717 - type: recall_at_3 value: 46.472 - type: recall_at_5 value: 54.391999999999996 - task: type: Retrieval dataset: type: BeIR/cqadupstack name: MTEB CQADupstackEnglishRetrieval config: default split: test revision: None metrics: - type: map_at_1 value: 30.266 - type: map_at_10 value: 39.717999999999996 - type: map_at_100 value: 40.971000000000004 - type: map_at_1000 value: 41.097 - type: map_at_3 value: 36.858999999999995 - type: map_at_5 value: 38.405 - type: mrr_at_1 value: 37.452000000000005 - type: mrr_at_10 value: 45.528 - type: mrr_at_100 value: 46.178000000000004 - type: mrr_at_1000 value: 46.221000000000004 - type: mrr_at_3 value: 43.089 - type: mrr_at_5 value: 44.497 - type: ndcg_at_1 value: 37.452000000000005 - type: ndcg_at_10 value: 45.282 - type: ndcg_at_100 value: 49.742 - type: ndcg_at_1000 value: 51.754999999999995 - type: ndcg_at_3 value: 41.024 - type: ndcg_at_5 value: 42.912 - type: precision_at_1 value: 37.452000000000005 - type: precision_at_10 value: 8.516 - type: precision_at_100 value: 1.3679999999999999 - type: precision_at_1000 value: 0.184 - type: precision_at_3 value: 19.575 - type: precision_at_5 value: 13.771 - type: recall_at_1 value: 30.266 - type: recall_at_10 value: 55.086 - type: recall_at_100 value: 74.083 - type: recall_at_1000 value: 86.722 - type: recall_at_3 value: 42.449999999999996 - type: recall_at_5 value: 47.975 - task: type: Retrieval dataset: type: BeIR/cqadupstack name: MTEB CQADupstackGamingRetrieval config: default split: test revision: None metrics: - type: map_at_1 value: 39.217 - type: map_at_10 value: 51.466 - type: map_at_100 value: 52.531000000000006 - type: map_at_1000 value: 52.586 - type: map_at_3 value: 47.942 - type: map_at_5 value: 49.988 - type: mrr_at_1 value: 44.765 - type: mrr_at_10 value: 54.748 - type: mrr_at_100 value: 55.41199999999999 - type: mrr_at_1000 value: 55.437999999999995 - type: mrr_at_3 value: 52.017 - type: mrr_at_5 value: 53.693999999999996 - type: ndcg_at_1 value: 44.765 - type: ndcg_at_10 value: 57.397 - type: ndcg_at_100 value: 61.526 - type: ndcg_at_1000 value: 62.577000000000005 - type: ndcg_at_3 value: 51.414 - type: ndcg_at_5 value: 54.486999999999995 - type: precision_at_1 value: 44.765 - type: precision_at_10 value: 9.354 - type: precision_at_100 value: 1.2309999999999999 - type: precision_at_1000 value: 0.136 - type: precision_at_3 value: 22.820999999999998 - type: precision_at_5 value: 16.012999999999998 - type: recall_at_1 value: 39.217 - type: recall_at_10 value: 71.588 - type: recall_at_100 value: 89.473 - type: recall_at_1000 value: 96.863 - type: recall_at_3 value: 55.943 - type: recall_at_5 value: 63.14999999999999 - task: type: Retrieval dataset: type: BeIR/cqadupstack name: MTEB CQADupstackGisRetrieval config: default split: test revision: None metrics: - type: map_at_1 value: 26.451 - type: map_at_10 value: 34.738 - type: map_at_100 value: 35.769 - type: map_at_1000 value: 35.851 - type: map_at_3 value: 32.002 - type: map_at_5 value: 33.800999999999995 - type: mrr_at_1 value: 28.814 - type: mrr_at_10 value: 36.992000000000004 - type: mrr_at_100 value: 37.901 - type: mrr_at_1000 value: 37.964 - type: mrr_at_3 value: 34.426 - type: mrr_at_5 value: 36.075 - type: ndcg_at_1 value: 28.814 - type: ndcg_at_10 value: 39.667 - type: ndcg_at_100 value: 44.741 - type: ndcg_at_1000 value: 46.763 - type: ndcg_at_3 value: 34.461999999999996 - type: ndcg_at_5 value: 37.472 - type: precision_at_1 value: 28.814 - type: precision_at_10 value: 6.045 - type: precision_at_100 value: 0.903 - type: precision_at_1000 value: 0.11199999999999999 - type: precision_at_3 value: 14.463000000000001 - type: precision_at_5 value: 10.418 - type: recall_at_1 value: 26.451 - type: recall_at_10 value: 52.751999999999995 - type: recall_at_100 value: 75.971 - type: recall_at_1000 value: 91.02 - type: recall_at_3 value: 38.896 - type: recall_at_5 value: 46.126 - task: type: Retrieval dataset: type: BeIR/cqadupstack name: MTEB CQADupstackMathematicaRetrieval config: default split: test revision: None metrics: - type: map_at_1 value: 16.03 - type: map_at_10 value: 24.474999999999998 - type: map_at_100 value: 25.650000000000002 - type: map_at_1000 value: 25.764 - type: map_at_3 value: 21.656 - type: map_at_5 value: 23.269000000000002 - type: mrr_at_1 value: 20.025000000000002 - type: mrr_at_10 value: 29.325000000000003 - type: mrr_at_100 value: 30.264999999999997 - type: mrr_at_1000 value: 30.325000000000003 - type: mrr_at_3 value: 26.493 - type: mrr_at_5 value: 28.197 - type: ndcg_at_1 value: 20.025000000000002 - type: ndcg_at_10 value: 30.012 - type: ndcg_at_100 value: 35.760999999999996 - type: ndcg_at_1000 value: 38.53 - type: ndcg_at_3 value: 24.863 - type: ndcg_at_5 value: 27.36 - type: precision_at_1 value: 20.025000000000002 - type: precision_at_10 value: 5.721 - type: precision_at_100 value: 0.9809999999999999 - type: precision_at_1000 value: 0.136 - type: precision_at_3 value: 12.189 - type: precision_at_5 value: 9.08 - type: recall_at_1 value: 16.03 - type: recall_at_10 value: 42.263 - type: recall_at_100 value: 67.868 - type: recall_at_1000 value: 87.77000000000001 - type: recall_at_3 value: 27.932000000000002 - type: recall_at_5 value: 34.46 - task: type: Retrieval dataset: type: BeIR/cqadupstack name: MTEB CQADupstackPhysicsRetrieval config: default split: test revision: None metrics: - type: map_at_1 value: 29.358 - type: map_at_10 value: 39.753 - type: map_at_100 value: 41.031 - type: map_at_1000 value: 41.135 - type: map_at_3 value: 36.515 - type: map_at_5 value: 38.346999999999994 - type: mrr_at_1 value: 35.9 - type: mrr_at_10 value: 45.336 - type: mrr_at_100 value: 46.087 - type: mrr_at_1000 value: 46.129999999999995 - type: mrr_at_3 value: 42.620999999999995 - type: mrr_at_5 value: 44.224000000000004 - type: ndcg_at_1 value: 35.9 - type: ndcg_at_10 value: 45.85 - type: ndcg_at_100 value: 51.186 - type: ndcg_at_1000 value: 53.154999999999994 - type: ndcg_at_3 value: 40.594 - type: ndcg_at_5 value: 43.169999999999995 - type: precision_at_1 value: 35.9 - type: precision_at_10 value: 8.402 - type: precision_at_100 value: 1.2850000000000001 - type: precision_at_1000 value: 0.164 - type: precision_at_3 value: 19.249 - type: precision_at_5 value: 13.763 - type: recall_at_1 value: 29.358 - type: recall_at_10 value: 58.257000000000005 - type: recall_at_100 value: 81.22200000000001 - type: recall_at_1000 value: 94.045 - type: recall_at_3 value: 43.599 - type: recall_at_5 value: 50.232 - task: type: Retrieval dataset: type: BeIR/cqadupstack name: MTEB CQADupstackProgrammersRetrieval config: default split: test revision: None metrics: - type: map_at_1 value: 23.954 - type: map_at_10 value: 33.767 - type: map_at_100 value: 35.225 - type: map_at_1000 value: 35.339 - type: map_at_3 value: 30.746000000000002 - type: map_at_5 value: 32.318000000000005 - type: mrr_at_1 value: 30.137000000000004 - type: mrr_at_10 value: 39.24 - type: mrr_at_100 value: 40.235 - type: mrr_at_1000 value: 40.294999999999995 - type: mrr_at_3 value: 36.758 - type: mrr_at_5 value: 38.031 - type: ndcg_at_1 value: 30.137000000000004 - type: ndcg_at_10 value: 39.711999999999996 - type: ndcg_at_100 value: 45.795 - type: ndcg_at_1000 value: 48.178 - type: ndcg_at_3 value: 34.768 - type: ndcg_at_5 value: 36.756 - type: precision_at_1 value: 30.137000000000004 - type: precision_at_10 value: 7.443 - type: precision_at_100 value: 1.221 - type: precision_at_1000 value: 0.159 - type: precision_at_3 value: 16.933 - type: precision_at_5 value: 11.918 - type: recall_at_1 value: 23.954 - type: recall_at_10 value: 52.234 - type: recall_at_100 value: 77.75800000000001 - type: recall_at_1000 value: 94.072 - type: recall_at_3 value: 37.876 - type: recall_at_5 value: 43.494 - task: type: Retrieval dataset: type: BeIR/cqadupstack name: MTEB CQADupstackRetrieval config: default split: test revision: None metrics: - type: map_at_1 value: 25.478416666666664 - type: map_at_10 value: 34.483999999999995 - type: map_at_100 value: 35.71641666666667 - type: map_at_1000 value: 35.8315 - type: map_at_3 value: 31.571083333333334 - type: map_at_5 value: 33.229749999999996 - type: mrr_at_1 value: 30.122416666666663 - type: mrr_at_10 value: 38.608333333333334 - type: mrr_at_100 value: 39.465500000000006 - type: mrr_at_1000 value: 39.52375 - type: mrr_at_3 value: 36.047916666666666 - type: mrr_at_5 value: 37.53833333333333 - type: ndcg_at_1 value: 30.122416666666663 - type: ndcg_at_10 value: 39.87575 - type: ndcg_at_100 value: 45.15691666666666 - type: ndcg_at_1000 value: 47.43891666666667 - type: ndcg_at_3 value: 34.88666666666666 - type: ndcg_at_5 value: 37.30966666666667 - type: precision_at_1 value: 30.122416666666663 - type: precision_at_10 value: 7.056500000000001 - type: precision_at_100 value: 1.1415000000000002 - type: precision_at_1000 value: 0.15308333333333332 - type: precision_at_3 value: 16.03525 - type: precision_at_5 value: 11.51125 - type: recall_at_1 value: 25.478416666666664 - type: recall_at_10 value: 51.72658333333333 - type: recall_at_100 value: 74.94641666666666 - type: recall_at_1000 value: 90.75300000000001 - type: recall_at_3 value: 37.93833333333333 - type: recall_at_5 value: 44.15625 - task: type: Retrieval dataset: type: BeIR/cqadupstack name: MTEB CQADupstackStatsRetrieval config: default split: test revision: None metrics: - type: map_at_1 value: 24.697 - type: map_at_10 value: 30.919999999999998 - type: map_at_100 value: 31.889 - type: map_at_1000 value: 31.985000000000003 - type: map_at_3 value: 29.046 - type: map_at_5 value: 29.902 - type: mrr_at_1 value: 27.454 - type: mrr_at_10 value: 33.517 - type: mrr_at_100 value: 34.381 - type: mrr_at_1000 value: 34.452 - type: mrr_at_3 value: 31.747999999999998 - type: mrr_at_5 value: 32.561 - type: ndcg_at_1 value: 27.454 - type: ndcg_at_10 value: 34.687 - type: ndcg_at_100 value: 39.395 - type: ndcg_at_1000 value: 41.826 - type: ndcg_at_3 value: 31.102 - type: ndcg_at_5 value: 32.435 - type: precision_at_1 value: 27.454 - type: precision_at_10 value: 5.322 - type: precision_at_100 value: 0.83 - type: precision_at_1000 value: 0.11199999999999999 - type: precision_at_3 value: 13.088 - type: precision_at_5 value: 8.803999999999998 - type: recall_at_1 value: 24.697 - type: recall_at_10 value: 43.688 - type: recall_at_100 value: 64.893 - type: recall_at_1000 value: 82.755 - type: recall_at_3 value: 33.896 - type: recall_at_5 value: 37.174 - task: type: Retrieval dataset: type: BeIR/cqadupstack name: MTEB CQADupstackTexRetrieval config: default split: test revision: None metrics: - type: map_at_1 value: 16.525000000000002 - type: map_at_10 value: 23.435 - type: map_at_100 value: 24.535999999999998 - type: map_at_1000 value: 24.672 - type: map_at_3 value: 21.095 - type: map_at_5 value: 22.308 - type: mrr_at_1 value: 19.993 - type: mrr_at_10 value: 27.096999999999998 - type: mrr_at_100 value: 28.036 - type: mrr_at_1000 value: 28.119 - type: mrr_at_3 value: 24.971 - type: mrr_at_5 value: 26.062 - type: ndcg_at_1 value: 19.993 - type: ndcg_at_10 value: 28.002 - type: ndcg_at_100 value: 33.288000000000004 - type: ndcg_at_1000 value: 36.416 - type: ndcg_at_3 value: 23.768 - type: ndcg_at_5 value: 25.579 - type: precision_at_1 value: 19.993 - type: precision_at_10 value: 5.196 - type: precision_at_100 value: 0.922 - type: precision_at_1000 value: 0.136 - type: precision_at_3 value: 11.241 - type: precision_at_5 value: 8.176 - type: recall_at_1 value: 16.525000000000002 - type: recall_at_10 value: 38.082 - type: recall_at_100 value: 61.866 - type: recall_at_1000 value: 84.20100000000001 - type: recall_at_3 value: 26.228 - type: recall_at_5 value: 30.86 - task: type: Retrieval dataset: type: BeIR/cqadupstack name: MTEB CQADupstackUnixRetrieval config: default split: test revision: None metrics: - type: map_at_1 value: 25.480999999999998 - type: map_at_10 value: 34.319 - type: map_at_100 value: 35.54 - type: map_at_1000 value: 35.648 - type: map_at_3 value: 31.533 - type: map_at_5 value: 33.058 - type: mrr_at_1 value: 29.851 - type: mrr_at_10 value: 38.243 - type: mrr_at_100 value: 39.172000000000004 - type: mrr_at_1000 value: 39.235 - type: mrr_at_3 value: 35.697 - type: mrr_at_5 value: 37.147000000000006 - type: ndcg_at_1 value: 29.851 - type: ndcg_at_10 value: 39.653 - type: ndcg_at_100 value: 45.065 - type: ndcg_at_1000 value: 47.477999999999994 - type: ndcg_at_3 value: 34.481 - type: ndcg_at_5 value: 36.870999999999995 - type: precision_at_1 value: 29.851 - type: precision_at_10 value: 6.679 - type: precision_at_100 value: 1.053 - type: precision_at_1000 value: 0.13699999999999998 - type: precision_at_3 value: 15.485 - type: precision_at_5 value: 10.989 - type: recall_at_1 value: 25.480999999999998 - type: recall_at_10 value: 52.032000000000004 - type: recall_at_100 value: 75.193 - type: recall_at_1000 value: 91.958 - type: recall_at_3 value: 38.089 - type: recall_at_5 value: 43.947 - task: type: Retrieval dataset: type: BeIR/cqadupstack name: MTEB CQADupstackWebmastersRetrieval config: default split: test revision: None metrics: - type: map_at_1 value: 25.148 - type: map_at_10 value: 33.007 - type: map_at_100 value: 34.602 - type: map_at_1000 value: 34.809 - type: map_at_3 value: 30.014000000000003 - type: map_at_5 value: 31.728 - type: mrr_at_1 value: 29.842000000000002 - type: mrr_at_10 value: 37.318 - type: mrr_at_100 value: 38.353 - type: mrr_at_1000 value: 38.41 - type: mrr_at_3 value: 34.75 - type: mrr_at_5 value: 36.163000000000004 - type: ndcg_at_1 value: 29.842000000000002 - type: ndcg_at_10 value: 38.462 - type: ndcg_at_100 value: 44.86 - type: ndcg_at_1000 value: 47.375 - type: ndcg_at_3 value: 33.614 - type: ndcg_at_5 value: 36.032 - type: precision_at_1 value: 29.842000000000002 - type: precision_at_10 value: 7.332 - type: precision_at_100 value: 1.52 - type: precision_at_1000 value: 0.23900000000000002 - type: precision_at_3 value: 15.547 - type: precision_at_5 value: 11.423 - type: recall_at_1 value: 25.148 - type: recall_at_10 value: 48.894 - type: recall_at_100 value: 77.845 - type: recall_at_1000 value: 93.74900000000001 - type: recall_at_3 value: 35.17 - type: recall_at_5 value: 41.734 - task: type: Retrieval dataset: type: BeIR/cqadupstack name: MTEB CQADupstackWordpressRetrieval config: default split: test revision: None metrics: - type: map_at_1 value: 17.723 - type: map_at_10 value: 25.586 - type: map_at_100 value: 26.648 - type: map_at_1000 value: 26.755000000000003 - type: map_at_3 value: 22.634999999999998 - type: map_at_5 value: 24.481 - type: mrr_at_1 value: 19.039 - type: mrr_at_10 value: 27.315 - type: mrr_at_100 value: 28.237000000000002 - type: mrr_at_1000 value: 28.32 - type: mrr_at_3 value: 24.368000000000002 - type: mrr_at_5 value: 26.198 - type: ndcg_at_1 value: 19.039 - type: ndcg_at_10 value: 30.511 - type: ndcg_at_100 value: 35.808 - type: ndcg_at_1000 value: 38.56 - type: ndcg_at_3 value: 24.762999999999998 - type: ndcg_at_5 value: 27.923 - type: precision_at_1 value: 19.039 - type: precision_at_10 value: 5.083 - type: precision_at_100 value: 0.839 - type: precision_at_1000 value: 0.11800000000000001 - type: precision_at_3 value: 10.659 - type: precision_at_5 value: 8.244 - type: recall_at_1 value: 17.723 - type: recall_at_10 value: 44.051 - type: recall_at_100 value: 68.659 - type: recall_at_1000 value: 89.164 - type: recall_at_3 value: 28.709 - type: recall_at_5 value: 36.331 - task: type: Retrieval dataset: type: climate-fever name: MTEB ClimateFEVER config: default split: test revision: None metrics: - type: map_at_1 value: 13.669999999999998 - type: map_at_10 value: 23.46 - type: map_at_100 value: 25.304 - type: map_at_1000 value: 25.497999999999998 - type: map_at_3 value: 19.702 - type: map_at_5 value: 21.642 - type: mrr_at_1 value: 31.269999999999996 - type: mrr_at_10 value: 43.264 - type: mrr_at_100 value: 44.1 - type: mrr_at_1000 value: 44.134 - type: mrr_at_3 value: 40.011 - type: mrr_at_5 value: 42.079 - type: ndcg_at_1 value: 31.269999999999996 - type: ndcg_at_10 value: 32.385000000000005 - type: ndcg_at_100 value: 39.282000000000004 - type: ndcg_at_1000 value: 42.628 - type: ndcg_at_3 value: 26.942 - type: ndcg_at_5 value: 28.832 - type: precision_at_1 value: 31.269999999999996 - type: precision_at_10 value: 10.123999999999999 - type: precision_at_100 value: 1.748 - type: precision_at_1000 value: 0.23700000000000002 - type: precision_at_3 value: 20.282 - type: precision_at_5 value: 15.479000000000001 - type: recall_at_1 value: 13.669999999999998 - type: recall_at_10 value: 38.078 - type: recall_at_100 value: 61.651 - type: recall_at_1000 value: 80.279 - type: recall_at_3 value: 24.438 - type: recall_at_5 value: 30.244 - task: type: Retrieval dataset: type: dbpedia-entity name: MTEB DBPedia config: default split: test revision: None metrics: - type: map_at_1 value: 9.103 - type: map_at_10 value: 19.238 - type: map_at_100 value: 26.451999999999998 - type: map_at_1000 value: 27.987000000000002 - type: map_at_3 value: 14.069999999999999 - type: map_at_5 value: 16.434 - type: mrr_at_1 value: 67.5 - type: mrr_at_10 value: 75.64800000000001 - type: mrr_at_100 value: 75.847 - type: mrr_at_1000 value: 75.85499999999999 - type: mrr_at_3 value: 73.833 - type: mrr_at_5 value: 74.933 - type: ndcg_at_1 value: 55.625 - type: ndcg_at_10 value: 40.505 - type: ndcg_at_100 value: 44.505 - type: ndcg_at_1000 value: 52.005 - type: ndcg_at_3 value: 45.841 - type: ndcg_at_5 value: 42.945 - type: precision_at_1 value: 67.5 - type: precision_at_10 value: 31.6 - type: precision_at_100 value: 9.83 - type: precision_at_1000 value: 1.9619999999999997 - type: precision_at_3 value: 49.083 - type: precision_at_5 value: 41.15 - type: recall_at_1 value: 9.103 - type: recall_at_10 value: 24.6 - type: recall_at_100 value: 50.075 - type: recall_at_1000 value: 73.516 - type: recall_at_3 value: 15.35 - type: recall_at_5 value: 19.217000000000002 - task: type: Classification dataset: type: mteb/emotion name: MTEB EmotionClassification config: default split: test revision: 4f58c6b202a23cf9a4da393831edf4f9183cad37 metrics: - type: accuracy value: 50.595 - type: f1 value: 45.43005573726517 - task: type: Retrieval dataset: type: fever name: MTEB FEVER config: default split: test revision: None metrics: - type: map_at_1 value: 76.08200000000001 - type: map_at_10 value: 83.697 - type: map_at_100 value: 83.891 - type: map_at_1000 value: 83.905 - type: map_at_3 value: 82.69 - type: map_at_5 value: 83.35900000000001 - type: mrr_at_1 value: 82.148 - type: mrr_at_10 value: 88.727 - type: mrr_at_100 value: 88.787 - type: mrr_at_1000 value: 88.788 - type: mrr_at_3 value: 88.054 - type: mrr_at_5 value: 88.547 - type: ndcg_at_1 value: 82.148 - type: ndcg_at_10 value: 87.274 - type: ndcg_at_100 value: 87.957 - type: ndcg_at_1000 value: 88.203 - type: ndcg_at_3 value: 85.744 - type: ndcg_at_5 value: 86.664 - type: precision_at_1 value: 82.148 - type: precision_at_10 value: 10.315000000000001 - type: precision_at_100 value: 1.086 - type: precision_at_1000 value: 0.11299999999999999 - type: precision_at_3 value: 32.458 - type: precision_at_5 value: 20.09 - type: recall_at_1 value: 76.08200000000001 - type: recall_at_10 value: 93.408 - type: recall_at_100 value: 96.11 - type: recall_at_1000 value: 97.626 - type: recall_at_3 value: 89.172 - type: recall_at_5 value: 91.604 - task: type: Retrieval dataset: type: fiqa name: MTEB FiQA2018 config: default split: test revision: None metrics: - type: map_at_1 value: 19.377 - type: map_at_10 value: 31.785000000000004 - type: map_at_100 value: 33.511 - type: map_at_1000 value: 33.713 - type: map_at_3 value: 27.811999999999998 - type: map_at_5 value: 30.148000000000003 - type: mrr_at_1 value: 38.426 - type: mrr_at_10 value: 47.233000000000004 - type: mrr_at_100 value: 47.980000000000004 - type: mrr_at_1000 value: 48.022 - type: mrr_at_3 value: 44.856 - type: mrr_at_5 value: 46.322 - type: ndcg_at_1 value: 38.426 - type: ndcg_at_10 value: 39.326 - type: ndcg_at_100 value: 45.769999999999996 - type: ndcg_at_1000 value: 49.131 - type: ndcg_at_3 value: 36.1 - type: ndcg_at_5 value: 37.271 - type: precision_at_1 value: 38.426 - type: precision_at_10 value: 11.126999999999999 - type: precision_at_100 value: 1.7870000000000001 - type: precision_at_1000 value: 0.23700000000000002 - type: precision_at_3 value: 24.587999999999997 - type: precision_at_5 value: 18.21 - type: recall_at_1 value: 19.377 - type: recall_at_10 value: 45.484 - type: recall_at_100 value: 69.968 - type: recall_at_1000 value: 90.30799999999999 - type: recall_at_3 value: 32.72 - type: recall_at_5 value: 38.856 - task: type: Retrieval dataset: type: hotpotqa name: MTEB HotpotQA config: default split: test revision: None metrics: - type: map_at_1 value: 37.475 - type: map_at_10 value: 58.662000000000006 - type: map_at_100 value: 59.561 - type: map_at_1000 value: 59.626999999999995 - type: map_at_3 value: 55.496 - type: map_at_5 value: 57.464000000000006 - type: mrr_at_1 value: 74.949 - type: mrr_at_10 value: 80.976 - type: mrr_at_100 value: 81.215 - type: mrr_at_1000 value: 81.22399999999999 - type: mrr_at_3 value: 79.892 - type: mrr_at_5 value: 80.57 - type: ndcg_at_1 value: 74.949 - type: ndcg_at_10 value: 66.93599999999999 - type: ndcg_at_100 value: 70.137 - type: ndcg_at_1000 value: 71.452 - type: ndcg_at_3 value: 62.319 - type: ndcg_at_5 value: 64.866 - type: precision_at_1 value: 74.949 - type: precision_at_10 value: 13.988999999999999 - type: precision_at_100 value: 1.6500000000000001 - type: precision_at_1000 value: 0.182 - type: precision_at_3 value: 39.806000000000004 - type: precision_at_5 value: 25.899 - type: recall_at_1 value: 37.475 - type: recall_at_10 value: 69.946 - type: recall_at_100 value: 82.478 - type: recall_at_1000 value: 91.202 - type: recall_at_3 value: 59.709999999999994 - type: recall_at_5 value: 64.747 - task: type: Classification dataset: type: mteb/imdb name: MTEB ImdbClassification config: default split: test revision: 3d86128a09e091d6018b6d26cad27f2739fc2db7 metrics: - type: accuracy value: 89.2272 - type: ap value: 84.69017509523854 - type: f1 value: 89.20673182133066 - task: type: Retrieval dataset: type: msmarco name: MTEB MSMARCO config: default split: dev revision: None metrics: - type: map_at_1 value: 21.471999999999998 - type: map_at_10 value: 33.287 - type: map_at_100 value: 34.486 - type: map_at_1000 value: 34.536 - type: map_at_3 value: 29.520999999999997 - type: map_at_5 value: 31.647 - type: mrr_at_1 value: 22.076999999999998 - type: mrr_at_10 value: 33.902 - type: mrr_at_100 value: 35.037 - type: mrr_at_1000 value: 35.081 - type: mrr_at_3 value: 30.174 - type: mrr_at_5 value: 32.302 - type: ndcg_at_1 value: 22.092 - type: ndcg_at_10 value: 40.073 - type: ndcg_at_100 value: 45.82 - type: ndcg_at_1000 value: 47.097 - type: ndcg_at_3 value: 32.364 - type: ndcg_at_5 value: 36.179 - type: precision_at_1 value: 22.092 - type: precision_at_10 value: 6.36 - type: precision_at_100 value: 0.924 - type: precision_at_1000 value: 0.10300000000000001 - type: precision_at_3 value: 13.806 - type: precision_at_5 value: 10.223 - type: recall_at_1 value: 21.471999999999998 - type: recall_at_10 value: 60.971 - type: recall_at_100 value: 87.518 - type: recall_at_1000 value: 97.333 - type: recall_at_3 value: 39.961999999999996 - type: recall_at_5 value: 49.126 - task: type: Classification dataset: type: mteb/mtop_domain name: MTEB MTOPDomainClassification (en) config: en split: test revision: d80d48c1eb48d3562165c59d59d0034df9fff0bf metrics: - type: accuracy value: 94.44596443228454 - type: f1 value: 94.19326360848854 - task: type: Classification dataset: type: mteb/mtop_intent name: MTEB MTOPIntentClassification (en) config: en split: test revision: ae001d0e6b1228650b7bd1c2c65fb50ad11a8aba metrics: - type: accuracy value: 75.7934336525308 - type: f1 value: 57.619082395865604 - task: type: Classification dataset: type: mteb/amazon_massive_intent name: MTEB MassiveIntentClassification (en) config: en split: test revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 metrics: - type: accuracy value: 74.70410221923336 - type: f1 value: 72.82854233810865 - task: type: Classification dataset: type: mteb/amazon_massive_scenario name: MTEB MassiveScenarioClassification (en) config: en split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics: - type: accuracy value: 78.61802286482852 - type: f1 value: 78.76695988384789 - task: type: Clustering dataset: type: mteb/medrxiv-clustering-p2p name: MTEB MedrxivClusteringP2P config: default split: test revision: e7a26af6f3ae46b30dde8737f02c07b1505bcc73 metrics: - type: v_measure value: 34.212621347614174 - task: type: Clustering dataset: type: mteb/medrxiv-clustering-s2s name: MTEB MedrxivClusteringS2S config: default split: test revision: 35191c8c0dca72d8ff3efcd72aa802307d469663 metrics: - type: v_measure value: 31.899728392028948 - task: type: Reranking dataset: type: mteb/mind_small name: MTEB MindSmallReranking config: default split: test revision: 3bdac13927fdc888b903db93b2ffdbd90b295a69 metrics: - type: map value: 32.190245086632466 - type: mrr value: 33.424442963159876 - task: type: Retrieval dataset: type: nfcorpus name: MTEB NFCorpus config: default split: test revision: None metrics: - type: map_at_1 value: 6.141 - type: map_at_10 value: 13.558 - type: map_at_100 value: 17.238 - type: map_at_1000 value: 18.727 - type: map_at_3 value: 9.803 - type: map_at_5 value: 11.517 - type: mrr_at_1 value: 46.129999999999995 - type: mrr_at_10 value: 54.876999999999995 - type: mrr_at_100 value: 55.428999999999995 - type: mrr_at_1000 value: 55.47 - type: mrr_at_3 value: 52.993 - type: mrr_at_5 value: 54.107000000000006 - type: ndcg_at_1 value: 43.963 - type: ndcg_at_10 value: 35.72 - type: ndcg_at_100 value: 32.792 - type: ndcg_at_1000 value: 41.52 - type: ndcg_at_3 value: 40.929 - type: ndcg_at_5 value: 38.664 - type: precision_at_1 value: 45.82 - type: precision_at_10 value: 26.625 - type: precision_at_100 value: 8.387 - type: precision_at_1000 value: 2.131 - type: precision_at_3 value: 38.39 - type: precision_at_5 value: 33.56 - type: recall_at_1 value: 6.141 - type: recall_at_10 value: 17.598 - type: recall_at_100 value: 33.619 - type: recall_at_1000 value: 64.455 - type: recall_at_3 value: 10.667 - type: recall_at_5 value: 13.492999999999999 - task: type: Retrieval dataset: type: nq name: MTEB NQ config: default split: test revision: None metrics: - type: map_at_1 value: 26.019 - type: map_at_10 value: 40.644999999999996 - type: map_at_100 value: 41.870000000000005 - type: map_at_1000 value: 41.904 - type: map_at_3 value: 36.28 - type: map_at_5 value: 38.830999999999996 - type: mrr_at_1 value: 29.664 - type: mrr_at_10 value: 43.168 - type: mrr_at_100 value: 44.126 - type: mrr_at_1000 value: 44.151 - type: mrr_at_3 value: 39.484 - type: mrr_at_5 value: 41.702 - type: ndcg_at_1 value: 29.635 - type: ndcg_at_10 value: 48.284 - type: ndcg_at_100 value: 53.522999999999996 - type: ndcg_at_1000 value: 54.344 - type: ndcg_at_3 value: 40.048 - type: ndcg_at_5 value: 44.329 - type: precision_at_1 value: 29.635 - type: precision_at_10 value: 8.262 - type: precision_at_100 value: 1.1159999999999999 - type: precision_at_1000 value: 0.11900000000000001 - type: precision_at_3 value: 18.54 - type: precision_at_5 value: 13.586 - type: recall_at_1 value: 26.019 - type: recall_at_10 value: 69.049 - type: recall_at_100 value: 91.89399999999999 - type: recall_at_1000 value: 98.095 - type: recall_at_3 value: 47.81 - type: recall_at_5 value: 57.645 - task: type: Retrieval dataset: type: quora name: MTEB QuoraRetrieval config: default split: test revision: None metrics: - type: map_at_1 value: 70.952 - type: map_at_10 value: 84.895 - type: map_at_100 value: 85.51299999999999 - type: map_at_1000 value: 85.529 - type: map_at_3 value: 81.94500000000001 - type: map_at_5 value: 83.83500000000001 - type: mrr_at_1 value: 81.65 - type: mrr_at_10 value: 87.756 - type: mrr_at_100 value: 87.855 - type: mrr_at_1000 value: 87.856 - type: mrr_at_3 value: 86.822 - type: mrr_at_5 value: 87.473 - type: ndcg_at_1 value: 81.65 - type: ndcg_at_10 value: 88.563 - type: ndcg_at_100 value: 89.74499999999999 - type: ndcg_at_1000 value: 89.84400000000001 - type: ndcg_at_3 value: 85.782 - type: ndcg_at_5 value: 87.381 - type: precision_at_1 value: 81.65 - type: precision_at_10 value: 13.435 - type: precision_at_100 value: 1.529 - type: precision_at_1000 value: 0.157 - type: precision_at_3 value: 37.523 - type: precision_at_5 value: 24.72 - type: recall_at_1 value: 70.952 - type: recall_at_10 value: 95.521 - type: recall_at_100 value: 99.53699999999999 - type: recall_at_1000 value: 99.983 - type: recall_at_3 value: 87.559 - type: recall_at_5 value: 92.038 - task: type: Clustering dataset: type: mteb/reddit-clustering name: MTEB RedditClustering config: default split: test revision: 24640382cdbf8abc73003fb0fa6d111a705499eb metrics: - type: v_measure value: 54.61973943122806 - task: type: Clustering dataset: type: mteb/reddit-clustering-p2p name: MTEB RedditClusteringP2P config: default split: test revision: 282350215ef01743dc01b456c7f5241fa8937f16 metrics: - type: v_measure value: 60.92179806944469 - task: type: Retrieval dataset: type: scidocs name: MTEB SCIDOCS config: default split: test revision: None metrics: - type: map_at_1 value: 4.993 - type: map_at_10 value: 13.175999999999998 - type: map_at_100 value: 15.689 - type: map_at_1000 value: 16.054 - type: map_at_3 value: 9.325999999999999 - type: map_at_5 value: 11.283 - type: mrr_at_1 value: 24.7 - type: mrr_at_10 value: 36.568 - type: mrr_at_100 value: 37.667 - type: mrr_at_1000 value: 37.714 - type: mrr_at_3 value: 32.933 - type: mrr_at_5 value: 34.963 - type: ndcg_at_1 value: 24.7 - type: ndcg_at_10 value: 21.839 - type: ndcg_at_100 value: 31.057000000000002 - type: ndcg_at_1000 value: 36.962 - type: ndcg_at_3 value: 20.623 - type: ndcg_at_5 value: 18.107 - type: precision_at_1 value: 24.7 - type: precision_at_10 value: 11.360000000000001 - type: precision_at_100 value: 2.4619999999999997 - type: precision_at_1000 value: 0.388 - type: precision_at_3 value: 19.267 - type: precision_at_5 value: 15.959999999999999 - type: recall_at_1 value: 4.993 - type: recall_at_10 value: 22.982 - type: recall_at_100 value: 49.97 - type: recall_at_1000 value: 78.623 - type: recall_at_3 value: 11.716999999999999 - type: recall_at_5 value: 16.172 - task: type: STS dataset: type: mteb/sickr-sts name: MTEB SICK-R config: default split: test revision: a6ea5a8cab320b040a23452cc28066d9beae2cee metrics: - type: cos_sim_pearson value: 85.71899431421795 - type: cos_sim_spearman value: 80.46430776062674 - type: euclidean_pearson value: 83.02871101280735 - type: euclidean_spearman value: 80.49525009964952 - type: manhattan_pearson value: 82.96176477360466 - type: manhattan_spearman value: 80.4038922852272 - task: type: STS dataset: type: mteb/sts12-sts name: MTEB STS12 config: default split: test revision: a0d554a64d88156834ff5ae9920b964011b16384 metrics: - type: cos_sim_pearson value: 85.4473643076464 - type: cos_sim_spearman value: 76.2648833265373 - type: euclidean_pearson value: 82.5498605585181 - type: euclidean_spearman value: 76.06458177068038 - type: manhattan_pearson value: 82.55572570767087 - type: manhattan_spearman value: 76.1267237133785 - task: type: STS dataset: type: mteb/sts13-sts name: MTEB STS13 config: default split: test revision: 7e90230a92c190f1bf69ae9002b8cea547a64cca metrics: - type: cos_sim_pearson value: 85.24858438337428 - type: cos_sim_spearman value: 86.42907705680409 - type: euclidean_pearson value: 85.50673274898077 - type: euclidean_spearman value: 86.50066760759493 - type: manhattan_pearson value: 85.38098024332331 - type: manhattan_spearman value: 86.3179935859058 - task: type: STS dataset: type: mteb/sts14-sts name: MTEB STS14 config: default split: test revision: 6031580fec1f6af667f0bd2da0a551cf4f0b2375 metrics: - type: cos_sim_pearson value: 84.97052112858252 - type: cos_sim_spearman value: 82.97007079944963 - type: euclidean_pearson value: 84.49118913390151 - type: euclidean_spearman value: 82.89912124589944 - type: manhattan_pearson value: 84.45725470158602 - type: manhattan_spearman value: 82.89422444440467 - task: type: STS dataset: type: mteb/sts15-sts name: MTEB STS15 config: default split: test revision: ae752c7c21bf194d8b67fd573edf7ae58183cbe3 metrics: - type: cos_sim_pearson value: 87.44702160696032 - type: cos_sim_spearman value: 88.75678661413305 - type: euclidean_pearson value: 88.22046240533754 - type: euclidean_spearman value: 88.78103010580752 - type: manhattan_pearson value: 88.15576644132916 - type: manhattan_spearman value: 88.72891963379698 - task: type: STS dataset: type: mteb/sts16-sts name: MTEB STS16 config: default split: test revision: 4d8694f8f0e0100860b497b999b3dbed754a0513 metrics: - type: cos_sim_pearson value: 83.25112584874732 - type: cos_sim_spearman value: 85.0642487018319 - type: euclidean_pearson value: 84.37279427321502 - type: euclidean_spearman value: 85.074198902509 - type: manhattan_pearson value: 84.19323050597049 - type: manhattan_spearman value: 84.88383717319327 - task: type: STS dataset: type: mteb/sts17-crosslingual-sts name: MTEB STS17 (en-en) config: en-en split: test revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d metrics: - type: cos_sim_pearson value: 88.87357291874198 - type: cos_sim_spearman value: 89.1113081854716 - type: euclidean_pearson value: 89.61137598923361 - type: euclidean_spearman value: 89.13391070267475 - type: manhattan_pearson value: 89.62382071829829 - type: manhattan_spearman value: 89.1997962715288 - task: type: STS dataset: type: mteb/sts22-crosslingual-sts name: MTEB STS22 (en) config: en split: test revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80 metrics: - type: cos_sim_pearson value: 67.1205707180893 - type: cos_sim_spearman value: 68.16260851835224 - type: euclidean_pearson value: 68.87294373141141 - type: euclidean_spearman value: 67.98447223948163 - type: manhattan_pearson value: 68.98950941915248 - type: manhattan_spearman value: 68.29388343776796 - task: type: STS dataset: type: mteb/stsbenchmark-sts name: MTEB STSBenchmark config: default split: test revision: b0fddb56ed78048fa8b90373c8a3cfc37b684831 metrics: - type: cos_sim_pearson value: 85.9949201588004 - type: cos_sim_spearman value: 87.31663820432567 - type: euclidean_pearson value: 87.27979534770259 - type: euclidean_spearman value: 87.31872069375427 - type: manhattan_pearson value: 87.0783256942344 - type: manhattan_spearman value: 87.16038562428714 - task: type: Reranking dataset: type: mteb/scidocs-reranking name: MTEB SciDocsRR config: default split: test revision: d3c5e1fc0b855ab6097bf1cda04dd73947d7caab metrics: - type: map value: 86.08173708317305 - type: mrr value: 95.93575179359493 - task: type: Retrieval dataset: type: scifact name: MTEB SciFact config: default split: test revision: None metrics: - type: map_at_1 value: 57.65 - type: map_at_10 value: 67.19000000000001 - type: map_at_100 value: 67.772 - type: map_at_1000 value: 67.805 - type: map_at_3 value: 64.14800000000001 - type: map_at_5 value: 65.745 - type: mrr_at_1 value: 60.333000000000006 - type: mrr_at_10 value: 68.158 - type: mrr_at_100 value: 68.583 - type: mrr_at_1000 value: 68.613 - type: mrr_at_3 value: 65.72200000000001 - type: mrr_at_5 value: 67.039 - type: ndcg_at_1 value: 60.333000000000006 - type: ndcg_at_10 value: 71.69200000000001 - type: ndcg_at_100 value: 74.064 - type: ndcg_at_1000 value: 74.694 - type: ndcg_at_3 value: 66.378 - type: ndcg_at_5 value: 68.73 - type: precision_at_1 value: 60.333000000000006 - type: precision_at_10 value: 9.533 - type: precision_at_100 value: 1.08 - type: precision_at_1000 value: 0.11299999999999999 - type: precision_at_3 value: 25.556 - type: precision_at_5 value: 17.0 - type: recall_at_1 value: 57.65 - type: recall_at_10 value: 84.56700000000001 - type: recall_at_100 value: 95.167 - type: recall_at_1000 value: 99.667 - type: recall_at_3 value: 70.272 - type: recall_at_5 value: 76.11099999999999 - task: type: PairClassification dataset: type: mteb/sprintduplicatequestions-pairclassification name: MTEB SprintDuplicateQuestions config: default split: test revision: d66bd1f72af766a5cc4b0ca5e00c162f89e8cc46 metrics: - type: cos_sim_accuracy value: 99.83663366336634 - type: cos_sim_ap value: 96.13854487816917 - type: cos_sim_f1 value: 91.77057356608479 - type: cos_sim_precision value: 91.54228855721394 - type: cos_sim_recall value: 92.0 - type: dot_accuracy value: 99.83663366336634 - type: dot_ap value: 96.29459284844314 - type: dot_f1 value: 91.6030534351145 - type: dot_precision value: 93.26424870466322 - type: dot_recall value: 90.0 - type: euclidean_accuracy value: 99.83564356435643 - type: euclidean_ap value: 96.09957152523418 - type: euclidean_f1 value: 91.7 - type: euclidean_precision value: 91.7 - type: euclidean_recall value: 91.7 - type: manhattan_accuracy value: 99.83663366336634 - type: manhattan_ap value: 96.09579952373399 - type: manhattan_f1 value: 91.72932330827068 - type: manhattan_precision value: 91.95979899497488 - type: manhattan_recall value: 91.5 - type: max_accuracy value: 99.83663366336634 - type: max_ap value: 96.29459284844314 - type: max_f1 value: 91.77057356608479 - task: type: Clustering dataset: type: mteb/stackexchange-clustering name: MTEB StackExchangeClustering config: default split: test revision: 6cbc1f7b2bc0622f2e39d2c77fa502909748c259 metrics: - type: v_measure value: 61.270213664772385 - task: type: Clustering dataset: type: mteb/stackexchange-clustering-p2p name: MTEB StackExchangeClusteringP2P config: default split: test revision: 815ca46b2622cec33ccafc3735d572c266efdb44 metrics: - type: v_measure value: 35.23973443659002 - task: type: Reranking dataset: type: mteb/stackoverflowdupquestions-reranking name: MTEB StackOverflowDupQuestions config: default split: test revision: e185fbe320c72810689fc5848eb6114e1ef5ec69 metrics: - type: map value: 53.40061413824656 - type: mrr value: 54.28819444444445 - task: type: Summarization dataset: type: mteb/summeval name: MTEB SummEval config: default split: test revision: cda12ad7615edc362dbf25a00fdd61d3b1eaf93c metrics: - type: cos_sim_pearson value: 30.59314409717665 - type: cos_sim_spearman value: 30.573109955748677 - type: dot_pearson value: 30.884662900409722 - type: dot_spearman value: 30.778591618272262 - task: type: Retrieval dataset: type: trec-covid name: MTEB TRECCOVID config: default split: test revision: None metrics: - type: map_at_1 value: 0.20400000000000001 - type: map_at_10 value: 1.7229999999999999 - type: map_at_100 value: 9.185 - type: map_at_1000 value: 23.019000000000002 - type: map_at_3 value: 0.596 - type: map_at_5 value: 0.9339999999999999 - type: mrr_at_1 value: 78.0 - type: mrr_at_10 value: 85.5 - type: mrr_at_100 value: 85.682 - type: mrr_at_1000 value: 85.682 - type: mrr_at_3 value: 84.0 - type: mrr_at_5 value: 85.5 - type: ndcg_at_1 value: 73.0 - type: ndcg_at_10 value: 68.28 - type: ndcg_at_100 value: 52.239000000000004 - type: ndcg_at_1000 value: 48.217 - type: ndcg_at_3 value: 72.603 - type: ndcg_at_5 value: 70.64099999999999 - type: precision_at_1 value: 78.0 - type: precision_at_10 value: 72.39999999999999 - type: precision_at_100 value: 53.459999999999994 - type: precision_at_1000 value: 21.254 - type: precision_at_3 value: 78.0 - type: precision_at_5 value: 74.8 - type: recall_at_1 value: 0.20400000000000001 - type: recall_at_10 value: 1.939 - type: recall_at_100 value: 12.831000000000001 - type: recall_at_1000 value: 45.572 - type: recall_at_3 value: 0.628 - type: recall_at_5 value: 1.004 - task: type: Retrieval dataset: type: webis-touche2020 name: MTEB Touche2020 config: default split: test revision: None metrics: - type: map_at_1 value: 1.693 - type: map_at_10 value: 7.7410000000000005 - type: map_at_100 value: 13.778000000000002 - type: map_at_1000 value: 15.328 - type: map_at_3 value: 4.361000000000001 - type: map_at_5 value: 5.534 - type: mrr_at_1 value: 20.408 - type: mrr_at_10 value: 37.008 - type: mrr_at_100 value: 38.198 - type: mrr_at_1000 value: 38.216 - type: mrr_at_3 value: 32.993 - type: mrr_at_5 value: 34.83 - type: ndcg_at_1 value: 18.367 - type: ndcg_at_10 value: 19.676 - type: ndcg_at_100 value: 33.421 - type: ndcg_at_1000 value: 45.123999999999995 - type: ndcg_at_3 value: 22.109 - type: ndcg_at_5 value: 20.166999999999998 - type: precision_at_1 value: 20.408 - type: precision_at_10 value: 17.551 - type: precision_at_100 value: 7.286 - type: precision_at_1000 value: 1.516 - type: precision_at_3 value: 23.810000000000002 - type: precision_at_5 value: 20.408 - type: recall_at_1 value: 1.693 - type: recall_at_10 value: 13.485 - type: recall_at_100 value: 46.361000000000004 - type: recall_at_1000 value: 81.997 - type: recall_at_3 value: 5.432 - type: recall_at_5 value: 7.797 - task: type: Classification dataset: type: mteb/toxic_conversations_50k name: MTEB ToxicConversationsClassification config: default split: test revision: d7c0de2777da35d6aae2200a62c6e0e5af397c4c metrics: - type: accuracy value: 70.6774 - type: ap value: 14.243691983984998 - type: f1 value: 54.45105895755751 - task: type: Classification dataset: type: mteb/tweet_sentiment_extraction name: MTEB TweetSentimentExtractionClassification config: default split: test revision: d604517c81ca91fe16a244d1248fc021f9ecee7a metrics: - type: accuracy value: 60.0509337860781 - type: f1 value: 60.424197644605236 - task: type: Clustering dataset: type: mteb/twentynewsgroups-clustering name: MTEB TwentyNewsgroupsClustering config: default split: test revision: 6125ec4e24fa026cec8a478383ee943acfbd5449 metrics: - type: v_measure value: 49.94452711339773 - task: type: PairClassification dataset: type: mteb/twittersemeval2015-pairclassification name: MTEB TwitterSemEval2015 config: default split: test revision: 70970daeab8776df92f5ea462b6173c0b46fd2d1 metrics: - type: cos_sim_accuracy value: 85.75430649102938 - type: cos_sim_ap value: 73.38576407567363 - type: cos_sim_f1 value: 67.47549019607844 - type: cos_sim_precision value: 62.99771167048055 - type: cos_sim_recall value: 72.63852242744063 - type: dot_accuracy value: 85.67681945520653 - type: dot_ap value: 73.37650773516077 - type: dot_f1 value: 67.56520653937352 - type: dot_precision value: 64.1013497513616 - type: dot_recall value: 71.42480211081794 - type: euclidean_accuracy value: 85.76622757346367 - type: euclidean_ap value: 73.31834510956003 - type: euclidean_f1 value: 67.40331491712708 - type: euclidean_precision value: 60.780156879372484 - type: euclidean_recall value: 75.64643799472296 - type: manhattan_accuracy value: 85.73046432616081 - type: manhattan_ap value: 73.10120518588954 - type: manhattan_f1 value: 67.34183545886471 - type: manhattan_precision value: 63.997148288973385 - type: manhattan_recall value: 71.05540897097626 - type: max_accuracy value: 85.76622757346367 - type: max_ap value: 73.38576407567363 - type: max_f1 value: 67.56520653937352 - task: type: PairClassification dataset: type: mteb/twitterurlcorpus-pairclassification name: MTEB TwitterURLCorpus config: default split: test revision: 8b6510b0b1fa4e4c4f879467980e9be563ec1cdf metrics: - type: cos_sim_accuracy value: 88.71424690495596 - type: cos_sim_ap value: 85.42819672981983 - type: cos_sim_f1 value: 77.76150014649868 - type: cos_sim_precision value: 74.15479184129646 - type: cos_sim_recall value: 81.73698798891284 - type: dot_accuracy value: 88.45810532852097 - type: dot_ap value: 84.78667227857513 - type: dot_f1 value: 77.29539996305192 - type: dot_precision value: 74.30560488740498 - type: dot_recall value: 80.53587927317524 - type: euclidean_accuracy value: 88.73171110334924 - type: euclidean_ap value: 85.46052151213301 - type: euclidean_f1 value: 77.79939075861563 - type: euclidean_precision value: 74.33200084157374 - type: euclidean_recall value: 81.60609793655682 - type: manhattan_accuracy value: 88.75111576823068 - type: manhattan_ap value: 85.4412901701619 - type: manhattan_f1 value: 77.72423325488437 - type: manhattan_precision value: 75.48799071184965 - type: manhattan_recall value: 80.09701262704034 - type: max_accuracy value: 88.75111576823068 - type: max_ap value: 85.46052151213301 - type: max_f1 value: 77.79939075861563 ---