avemio-digital commited on
Commit
11f72b0
·
verified ·
1 Parent(s): 227720e

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +105 -9
README.md CHANGED
@@ -17,12 +17,37 @@ datasets:
17
  - avemio-digital/GRAG-Embedding-Triples-Hessian-AI
18
  ---
19
 
20
- # Model Trained Using AutoTrain
21
 
22
- - Problem type: Sentence Transformers
23
 
24
- ## Validation Metrics
25
- No validation metrics available
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
26
 
27
  ## Usage
28
 
@@ -38,18 +63,89 @@ Then you can load this model and run inference.
38
  ```python
39
  from sentence_transformers import SentenceTransformer
40
 
41
- # Download from the Hugging Face Hub
42
- model = SentenceTransformer("sentence_transformers_model_id")
43
  # Run inference
44
  sentences = [
45
- 'search_query: autotrain',
46
- 'search_query: auto train',
47
- 'search_query: i love autotrain',
48
  ]
49
  embeddings = model.encode(sentences)
50
  print(embeddings.shape)
 
51
 
52
  # Get the similarity scores for the embeddings
53
  similarities = model.similarity(embeddings, embeddings)
54
  print(similarities.shape)
 
55
  ```
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
17
  - avemio-digital/GRAG-Embedding-Triples-Hessian-AI
18
  ---
19
 
20
+ # SentenceTransformer
21
 
22
+ This is a [sentence-transformers](https://www.SBERT.net) model trained. It maps sentences & paragraphs to a 1024-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
23
 
24
+ ## Model Details
25
+
26
+ ### Model Description
27
+ - **Model Type:** Sentence Transformer
28
+ <!-- - **Base model:** [Unknown](https://huggingface.co/unknown) -->
29
+ - **Maximum Sequence Length:** 512 tokens
30
+ - **Output Dimensionality:** 1024 tokens
31
+ - **Similarity Function:** Cosine Similarity
32
+ <!-- - **Training Dataset:** Unknown -->
33
+ <!-- - **Language:** Unknown -->
34
+ <!-- - **License:** Unknown -->
35
+
36
+ ### Model Sources
37
+
38
+ - **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
39
+ - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
40
+ - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
41
+
42
+ ### Full Model Architecture
43
+
44
+ ```
45
+ SentenceTransformer(
46
+ (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
47
+ (1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
48
+ (2): Normalize()
49
+ )
50
+ ```
51
 
52
  ## Usage
53
 
 
63
  ```python
64
  from sentence_transformers import SentenceTransformer
65
 
66
+ # Download from the 🤗 Hub
67
+ model = SentenceTransformer("avemio/GRAG-UAE-LARGE-V1-TRIPLES-HESSIAN-AI")
68
  # Run inference
69
  sentences = [
70
+ 'The weather is lovely today.',
71
+ "It's so sunny outside!",
72
+ 'He drove to the stadium.',
73
  ]
74
  embeddings = model.encode(sentences)
75
  print(embeddings.shape)
76
+ # [3, 1024]
77
 
78
  # Get the similarity scores for the embeddings
79
  similarities = model.similarity(embeddings, embeddings)
80
  print(similarities.shape)
81
+ # [3, 3]
82
  ```
83
+
84
+ <!--
85
+ ### Direct Usage (Transformers)
86
+
87
+ <details><summary>Click to see the direct usage in Transformers</summary>
88
+
89
+ </details>
90
+ -->
91
+
92
+ <!--
93
+ ### Downstream Usage (Sentence Transformers)
94
+
95
+ You can finetune this model on your own dataset.
96
+
97
+ <details><summary>Click to expand</summary>
98
+
99
+ </details>
100
+ -->
101
+
102
+ <!--
103
+ ### Out-of-Scope Use
104
+
105
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
106
+ -->
107
+
108
+ <!--
109
+ ## Bias, Risks and Limitations
110
+
111
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
112
+ -->
113
+
114
+ <!--
115
+ ### Recommendations
116
+
117
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
118
+ -->
119
+
120
+ ## Training Details
121
+
122
+ ### Framework Versions
123
+ - Python: 3.10.12
124
+ - Sentence Transformers: 3.2.1
125
+ - Transformers: 4.44.2
126
+ - PyTorch: 2.5.0+cu121
127
+ - Accelerate: 0.34.2
128
+ - Datasets: 2.19.0
129
+ - Tokenizers: 0.19.1
130
+
131
+ ## Citation
132
+
133
+ ### BibTeX
134
+
135
+ <!--
136
+ ## Glossary
137
+
138
+ *Clearly define terms in order to be accessible across audiences.*
139
+ -->
140
+
141
+ <!--
142
+ ## Model Card Authors
143
+
144
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
145
+ -->
146
+
147
+ <!--
148
+ ## Model Card Contact
149
+
150
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
151
+ -->