Update README.md
Browse files
README.md
CHANGED
@@ -17,12 +17,37 @@ datasets:
|
|
17 |
- avemio-digital/GRAG-Embedding-Triples-Hessian-AI
|
18 |
---
|
19 |
|
20 |
-
#
|
21 |
|
22 |
-
-
|
23 |
|
24 |
-
##
|
25 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
26 |
|
27 |
## Usage
|
28 |
|
@@ -38,18 +63,89 @@ Then you can load this model and run inference.
|
|
38 |
```python
|
39 |
from sentence_transformers import SentenceTransformer
|
40 |
|
41 |
-
# Download from the
|
42 |
-
model = SentenceTransformer("
|
43 |
# Run inference
|
44 |
sentences = [
|
45 |
-
'
|
46 |
-
'
|
47 |
-
'
|
48 |
]
|
49 |
embeddings = model.encode(sentences)
|
50 |
print(embeddings.shape)
|
|
|
51 |
|
52 |
# Get the similarity scores for the embeddings
|
53 |
similarities = model.similarity(embeddings, embeddings)
|
54 |
print(similarities.shape)
|
|
|
55 |
```
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
17 |
- avemio-digital/GRAG-Embedding-Triples-Hessian-AI
|
18 |
---
|
19 |
|
20 |
+
# SentenceTransformer
|
21 |
|
22 |
+
This is a [sentence-transformers](https://www.SBERT.net) model trained. It maps sentences & paragraphs to a 1024-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
|
23 |
|
24 |
+
## Model Details
|
25 |
+
|
26 |
+
### Model Description
|
27 |
+
- **Model Type:** Sentence Transformer
|
28 |
+
<!-- - **Base model:** [Unknown](https://huggingface.co/unknown) -->
|
29 |
+
- **Maximum Sequence Length:** 512 tokens
|
30 |
+
- **Output Dimensionality:** 1024 tokens
|
31 |
+
- **Similarity Function:** Cosine Similarity
|
32 |
+
<!-- - **Training Dataset:** Unknown -->
|
33 |
+
<!-- - **Language:** Unknown -->
|
34 |
+
<!-- - **License:** Unknown -->
|
35 |
+
|
36 |
+
### Model Sources
|
37 |
+
|
38 |
+
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
|
39 |
+
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
|
40 |
+
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
|
41 |
+
|
42 |
+
### Full Model Architecture
|
43 |
+
|
44 |
+
```
|
45 |
+
SentenceTransformer(
|
46 |
+
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
|
47 |
+
(1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
|
48 |
+
(2): Normalize()
|
49 |
+
)
|
50 |
+
```
|
51 |
|
52 |
## Usage
|
53 |
|
|
|
63 |
```python
|
64 |
from sentence_transformers import SentenceTransformer
|
65 |
|
66 |
+
# Download from the 🤗 Hub
|
67 |
+
model = SentenceTransformer("avemio/GRAG-UAE-LARGE-V1-TRIPLES-HESSIAN-AI")
|
68 |
# Run inference
|
69 |
sentences = [
|
70 |
+
'The weather is lovely today.',
|
71 |
+
"It's so sunny outside!",
|
72 |
+
'He drove to the stadium.',
|
73 |
]
|
74 |
embeddings = model.encode(sentences)
|
75 |
print(embeddings.shape)
|
76 |
+
# [3, 1024]
|
77 |
|
78 |
# Get the similarity scores for the embeddings
|
79 |
similarities = model.similarity(embeddings, embeddings)
|
80 |
print(similarities.shape)
|
81 |
+
# [3, 3]
|
82 |
```
|
83 |
+
|
84 |
+
<!--
|
85 |
+
### Direct Usage (Transformers)
|
86 |
+
|
87 |
+
<details><summary>Click to see the direct usage in Transformers</summary>
|
88 |
+
|
89 |
+
</details>
|
90 |
+
-->
|
91 |
+
|
92 |
+
<!--
|
93 |
+
### Downstream Usage (Sentence Transformers)
|
94 |
+
|
95 |
+
You can finetune this model on your own dataset.
|
96 |
+
|
97 |
+
<details><summary>Click to expand</summary>
|
98 |
+
|
99 |
+
</details>
|
100 |
+
-->
|
101 |
+
|
102 |
+
<!--
|
103 |
+
### Out-of-Scope Use
|
104 |
+
|
105 |
+
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
|
106 |
+
-->
|
107 |
+
|
108 |
+
<!--
|
109 |
+
## Bias, Risks and Limitations
|
110 |
+
|
111 |
+
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
|
112 |
+
-->
|
113 |
+
|
114 |
+
<!--
|
115 |
+
### Recommendations
|
116 |
+
|
117 |
+
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
|
118 |
+
-->
|
119 |
+
|
120 |
+
## Training Details
|
121 |
+
|
122 |
+
### Framework Versions
|
123 |
+
- Python: 3.10.12
|
124 |
+
- Sentence Transformers: 3.2.1
|
125 |
+
- Transformers: 4.44.2
|
126 |
+
- PyTorch: 2.5.0+cu121
|
127 |
+
- Accelerate: 0.34.2
|
128 |
+
- Datasets: 2.19.0
|
129 |
+
- Tokenizers: 0.19.1
|
130 |
+
|
131 |
+
## Citation
|
132 |
+
|
133 |
+
### BibTeX
|
134 |
+
|
135 |
+
<!--
|
136 |
+
## Glossary
|
137 |
+
|
138 |
+
*Clearly define terms in order to be accessible across audiences.*
|
139 |
+
-->
|
140 |
+
|
141 |
+
<!--
|
142 |
+
## Model Card Authors
|
143 |
+
|
144 |
+
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
|
145 |
+
-->
|
146 |
+
|
147 |
+
<!--
|
148 |
+
## Model Card Contact
|
149 |
+
|
150 |
+
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
|
151 |
+
-->
|