File size: 1,700 Bytes
c6fdb92
 
 
 
 
 
 
 
 
 
 
 
 
 
f8e49c4
 
 
c6fdb92
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d2fb660
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
---
language:
- hi
- gu
- pa
- as
- ta
- mr
- bn
- te
- ml
- kn
---
Indic-Sentence-Completion
---
license: other
---

# Details
The model cannot be commercially used. It's a fine-tuned Bloom-3B in several Indian languages:
- Gujarati
- Marathi
- Bangali
- Punjabi
- Kannada
- Malayalam
- Telugu
- Tamil
- Hindi

# Architecture
Same as Bloom-3B, the model is decoder only. 

# Motivation behind the model fine-tuning
- The model can be fine-tuned for any downstream task that requires the use of the aforementioned Indian languages
- PEFT LoRA is advised.
- Can be stacked with an Encoder if needed for any Sequence to Sequence task that requires aforementioned Indian languages

# Example of getting inference from the model
    from transformers import AutoModel, AutoConfig, AutoModelForCausalLM, AutoTokenizer

    # Path to the directory containing the model files
    model_directory = "autopilot-ai/Indic-sentence-completion"
    tokenizer = AutoTokenizer.from_pretrained(model_directory)
    model = AutoModelForCausalLM.from_pretrained(
        model_directory,
        load_in_8bit=True,
        device_map="auto",
    )

    # Load the model configuration
    config = AutoConfig.from_pretrained(model_directory)

    # Load the model
    model = AutoModel.from_pretrained(model_directory, config=config)
    batch = tokenizer("હેલો કેમ છો?", return_tensors='pt')

    with torch.cuda.amp.autocast():
       output_tokens = model.generate(**batch, max_new_tokens=10)

    print('\n\n', tokenizer.decode(output_tokens[0], skip_special_tokens=True))

  ## To run the above code snippet (in 8 bits), make sure to install the following
    pip install accelerate bitsandbytes