File size: 6,882 Bytes
20a729d
f8841e3
 
 
 
aa22a9d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
20a729d
f8841e3
 
 
995edef
 
f8841e3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
765031d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
55f272a
 
 
765031d
55f272a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
765031d
f8841e3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
---
language: en
datasets:
- squad_v2
license: cc-by-4.0
model-index:
- name: autoevaluate/roberta-base-squad2
  results:
  - task:
      type: question-answering
      name: Question Answering
    dataset:
      name: squad
      type: squad
      config: plain_text
      split: validation
    metrics:
    - name: Exact Match
      type: exact_match
      value: 85.2551
      verified: true
    - name: F1
      type: f1
      value: 91.822
      verified: true
---

# roberta-base for QA 

> Note: this is a clone of [`roberta-base-squad2`](https://huggingface.co/deepset/roberta-base-squad2) for internal testing.

This is the [roberta-base](https://huggingface.co/roberta-base) model, fine-tuned using the [SQuAD2.0](https://huggingface.co/datasets/squad_v2) dataset. It's been trained on question-answer pairs, including unanswerable questions, for the task of Question Answering. 


## Overview
**Language model:** roberta-base  
**Language:** English  
**Downstream-task:** Extractive QA  
**Training data:** SQuAD 2.0  
**Eval data:** SQuAD 2.0  
**Code:**  See [an example QA pipeline on Haystack](https://haystack.deepset.ai/tutorials/first-qa-system)  
**Infrastructure**: 4x Tesla v100

## Hyperparameters

```
batch_size = 96
n_epochs = 2
base_LM_model = "roberta-base"
max_seq_len = 386
learning_rate = 3e-5
lr_schedule = LinearWarmup
warmup_proportion = 0.2
doc_stride=128
max_query_length=64
``` 

## Using a distilled model instead
Please note that we have also released a distilled version of this model called [deepset/tinyroberta-squad2](https://huggingface.co/deepset/tinyroberta-squad2). The distilled model has a comparable prediction quality and runs at twice the speed of the base model.

## Usage

### In Haystack
Haystack is an NLP framework by deepset. You can use this model in a Haystack pipeline to do question answering at scale (over many documents). To load the model in [Haystack](https://github.com/deepset-ai/haystack/):
```python
reader = FARMReader(model_name_or_path="deepset/roberta-base-squad2")
# or 
reader = TransformersReader(model_name_or_path="deepset/roberta-base-squad2",tokenizer="deepset/roberta-base-squad2")
```
For a complete example of ``roberta-base-squad2`` being used for  Question Answering, check out the [Tutorials in Haystack Documentation](https://haystack.deepset.ai/tutorials/first-qa-system)

### In Transformers
```python
from transformers import AutoModelForQuestionAnswering, AutoTokenizer, pipeline

model_name = "deepset/roberta-base-squad2"

# a) Get predictions
nlp = pipeline('question-answering', model=model_name, tokenizer=model_name)
QA_input = {
    'question': 'Why is model conversion important?',
    'context': 'The option to convert models between FARM and transformers gives freedom to the user and let people easily switch between frameworks.'
}
res = nlp(QA_input)

# b) Load model & tokenizer
model = AutoModelForQuestionAnswering.from_pretrained(model_name)
tokenizer = AutoTokenizer.from_pretrained(model_name)
```

## Performance
Evaluated on the SQuAD 2.0 dev set with the [official eval script](https://worksheets.codalab.org/rest/bundles/0x6b567e1cf2e041ec80d7098f031c5c9e/contents/blob/).

```
"exact": 79.87029394424324,
"f1": 82.91251169582613,

"total": 11873,
"HasAns_exact": 77.93522267206478,
"HasAns_f1": 84.02838248389763,
"HasAns_total": 5928,
"NoAns_exact": 81.79983179142137,
"NoAns_f1": 81.79983179142137,
"NoAns_total": 5945
```

Using the official [question answering notebook](https://github.com/huggingface/notebooks/blob/main/examples/question_answering.ipynb) from `transformers` yields:

```
{'HasAns_exact': 77.93522267206478,
 'HasAns_f1': 83.93715663402219,
 'HasAns_total': 5928,
 'NoAns_exact': 81.90075693860386,
 'NoAns_f1': 81.90075693860386,
 'NoAns_total': 5945,
 'best_exact': 79.92082877116145,
 'best_exact_thresh': 0.0,
 'best_f1': 82.91749890730902,
 'best_f1_thresh': 0.0,
 'exact': 79.92082877116145,
 'f1': 82.91749890730917,
 'total': 11873}
```
  
which is consistent with the officially reported results. Using the question answering `Evaluator` from `evaluate` gives:
 
```
 {'HasAns_exact': 77.91835357624831,
 'HasAns_f1': 84.07820736158186,
 'HasAns_total': 5928,
 'NoAns_exact': 81.91757779646763,
 'NoAns_f1': 81.91757779646763,
 'NoAns_total': 5945,
 'best_exact': 79.92082877116145,
 'best_exact_thresh': 0.996823787689209,
 'best_f1': 82.99634576260925,
 'best_f1_thresh': 0.996823787689209,
 'exact': 79.92082877116145,
 'f1': 82.9963457626089,
 'latency_in_seconds': 0.016523243643392558,
 'samples_per_second': 60.52080460605492,
 'total': 11873,
 'total_time_in_seconds': 196.18047177799986}
```
  
which is also consistent with the officially reported results.


## Authors
**Branden Chan:** branden.chan@deepset.ai  
**Timo M枚ller:** timo.moeller@deepset.ai  
**Malte Pietsch:** malte.pietsch@deepset.ai  
**Tanay Soni:**  tanay.soni@deepset.ai 

## About us
<div class="grid lg:grid-cols-2 gap-x-4 gap-y-3">
    <div class="w-full h-40 object-cover mb-2 rounded-lg flex items-center justify-center">
         <img alt="" src="https://huggingface.co/spaces/deepset/README/resolve/main/haystack-logo-colored.svg" class="w-40"/>
     </div>
    <div class="w-full h-40 object-cover mb-2 rounded-lg flex items-center justify-center">
         <img alt="" src="https://huggingface.co/spaces/deepset/README/resolve/main/deepset-logo-colored.svg" class="w-40"/>
     </div>
</div>

[deepset](http://deepset.ai/) is the company behind the open-source NLP framework [Haystack](https://haystack.deepset.ai/) which is designed to help you build production ready NLP systems that use: Question answering, summarization, ranking etc.


Some of our other work: 
- [Distilled roberta-base-squad2 (aka "tinyroberta-squad2")]([https://huggingface.co/deepset/tinyroberta-squad2)
- [German BERT (aka "bert-base-german-cased")](https://deepset.ai/german-bert)
- [GermanQuAD and GermanDPR datasets and models (aka "gelectra-base-germanquad", "gbert-base-germandpr")](https://deepset.ai/germanquad)

## Get in touch and join the Haystack community

<p>For more info on Haystack, visit our <strong><a href="https://github.com/deepset-ai/haystack">GitHub</a></strong> repo and <strong><a href="https://haystack.deepset.ai">Documentation</a></strong>. 

We also have a <strong><a class="h-7" href="https://haystack.deepset.ai/community/join"><img alt="slack" class="h-7 inline-block m-0" style="margin: 0" src="https://huggingface.co/spaces/deepset/README/resolve/main/Slack_RGB.png"/>community open to everyone!</a></strong></p>

[Twitter](https://twitter.com/deepset_ai) | [LinkedIn](https://www.linkedin.com/company/deepset-ai/) | [Slack](https://haystack.deepset.ai/community/join) | [GitHub Discussions](https://github.com/deepset-ai/haystack/discussions) | [Website](https://deepset.ai)

By the way: [we're hiring!](http://www.deepset.ai/jobs)