--- license: apache-2.0 tags: - generated_from_trainer datasets: - squad duplicated_from: autoevaluate/extractive-question-answering base_model: distilbert-base-uncased --- # extractive-question-answering This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the squad dataset. It achieves the following results on the evaluation set: ``` {'exact_match': 72.95175023651845, 'f1': 81.85552166092225, 'latency_in_seconds': 0.008616470915042614, 'samples_per_second': 116.05679516125359, 'total_time_in_seconds': 91.07609757200044} ``` ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 1.263 | 1.0 | 5533 | 1.2169 | ### Framework versions - Transformers 4.19.2 - Pytorch 1.11.0+cu113 - Datasets 2.2.2 - Tokenizers 0.12.1