--- license: mit language: sw --- TigerBot-7B Swahili [LAPT + CLP+] === ## How to use ```python from peft import AutoPeftModelForCausalLM from transformers import AutoTokenizer model = AutoPeftModelForCausalLM.from_pretrained( "atsuki-yamaguchi/tigerbot-7b-base-clpp-sw" ) tokenizer = AutoTokenizer.from_pretrained( "atsuki-yamaguchi/tigerbot-7b-base-clpp-sw" ) # w/ GPU model = AutoPeftModelForCausalLM.from_pretrained( "atsuki-yamaguchi/tigerbot-7b-base-clpp-sw", device_map="auto", load_in_8bit=True, ) ``` ## Citation ``` @article{yamaguchi2024empirical, title={An Empirical Study on Cross-lingual Vocabulary Adaptation for Efficient Generative {LLM} Inference}, author={Atsuki Yamaguchi and Aline Villavicencio and Nikolaos Aletras}, journal={ArXiv}, year={2024}, volume={abs/2402.10712}, url={https://arxiv.org/abs/2402.10712} } ``` ## Link For more details, please visit https://github.com/gucci-j/llm-cva