[sdxl_arguments] cache_text_encoder_outputs = false no_half_vae = true min_timestep = 0 max_timestep = 1000 shuffle_caption = true lowram = true [model_arguments] pretrained_model_name_or_path = "cagliostrolab/animagine-xl-3.0" vae = "/content/vae/sdxl_vae.safetensors" [dataset_arguments] debug_dataset = false in_json = "/content/LoRA/meta_lat.json" train_data_dir = "/content/LoRA/train_data" dataset_repeats = 1 keep_tokens = 0 resolution = "1024,1024" color_aug = false token_warmup_min = 1 token_warmup_step = 0 [training_arguments] output_dir = "/content/drive/MyDrive/kohya-trainer/output/mee_japan_xl" output_name = "mee_japan_xl" save_precision = "fp16" save_every_n_epochs = 1 train_batch_size = 4 max_token_length = 225 mem_eff_attn = false sdpa = true xformers = false max_train_epochs = 10 max_data_loader_n_workers = 8 persistent_data_loader_workers = true gradient_checkpointing = true gradient_accumulation_steps = 1 mixed_precision = "fp16" [logging_arguments] log_with = "wandb" log_tracker_name = "mee_japan_xl" logging_dir = "/content/LoRA/logs" [sample_prompt_arguments] sample_every_n_epochs = 1 sample_sampler = "euler_a" [saving_arguments] save_model_as = "safetensors" [optimizer_arguments] optimizer_type = "AdaFactor" learning_rate = 0.0001 max_grad_norm = 0 optimizer_args = [ "scale_parameter=False", "relative_step=False", "warmup_init=False",] lr_scheduler = "constant_with_warmup" lr_warmup_steps = 100 [additional_network_arguments] no_metadata = false network_module = "networks.lora" network_dim = 32 network_alpha = 16 network_args = [] network_train_unet_only = true