{"policy_class": {":type:": "", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "", "_get_constructor_parameters": "", "reset_noise": "", "_build_mlp_extractor": "", "_build": "", "forward": "", "extract_features": "", "_get_action_dist_from_latent": "", "_predict": "", "evaluate_actions": "", "get_distribution": "", "predict_values": "", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7d3530eca500>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1704057764579588610, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAE3HQD7U1by8ig4NO+/RzbnsBSa+ZVVzugAAgD8AAIA/JkwyvqQeTzysCjs3nK9ctTM56b3GYXC2AACAPwAAgD/4xqq+XQvRvYyhh74EJFm9sMzsPg6J/z0AAIA/AACAP4Bkpz0oFYI/p2eRPvsqS7/QgZo9s+zWOwAAAAAAAAAA8AiLvodNDj7wAYM9RaeuvpSTEb0FL/k9AAAAAAAAAAAAuku9HHsTvOV4or3gF6G9fMjCvIBm1r0AAIA/AACAP7DtXb4NBy4/CtDmvRY3FL+4t9W9po5yPQAAAAAAAAAA2itdvqQeAru8fY89VkAiPbpcEb3Gpwo+AACAPwAAgD9mZki+G7fZvPcjCLv5Z6O594c/PrYNdzoAAIA/AACAPwbNRj70/JO8ol0EO5WbVrm99gW+ef8qugAAgD8AAIA/MynhvCjBzT5GH7K97VcYv33/Cb0BakO8AAAAAAAAAADzGD6+wxx8vKYhZrsEtLC5KTPkPUQljzoAAIA/AACAP/PzfD70bNi8zEADu1r/dTnsG0C+/PkmOgAAgD8AAIA/cPZfvojeobxIfTy7Ft6IueMBDT7lmGw6AACAPwAAgD/Nkng9cQ0JuZOjbr4Dkqi9ua5DvFanlj4AAIA/AAAAAOOPf760g+O8sMX7ujNIfbnqq0g+4cQiOgAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "", ":serialized:": "gAWV9wsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHHY05+6RQuMAWyUS8KMAXSUR0CWpog2Ifr9dX2UKGgGR0BwzaPcSGrTaAdL/WgIR0CWqHlI3BHkdX2UKGgGR0BwqZH/cWTHaAdLxWgIR0CWqICiyprDdX2UKGgGR0ByPk/KQq7RaAdNMgFoCEdAlqjn7UG3WnV9lChoBkdAb1SUTL4etGgHS8loCEdAlqlvkzXSSnV9lChoBkdAca7at9x6wGgHS9toCEdAlqmVl05lv3V9lChoBkdAcSiIy0rsjWgHS+FoCEdAlqojBAOav3V9lChoBkdAbvza/yoXK2gHS99oCEdAlqqtXcQAdXV9lChoBkdAcckqs2eg+WgHS/loCEdAlqrOXZ5AyHV9lChoBkdAcmigntv4umgHS8xoCEdAlwh80YTCcnV9lChoBkdAcnFiXpnpS2gHS+1oCEdAlwrTKgZjx3V9lChoBkdAcDf5oXbdrWgHS8toCEdAlwt9P+GXX3V9lChoBkdAceopaA4GU2gHS69oCEdAlws6FVT723V9lChoBkdAcC0hvBJqZmgHS9hoCEdAlwwalLvkR3V9lChoBkdAcagdYGMXJ2gHTQ0BaAhHQJcMClQ/HHZ1fZQoaAZHQHHffzWf9P1oB0uvaAhHQJcMOUhV2id1fZQoaAZHQF+x1Aqur6toB03oA2gIR0CXDuRzijtYdX2UKGgGR0Bwsz7aZhKEaAdLy2gIR0CXDv4lQdjodX2UKGgGR0BzyM0Nz8xcaAdL1mgIR0CXDzYvnKW+dX2UKGgGR0BxOvf4yoGZaAdNAQFoCEdAlw9G1UlzEXV9lChoBkdAcc82yLQ5WGgHS5NoCEdAlxEddeIEbHV9lChoBkdAckZOQyRB/2gHS+VoCEdAlxF/RJEpiXV9lChoBkdAYkXwGW2PUGgHTegDaAhHQJcRmAlOXVt1fZQoaAZHQHFs6sIVuaZoB0vuaAhHQJcTXdrO7g91fZQoaAZHQHDIiwr1/UhoB0vfaAhHQJcTyNCJGfB1fZQoaAZHQHEL0h/y5I9oB0vZaAhHQJcTab6P8yh1fZQoaAZHQHBEPI8yN4toB0vFaAhHQJcVIZn+Q2d1fZQoaAZHQHA0OFpPAO9oB0vRaAhHQJcVlcVxjrl1fZQoaAZHQHG5c2FWXC1oB0vHaAhHQJcXT4AS39d1fZQoaAZHQHCRS3G4qgBoB0vgaAhHQJcYu2tuDSR1fZQoaAZHQHHJkAtFrmBoB0uWaAhHQJcYu4jKPn11fZQoaAZHQF01dsi0OVhoB03oA2gIR0CXGAbWVeKLdX2UKGgGR0BvGYAlv60qaAdL4WgIR0CXGtLMLWqcdX2UKGgGR0BxI1+AmReUaAdLxmgIR0CXHJa8pTdddX2UKGgGR0BvtNrXUYsNaAdLzmgIR0CXHqcLBsQ/dX2UKGgGR0BxqDsD4gzQaAdL9mgIR0CXHduloDgZdX2UKGgGR0BxFt18stkGaAdLvmgIR0CXHuW/ag27dX2UKGgGR0BlJed9Ujs2aAdN6ANoCEdAlyBTHGS6lXV9lChoBkdAcgg+FlCkXWgHS+5oCEdAlyFg9aEBbXV9lChoBkdAcz2RpUPxx2gHS71oCEdAlyHQWSEDhnV9lChoBkdAcRHMKTjebmgHS6RoCEdAlyTZjMFEA3V9lChoBkdAcWL3974SH2gHS81oCEdAlyRU9Mbm2nV9lChoBkdAYjPi++M6zWgHTegDaAhHQJclORjjJdV1fZQoaAZHQHDxewosqaxoB0vWaAhHQJcmCUmlZYB1fZQoaAZHQHGFDA8B+4NoB0vDaAhHQJcpfXiBGx51fZQoaAZHQGKoVSXMQmNoB03oA2gIR0CXKtemNzbOdX2UKGgGR0BwhlTyauwHaAdNJQFoCEdAlywp6QeV9nV9lChoBkdAbqcvalDWsmgHTSwBaAhHQJct0PqcEvF1fZQoaAZHQHDswJLM9r5oB0vbaAhHQJcuQ4+8oQZ1fZQoaAZHQHDeGfkFOfxoB0vIaAhHQJct6HwgDA91fZQoaAZHQG2E/KISDh9oB03FAmgIR0CXLp0UGmk4dX2UKGgGR0BzBol9jPOZaAdL/WgIR0CXL1y6MBIXdX2UKGgGR0BjwuFL39JjaAdN6ANoCEdAlzDrowEhaHV9lChoBkdAcH/2bXpW3mgHS/doCEdAlzD34fwI+nV9lChoBkdAYwVJlJ6IFmgHTegDaAhHQJcxpopQUHp1fZQoaAZHQHFjxoh6jWVoB0vfaAhHQJczYaP0Zm91fZQoaAZHQG19+rMkhRtoB0vCaAhHQJc0bva11GN1fZQoaAZHQHD/jCcf/3poB0vRaAhHQJczwWgvlEJ1fZQoaAZHQGEq5CngpBpoB03oA2gIR0CXNEN83MpxdX2UKGgGR0BxtHsD4gzQaAdLsmgIR0CXNTXL/0dzdX2UKGgGR0Bfb9gjQiRoaAdN6ANoCEdAlzRiH/Lkj3V9lChoBkdAb9pGbTc7AGgHS7VoCEdAlzWX80k4WHV9lChoBkdAcNfCWu5jIGgHS9BoCEdAlzZ2wV0tAnV9lChoBkdAcaHJdjXnQ2gHS8xoCEdAlzXVie/Ya3V9lChoBkdAX7A5EMLF42gHTegDaAhHQJc2+WAwwkB1fZQoaAZHQHAl5h8YyftoB0vfaAhHQJc31wEQoTh1fZQoaAZHQHABCTEBKcxoB0vHaAhHQJc4XPIGQjl1fZQoaAZHQHEYkadc0LtoB0unaAhHQJc6zDWK/Eh1fZQoaAZHQHD7RKg7HQ1oB0vdaAhHQJc6D/GVAzJ1fZQoaAZHQG8352IO6NFoB0u5aAhHQJc8f4oJAt51fZQoaAZHQHIsjg2qDK5oB0vzaAhHQJc89pZfUnZ1fZQoaAZHQHB+Mer+5vtoB0vTaAhHQJc8IqlP8AJ1fZQoaAZHQHMskC7sfJVoB0vcaAhHQJc9Jlar3kB1fZQoaAZHQHG7e4LCvX9oB0vRaAhHQJc+8nssxwh1fZQoaAZHQHJNXuRcNYtoB0vaaAhHQJdAtw84gih1fZQoaAZHQF3/pNKyv9toB03oA2gIR0CXQSxRVIZqdX2UKGgGR0BynhFNL128aAdNJQFoCEdAl0C/7m+0xHV9lChoBkdAcdPyHVPN3WgHS75oCEdAl0EDSXt0FXV9lChoBkdAcXUois4kvGgHS8BoCEdAl0LILLIPsnV9lChoBkdAcNdlJYkmhWgHS81oCEdAl0P46CDmKnV9lChoBkdAcDt79ycTamgHS8loCEdAl0UcurZJ1HV9lChoBkdAcEHbtJFspGgHS8JoCEdAl0U2xMWXTnV9lChoBkdAcDYkbPyCnWgHS8ZoCEdAl0SBK6FuenV9lChoBkdAbqC7OmixmmgHS8VoCEdAl0UtnXd0rHV9lChoBkdAcR8xyGSIQGgHS6xoCEdAl0citihFmXV9lChoBkdAX5+4Ds+mnGgHTegDaAhHQJdHWR9w3o91fZQoaAZHQHH0uso2GZhoB0vfaAhHQJdJF+RYA811fZQoaAZHQHHZhxo7FKloB00GAWgIR0CXSfuy/sVtdX2UKGgGR0Bw6BeZ5Rj0aAdL1WgIR0CXSavzvqkedX2UKGgGR0BvUweJYT0yaAdLr2gIR0CXShw/PgNxdX2UKGgGR0BxqXXBguyvaAdL02gIR0CXS++5e7cxdX2UKGgGR0ByiDl4keIVaAdNHQFoCEdAl00pSeiBXnV9lChoBkdAc3z+IMz/ImgHTQUBaAhHQJdNeyrxRVJ1fZQoaAZHQHL4AOOKfnRoB0vHaAhHQJdNkZn+Q2d1fZQoaAZHQHGOdbLU1AJoB0voaAhHQJdOa7FsHjZ1fZQoaAZHQHINRWLgn+hoB0uyaAhHQJdPpMlC1JF1fZQoaAZHQHKShsqJ/G5oB0vWaAhHQJdP1ttQ9A51fZQoaAZHQHKUb1uivgZoB0vLaAhHQJdQuPtD2J11fZQoaAZHQHDSFJYkmhNoB0vlaAhHQJdRIyLyc1B1fZQoaAZHQG9i4G2TgVJoB0u3aAhHQJdTO2iL2pR1ZS4="}, "ep_success_buffer": {":type:": "", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 310, "observation_space": {":type:": "", ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "", ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 2048, "gamma": 0.99, "gae_lambda": 0.95, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 10, "clip_range": {":type:": "", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-6.1.58+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Sat Nov 18 15:31:17 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.1.0+cu121", "GPU Enabled": "True", "Numpy": "1.23.5", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}