--- library_name: transformers license: apache-2.0 base_model: facebook/wav2vec2-xls-r-300m tags: - generated_from_trainer metrics: - wer model-index: - name: wav2vec2-xls-r-300m-lg-CV-Fleurs-200hrs-v11 results: [] --- # wav2vec2-xls-r-300m-lg-CV-Fleurs-200hrs-v11 This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.5459 - Wer: 0.2673 - Cer: 0.0600 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 8 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 16 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 80 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | Cer | |:-------------:|:-------:|:------:|:---------------:|:------:|:------:| | 0.5847 | 1.0 | 9604 | 0.3651 | 0.4380 | 0.1030 | | 0.3444 | 2.0 | 19208 | 0.3452 | 0.4003 | 0.0948 | | 0.3045 | 3.0 | 28812 | 0.3180 | 0.3849 | 0.0894 | | 0.2762 | 4.0 | 38416 | 0.3008 | 0.3744 | 0.0859 | | 0.2549 | 5.0 | 48020 | 0.3076 | 0.3745 | 0.0862 | | 0.2392 | 6.0 | 57624 | 0.2865 | 0.3569 | 0.0814 | | 0.225 | 7.0 | 67228 | 0.2839 | 0.3475 | 0.0799 | | 0.2137 | 8.0 | 76832 | 0.2730 | 0.3496 | 0.0793 | | 0.2031 | 9.0 | 86436 | 0.2895 | 0.3487 | 0.0803 | | 0.1922 | 10.0 | 96040 | 0.2667 | 0.3519 | 0.0801 | | 0.184 | 11.0 | 105644 | 0.2853 | 0.3340 | 0.0762 | | 0.1748 | 12.0 | 115248 | 0.2582 | 0.3318 | 0.0756 | | 0.1666 | 13.0 | 124852 | 0.2601 | 0.3324 | 0.0743 | | 0.1605 | 14.0 | 134456 | 0.2627 | 0.3282 | 0.0752 | | 0.1532 | 15.0 | 144060 | 0.2682 | 0.3248 | 0.0748 | | 0.1462 | 16.0 | 153664 | 0.2782 | 0.3255 | 0.0745 | | 0.139 | 17.0 | 163268 | 0.2798 | 0.3255 | 0.0737 | | 0.1328 | 18.0 | 172872 | 0.2794 | 0.3212 | 0.0725 | | 0.1267 | 19.0 | 182476 | 0.2855 | 0.3158 | 0.0723 | | 0.121 | 20.0 | 192080 | 0.2801 | 0.3108 | 0.0702 | | 0.1151 | 21.0 | 201684 | 0.2737 | 0.3060 | 0.0689 | | 0.1104 | 22.0 | 211288 | 0.2774 | 0.3211 | 0.0727 | | 0.1052 | 23.0 | 220892 | 0.2842 | 0.3125 | 0.0716 | | 0.1001 | 24.0 | 230496 | 0.2951 | 0.3120 | 0.0698 | | 0.095 | 25.0 | 240100 | 0.2926 | 0.3101 | 0.0703 | | 0.0912 | 26.0 | 249704 | 0.2863 | 0.3042 | 0.0701 | | 0.0881 | 27.0 | 259308 | 0.3057 | 0.3106 | 0.0701 | | 0.0838 | 28.0 | 268912 | 0.3083 | 0.3099 | 0.0704 | | 0.0811 | 29.0 | 278516 | 0.3272 | 0.3107 | 0.0701 | | 0.0779 | 30.0 | 288120 | 0.3337 | 0.3110 | 0.0696 | | 0.0746 | 31.0 | 297724 | 0.3389 | 0.3006 | 0.0679 | | 0.0716 | 32.0 | 307328 | 0.3380 | 0.3021 | 0.0686 | | 0.0691 | 33.0 | 316932 | 0.3334 | 0.3036 | 0.0676 | | 0.0667 | 34.0 | 326536 | 0.3280 | 0.3033 | 0.0676 | | 0.0646 | 35.0 | 336140 | 0.3451 | 0.3076 | 0.0682 | | 0.0623 | 36.0 | 345744 | 0.3544 | 0.3012 | 0.0677 | | 0.0604 | 37.0 | 355348 | 0.3688 | 0.3036 | 0.0686 | | 0.0581 | 38.0 | 364952 | 0.3706 | 0.3040 | 0.0683 | | 0.0567 | 39.0 | 374556 | 0.3936 | 0.2999 | 0.0679 | | 0.0552 | 40.0 | 384160 | 0.3663 | 0.3034 | 0.0678 | | 0.0529 | 41.0 | 393764 | 0.3894 | 0.3009 | 0.0681 | | 0.052 | 42.0 | 403368 | 0.3807 | 0.2945 | 0.0669 | | 0.0498 | 43.0 | 412972 | 0.3960 | 0.2945 | 0.0668 | | 0.0487 | 44.0 | 422576 | 0.4331 | 0.2949 | 0.0677 | | 0.0471 | 45.0 | 432180 | 0.4023 | 0.2926 | 0.0663 | | 0.0458 | 46.0 | 441784 | 0.3923 | 0.2919 | 0.0660 | | 0.0447 | 47.0 | 451388 | 0.4166 | 0.2957 | 0.0659 | | 0.0428 | 48.0 | 460992 | 0.4066 | 0.2932 | 0.0656 | | 0.0417 | 49.0 | 470596 | 0.4177 | 0.2929 | 0.0671 | | 0.0409 | 50.0 | 480200 | 0.4262 | 0.2909 | 0.0656 | | 0.0391 | 51.0 | 489804 | 0.4366 | 0.2875 | 0.0655 | | 0.0381 | 52.0 | 499408 | 0.4492 | 0.2916 | 0.0647 | | 0.0374 | 53.0 | 509012 | 0.4400 | 0.2822 | 0.0639 | | 0.0362 | 54.0 | 518616 | 0.4480 | 0.2856 | 0.0644 | | 0.0349 | 55.0 | 528220 | 0.4560 | 0.2845 | 0.0647 | | 0.0339 | 56.0 | 537824 | 0.4718 | 0.2838 | 0.0642 | | 0.0332 | 57.0 | 547428 | 0.4646 | 0.2854 | 0.0642 | | 0.0324 | 58.0 | 557032 | 0.4635 | 0.2835 | 0.0639 | | 0.0316 | 59.0 | 566636 | 0.4836 | 0.2847 | 0.0638 | | 0.0302 | 60.0 | 576240 | 0.4745 | 0.2814 | 0.0634 | | 0.0296 | 61.0 | 585844 | 0.4663 | 0.2786 | 0.0630 | | 0.0285 | 62.0 | 595448 | 0.4630 | 0.2768 | 0.0625 | | 0.028 | 63.0 | 605052 | 0.4861 | 0.2763 | 0.0626 | | 0.027 | 64.0 | 614656 | 0.5029 | 0.2800 | 0.0632 | | 0.0261 | 65.0 | 624260 | 0.4905 | 0.2791 | 0.0625 | | 0.0253 | 66.0 | 633864 | 0.4920 | 0.2783 | 0.0621 | | 0.0247 | 67.0 | 643468 | 0.4926 | 0.2796 | 0.0620 | | 0.0238 | 68.0 | 653072 | 0.5030 | 0.2752 | 0.0619 | | 0.0234 | 69.0 | 662676 | 0.4909 | 0.2734 | 0.0614 | | 0.0229 | 70.0 | 672280 | 0.5069 | 0.2731 | 0.0612 | | 0.022 | 71.0 | 681884 | 0.5141 | 0.2680 | 0.0607 | | 0.0214 | 72.0 | 691488 | 0.5336 | 0.2692 | 0.0605 | | 0.021 | 73.0 | 701092 | 0.5030 | 0.2676 | 0.0606 | | 0.0204 | 74.0 | 710696 | 0.5245 | 0.2654 | 0.0599 | | 0.0196 | 75.0 | 720300 | 0.5345 | 0.2653 | 0.0602 | | 0.0194 | 76.0 | 729904 | 0.5288 | 0.2694 | 0.0607 | | 0.0186 | 77.0 | 739508 | 0.5339 | 0.2666 | 0.0599 | | 0.0182 | 78.0 | 749112 | 0.5432 | 0.2675 | 0.0602 | | 0.018 | 79.0 | 758716 | 0.5457 | 0.2660 | 0.0600 | | 0.018 | 79.9917 | 768240 | 0.5459 | 0.2673 | 0.0600 | ### Framework versions - Transformers 4.47.0 - Pytorch 2.1.0+cu118 - Datasets 3.2.0 - Tokenizers 0.21.0