--- library_name: transformers language: - lg license: mit base_model: facebook/w2v-bert-2.0 tags: - generated_from_trainer datasets: - yogera metrics: - wer model-index: - name: wav2vec2-bert results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Yogera type: yogera metrics: - name: Wer type: wer value: 0.1597164303586322 --- # wav2vec2-bert This model is a fine-tuned version of [facebook/w2v-bert-2.0](https://huggingface.co/facebook/w2v-bert-2.0) on the Yogera dataset. It achieves the following results on the evaluation set: - Loss: 0.2858 - Wer: 0.1597 - Cer: 0.0355 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 100 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | Cer | |:-------------:|:-----:|:----:|:---------------:|:------:|:------:| | 0.8824 | 1.0 | 198 | 0.2803 | 0.2968 | 0.0591 | | 0.2156 | 2.0 | 396 | 0.2128 | 0.2389 | 0.0493 | | 0.1589 | 3.0 | 594 | 0.2110 | 0.2207 | 0.0458 | | 0.1277 | 4.0 | 792 | 0.1942 | 0.1964 | 0.0422 | | 0.1055 | 5.0 | 990 | 0.1698 | 0.1873 | 0.0390 | | 0.087 | 6.0 | 1188 | 0.1771 | 0.1879 | 0.0428 | | 0.0738 | 7.0 | 1386 | 0.1850 | 0.1856 | 0.0406 | | 0.0589 | 8.0 | 1584 | 0.1799 | 0.1681 | 0.0381 | | 0.0573 | 9.0 | 1782 | 0.1882 | 0.1863 | 0.0400 | | 0.0481 | 10.0 | 1980 | 0.2275 | 0.1664 | 0.0359 | | 0.0425 | 11.0 | 2178 | 0.2135 | 0.1696 | 0.0379 | | 0.039 | 12.0 | 2376 | 0.2035 | 0.1600 | 0.0354 | | 0.0351 | 13.0 | 2574 | 0.2095 | 0.1683 | 0.0366 | | 0.0326 | 14.0 | 2772 | 0.2070 | 0.1589 | 0.0353 | | 0.0302 | 15.0 | 2970 | 0.2526 | 0.1708 | 0.0367 | | 0.0308 | 16.0 | 3168 | 0.2441 | 0.1642 | 0.0367 | | 0.0255 | 17.0 | 3366 | 0.2504 | 0.1678 | 0.0365 | | 0.0213 | 18.0 | 3564 | 0.2844 | 0.1721 | 0.0377 | | 0.0225 | 19.0 | 3762 | 0.2602 | 0.1721 | 0.0383 | | 0.02 | 20.0 | 3960 | 0.2746 | 0.1610 | 0.0351 | | 0.0181 | 21.0 | 4158 | 0.2767 | 0.1668 | 0.0364 | | 0.0149 | 22.0 | 4356 | 0.2442 | 0.1633 | 0.0355 | | 0.0136 | 23.0 | 4554 | 0.2765 | 0.1677 | 0.0362 | | 0.0156 | 24.0 | 4752 | 0.2858 | 0.1597 | 0.0355 | ### Framework versions - Transformers 4.45.2 - Pytorch 2.1.0+cu118 - Datasets 3.0.1 - Tokenizers 0.20.1