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Figure 1: Our framework, NeRF2Mesh, reconstructs high-quality surface meshes with diffuse and specular textures from
multi-view RGB images, generalizing well from object- to scene-level datasets. The exported textured meshes are ready-to-
use for common graphics hardware and software, facilitating various downstream applications.

Abstract

Neural Radiance Fields (NeRF) have constituted a re-
markable breakthrough in image-based 3D reconstruction.
However, their implicit volumetric representations differ
significantly from the widely-adopted polygonal meshes and
lack support from common 3D software and hardware, mak-
ing their rendering and manipulation inefficient. To over-
come this limitation, we present a novel framework that
generates textured surface meshes from images. Our ap-
proach begins by efficiently initializing the geometry and
view-dependency decomposed appearance with a NeRF.
Subsequently, a coarse mesh is extracted, and an itera-
tive surface refinement algorithm is developed to adaptively
adjust both vertex positions and face density based on re-
projected rendering errors. We jointly refine the appear-
ance with geometry and bake it into texture images for real-
time rendering. Extensive experiments demonstrate that our
method achieves superior mesh quality and competitive ren-
dering quality.

1. Introduction

The reconstruction of 3D scenes from RGB images is
a complex task in computer vision with many real-world
applications. In recent years, Neural Radiance Fields
(NeRF) [31, 2, 8, 32] have gained popularity for their im-
pressive ability to reconstruct and render large-scale scenes
with realistic details. However, NeRF representations often
use implicit functions and specialized ray marching algo-
rithms for rendering, making them difficult to manipulate
and slow to render due to poor hardware support, which
limits their use in downstream applications. In contrast,
polygonal meshes are the most commonly used represen-
tation in 3D applications and are well-supported by most
graphic hardware to accelerate rendering. However, direct
reconstruction of meshes can be challenging due to their ir-
regularity, and most approaches are limited to object-level
reconstructions [33, 9, 10].

Some recent works [33, 6, 11, 54] have focused on com-
bining the advantages of both NeRF and mesh representa-
tion. MobileNeRF [11] presents a method of optimizing
NeRF on a grid mesh and incorporates rasterization for real-



time rendering. However, the resulting mesh is far from the
real surface of the reconstructed scene. Besides, the tex-
tures are in the feature space instead of the RGB space,
which makes editing or manipulation inconvenient. To ob-
tain accurate surface meshes, a popular approach is to use
Signed Distance Fields (SDF), which defines an exact sur-
face [48, 53, 57]. However, this line of research typically
generates over-smoothed geometry that fails to model thin
structures. Additionally, meshes obtained through March-
ing Cubes [29] produce a large number of redundant ver-
tices and faces to keep details. NVdiffrec [33] uses a dif-
ferentiable rasterizer [23] to optimize a deformable tetra-
hedral grid but is limited to object-level reconstruction and
also fails to recover complex topology. The presence of a
representation gap makes it challenging to recover accurate
surface meshes from volumetric NeRF while maintaining
rendering quality.

This paper presents a novel framework called
NeRF2Mesh for extracting delicate textured surface
meshes from RGB images, as illustrated in Figure 1. Our
key insight is to refine a coarse mesh extracted from
NeRF for joint optimization of geometry and appear-
ance. The volumetric NeRF representation is suitable for
efficient initialization of geometry and appearance. With a
coarse mesh extracted from NeRF, we adjust the vertices’
position and face density based on 2D rendering errors,
which in turn contributes to appearance optimization. To
enable texture editing, we decompose the appearance into
view-independent diffuse and view-dependent specular
terms, so the diffuse color can be exported as a standard
RGB image texture. The specular term is exported as a
feature texture that produces view-dependent color through
a small MLP embedded in the fragment shader. Overall, our
framework enables the creation of versatile and practical
mesh assets that can be used in a range of scenarios that are
challenging for volumetric NeRF.

Our contributions can be summarized as follows:

* We present the NeRF2Mesh framework to reconstruct
textured surface meshes from multi-view RGB images,
by jointly refining the geometry and appearance of
coarse meshes extracted from an appearance decom-
posed NeRF.

e We propose an iterative mesh refinement algorithm
that enables us to adaptively adjust face density, where
complex surfaces are subdivided and simpler surfaces
are decimated based on re-projected 2D image errors.

e Our method achieves enhanced surface mesh quality,
relatively smaller mesh size, and competitive render-
ing quality to recent methods. Furthermore, the result-
ing meshes can be real-time rendered and interactively
edited with common 3D hardware and software.

2. Related Work
2.1. NeRF for Scene Reconstruction

NeRF [31] and its subsequent works [2, 3, 59, 38, 50,

, 50, 1,7, 39] represent a remarkable advancement in 3D
scene reconstruction from RGB images. Despite the supe-
rior rendering quality, vanilla NeRF faces several issues.
For instance, the model’s training and inference speed is
slow due to the large number of MLP evaluations, which
limits the widespread adoption of NeRF representation. To
address this, several works [56, 40, 43, 32, 8] have proposed
methods to reduce the MLP’s size or eliminate it altogether,
and instead optimize an explicit 3D feature grid that stores
the density and appearance information. DVGO [43] em-
ploys two dense feature grids for density and appearance
encoding, but the dense grid leads to a large model size. To
effectively control the model size, Instant-NGP [32] pro-
poses a multi-resolution hash table. In addition to the effi-
ciency issue, the implicit representation of NeRF cannot be
directly manipulated and edited in both geometry and ap-
pearance, unlike explicit representations such as polygonal
meshes. Although some works [24, 44, 52, 27, 47] explore
geometry manipulation and composition of NeRF, they are
still limited in different ways. On the other hand, oth-
ers [00, 5, 58, 42, 4, 46] aim to decompose the reflectance
under unknown illumination to enable relighting and tex-
ture editing. These problems result in a gap between NeRF
representation and widely used polygonal meshes in down-
stream applications. Our objective is to narrow this gap
by exploring methods to convert NeRF reconstructions into
textured meshes.

2.2. Surface Mesh for Scene Reconstruction

Reconstructing explicit surface meshes directly can be
challenging, particularly for complex scenes with intricate
topology. Most approaches in this area of research assume
a template mesh with a fixed topology [9, 10, 21, 26]. Re-
cent methods [33, 18, 25, 41] have begun to address topol-
ogy optimization. NVdiffrec [33] combines differentiable
marching tetrahedrons [25] with differentiable rendering to
optimize surface meshes directly. It can also decompose
materials and illumination, which is further improved in
NVdiffrecMC [18] using Monte Carlo rendering. Nonethe-
less, these methods still have limitations in that they only
apply to object-level mesh reconstruction and struggle to
differentiate between background and foreground meshes in
unbounded outdoor scenes. A foreground mask [33] must
be prepared to optimize the object boundary using differen-
tiable rendering. In contrast, our focus is on surface mesh
reconstruction at both the object and scene levels without
the need of semantic masks.



2.3. Extracting Surface Mesh from NeRF

NeRF represents geometry using a volumetric density
field, which may not necessarily form a concrete sur-
face. To address this, a popular strategy is to learn a
SDF [48, 53, 14, 15, 57, 49, 51], where the surface can
be determined by the zero level set. NeuS [48] applies
a SDF to density transformation to enable differentiable
rendering, and the Marching Cubes [29] algorithm is usu-
ally used to extract the surface mesh from these volumes.
BakedSDF [54] optimize a hybrid SDF volume-surface rep-
resentation and bake it into meshes for real-time rendering.
However, SDF-based methods tend to learn over-smoothed
geometry and fail to handle thin structures. Some meth-
ods [45, 28] explore Unsigned Distance Field (UDF) or a
combination of density field and SDF to address this limita-
tion, but they are still limited to object-level reconstruction.
SAMURALI [6] aims to jointly recover camera poses, ge-
ometry, and appearance of a single object under unknown
captured conditions and export textured meshes. MobileN-
eRF [1 1] proposes to train NeRF on a grid mesh, which can
be rendered in real-time. However, their mesh is not ex-
actly the surface mesh and only exports features as texture,
which have to be rendered with a custom shader and are
unfriendly for editing. Recent works [32, 36] have found
that an exponential density activation can help to concen-
trate the density and form better surfaces. We also adopt
density field to capture correct topology, since the surface
can be further refined.

3. Method

In this section, we introduce our framework, as shown in
Figure 2, for reconstructing a textured surface mesh from
a collection of RGB images that is compatible with com-
mon 3D hardware and software. The training process com-
prises two stages. Firstly, we train a grid-based NeRF [32]
to efficiently initialize the geometry and appearance of the
mesh (Section 3.1). Next, we extract a coarse surface mesh
and fine-tune both surface geometry and appearance (Sec-
tion 3.2). Once the training is complete, we can export a
textured surface mesh in standard formats such as wavefront
OBJ and PNG, which is ready-to-use for various down-
stream applications (Section 3.3).

3.1. Efficient NeRF Training (Stage 1)

In the first stage, we leverage the volumetric NeRF
representation to recover both the geometry and appear-
ance of arbitrary scenes. The primary goal of this stage
is to efficiently establish topologically accurate geometry
and decomposed appearance in preparation for the subse-
quent surface mesh refinement phase. While direct work
on polygonal meshes [33] presents challenges in learning
complex geometries, volumetric NeRF [3 1] provides a more

accessible alternative. We follow recent advancements in
grid-based NeRF [32, 43, &, 40] to enhance the efficiency
of NeRF by employing two separate feature grids to repre-
sent the 3D space.

Geometry. Geometry learning is facilitated through a den-
sity grid [32] and a shallow MLP expressed as follows:

o = ¢(MLP(E**(x))), (0

where ¢ is the exponential activation [32] that promotes
sharper surface, £/8%° is a learnable multi-resolutional fea-
ture grid, and x € R? is the position of any 3D point.
Appearance Decomposition. NeRF typically operates un-
der no assumption of illumination or material properties. As
such, previous works have mainly employed a 5D implicit
function conditioned on 3D position and 2D view direction
to model view-dependent appearance. This approach ren-
ders the appearance as a black box, making it challenging
to represent appearance with traditional 2D texture images.

To address this issue, we decompose the appearance
into view-independent diffuse color ¢4 and view-dependent
specular color c, using a color grid and two shallow MLPs,
expressed as follows:

ca, fs = Y(MLPy (E*?(x))), 2)
Cs = w<MLP2 (fsv d))v 3

where 1) refers to the sigmoid activation, f; represents the
intermediate features for the specular color at position X,
and d represents the view direction. The final color is ob-
tained by summing the two terms:

C = Cd+csy (4)

As shown in Figure 3, we successfully separate the dif-
fuse and specular terms. The diffuse color in R® can be
directly converted to an RGB image texture. Meanwhile,
the specular features f; can also be converted to textures,
and the small MLP; can be fit into a fragment shader fol-
lowing [11]. Consequently, the specular color can also be
exported and rendered later (see Section 3.3 for details).

Our approach involves baking the lighting conditions

into the textures. This is because estimating the environ-
ment lighting can be challenging for realistic datasets, and
previous studies have observed that this can result in re-
duced rendering quality [60, 33].
Loss function. To optimize our model, we use the original
NeRF’s rendering loss. Given a ray r originating from o
with direction d, we query the model at positions x; = o0 +
t;d, sequentially sampled along the ray, for densities o; and
colors c¢;. The final pixel color is obtained by numerical
quadrature using the following equation:

C(r) = ZTac T =[]0 - «ay), (5)

j<i
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Figure 2: NeRF2Mesh Framework. The geometry is initially learned with a density grid, and then extracted to form a
coarse mesh. We optimize it into a fine mesh with more accurate surface and adaptive face density. The appearance is learned
with a color grid shared by two stages, and decomposed into diffuse and specular terms. After convergence, we can export
the fine mesh, unwrap its UV coordinates, and bake the appearance into texture images.
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Figure 3: Appearance Decomposition. We separately
model the diffuse and specular color.

where 0; = t;1.1 —t; is the step size, o; = 1—exp(—0;6;) is
the point-wise rendering weight, and 7; is the transmittance.
We minimize the loss between each pixel’s predicted color

C(r) and the ground truth color C(r):
LNerF = ZHC(r)—C(r)HQ, (©6)

We encourage separation of the diffuse and specular terms
by applying a L2 regularization on the specular color:

ﬁspecular = Z ||Cs (Xi)||2a @)

To make the surface sharper, we apply an entropy regular-
ization on the rendering weights:

Eemropy = - Z(az 10g0‘i + (1 - ai) log(l - az)) (®)

%
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Figure 4: Mesh Refinement. We refine both the geometry
and appearance of the coarse mesh in stage 2.

where «; is the per-point rendering weight. For unbounded
outdoor scenes, we also apply Total Variation (TV) regular-
ization on the density field £5° to reduce floaters [43, &].

3.2. Surface Mesh Refinement (Stage 2)

After stage 1 converges, we apply Marching Cubes [29]
to extract a coarse mesh M yuse from the density field,
which serves as the initialization for stage 2. We combine
differentiable rendering technique with an iterative surface
refinement algorithm. The goal of this stage is to accom-
plish joint optimization of the geometry and appearance for
the coarse mesh extracted in the first stage. The process
involves enhancement of the vertex positions, face density,
and surface appearance, as depicted in Figure 4.
Appearance refinement. We use nvdiffrast [33] to



perform differentiable rendering. The mesh undergoes ras-
terization and the 3D positions are interpolated onto the
image space pixel-wisely. Since the pixel colors are still
queried in a point-wise manner, the appearance model from
stage 1 can be inherited into stage 2. This eliminates the
need to learn the appearance from scratch, reducing the re-
quired training steps for stage 2 to converge. The pixel-wise
color loss in Equation 6 is still applied in stage 2 to allow
joint optimization of appearance and geometry.

Iterative mesh refinement. The coarse mesh M ase are
often flawed. These flaws include inaccurate vertices and
dense, evenly-distributed faces, leading to vast disk storage
and slow rendering speed. Our goal is to recover delicate
meshes resembling human-made ones by refining both ver-
tex positions and face density.

Given an initial coarse mesh M oase = {V, F }, We as-
sign a trainable offset Av,; to each vertex v; € V. We
use differentiable rendering [23] to optimize these offsets
by back-propagating the image-space loss gradients [33]. In
contrast, mesh faces are not differentiable and cannot be op-
timized via back-propagation in the same way. To address
this problem, we propose an iterative mesh refinement algo-
rithm, which is inspired by the Iteratively Reweighted Least
Squares (IRLS) algorithm [20]. The key idea is to adap-
tively adjust face density based on previous training errors,
given that inaccurate surface is among the factors contribut-
ing to large rendering error. During training, we re-project
the 2D pixel-wise rendering errors from Equation 6 to the
corresponding mesh faces and accumulate face-wise errors.
After a certain number of iterations, we sort all face errors
Face and determine two thresholds:

€subdivide = percentﬂe(Eface; 95)7 &)
€decimate = percentile(Eface7 50)7 (10)

Faces with error above egypgivige are mid-point subdi-
vided [12] to increase face density, while faces with error
below €gecimate are decimated [16] and remeshed to reduce
face density. After the mesh updating, we reinitialize the
vertex offsets and face errors and continue the training. This
process is repeated several times until stage 2 finishes.
Unbounded scene. Without loss of generality, we are
able to model forward-facing [30] and unbounded outdoor
scenes [3]. We divide the scene into multiple geometri-
cally growing regions [—2%,2%]3 k € {0,1,2,---} similar
to Instant-NGP [32]. Each region exports a separate mesh,
with the overlapping part automatically excluded to form
the complete geometry of the scene. As the outer regions
(k > 1) have a lower level of detail in comparison to the
centre region (k = 0), we reduce the marching cubes res-
olution as k increases. The iterative mesh refinement pro-
cedure solely focuses on the center region since the outer
regions have relatively simpler geometry.

Loss function. To prevent abrupt geometry, we apply a
Laplacian smoothing 10ss Lsmoom [34, 271:

1
Lomootn = Y > gl (vt Avi)—(vi+AvyIP, (b
i jES; Y

where 5; is the set of neighboring vertex indices for v;. In
addition, we regularize the vertices offset with an L2 loss:

ﬁoffset:ZHAvi”Qa (12)
7

This ensures that the vertices do not move too far from their
original positions.

3.3. Mesh Exportation

The ultimate goal of our framework is to export a surface
mesh with textures that are compatible with commonly used
3D hardware and software. We currently have a surface
mesh My from stage 2, but the appearance is still encoded
in a 3D color grid. To extract the appearance as texture
images, we first unwrap the UV coordinates of My [55].
Subsequently, we bake the surface’s diffuse color ¢4 and
specular features fs into two separate images, I; and I,
respectively.

Real-time rendering. Our exported mesh can be efficiently
accelerated and rendered in real-time, as a conventional tex-
tured mesh. The diffuse texture I; can be interpreted as an
RGB image and rendered in most OpenGL-enabled devices
with 3D software packages (e.g., Blender [13], Unity [17]).
To render the specular color, we adopt the approach pro-
posed in MobileNeRF [11]. We export the weights of the
small MLP, and incorporate them into a fragment shader.
This custom shader enables real-time evaluation and the ad-
dition of the specular term to the diffuse term, allowing for
view-dependent effects.

Mesh manipulation. Similar to a conventional textured
mesh, the mesh we export can be readily modified and
edited in terms of both geometry and appearance. Addi-
tionally, it facilitates the combination of multiple exported
meshes, as can be observed in Figure 1.

4. Experiment
4.1. Implementation Details

In the first stage, we train for 30,000 steps, with each
step evaluating approximately 2'® points. An exponentially
decayed learning rate schedule ranging from 1 x 102 to
1 x 103 is employed. Specifically, during the initial 1, 000
steps, training solely employs the diffuse color to encourage
the appearance factorization. For the second stage, we train
additional 10,000 to 30,000 steps based on convergence,
and set the learning rate for vertex offsets to 1 x 1074,
The Adam [22] optimizer is utilized for both stages. The
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Figure 5: Surface reconstruction quality on NeRF-synthetic dataset. Our method achieves superior mesh reconstruction
quality compared to previous methods, especially on thin structures with complex topology. We decimate meshes from
NeusS [48] to 25% of the original faces since they are too dense to visualize.

Chair Drums Ficus

Hotdog Lego

Materials Mic  Ship | Mean

NeusS [48] 3.95 6.68 2.84
NVdiffrec [33] 4.13 8.27 547

8.36 6.62 4.10 299 954 | 5.64
7.31 5.78 4.98 338 25.89 | 8.15

Ours (coarse mesh) | 5.76 7.81 6.05
Ours (fine mesh) 4.60 6.02 2.44

7.09 7.15 4.95 871 1032 | 7.23
5.19 5.85 4.51 347 839 | 5.06

Table 1: Chamfer Distance | (Unit is 10~2) on the NeRF-synthetic dataset compared to the ground truth meshes.

coarse mesh is extracted at a resolution of 5123 with a den-
sity threshold of 10, and its face number is decimated to
3 x 10° after extraction. We maintain a density grid to
facilitate ray pruning, following the approach proposed in
Instant-NGP [32]. All experiments are conducted on a sin-
gle NVIDIA V100 GPU. Please refer to the supplementary
materials for more details.

Datasets. We experiment on three datasets to verify the
effectiveness and generalization ability of our method: 1)
NeRF-Synthetic [3 1] dataset contains 8 synthetic scenes. 2)
LLFF [30] dataset contains 8 realitic forward-facing scenes.
3) Mip-NeRF 360 [3] dataset contains 3 publicly available
realistic unbounded outdoor scenes. Our method generalize
well to different types of datasets and reconstruct faithful
mesh even for challenging unbounded scenes.

4.2. Comparisons

4.2.1 Mesh Quality

Surface reconstruction. The lack of ground truth meshes
for realistic scenes makes it challenging to measure surface
reconstruction quality. As such, we primarily compare re-

sults on synthetic datasets, as done in NVdiffrec [33]. We
provide qualitative assessments of the extracted meshes pro-
duced by different methods, as shown in Figure 5. Specif-
ically, we focus on thin structures such as dense foliage
and rope net. Our method successfully reconstructs these
structures with high fidelity, while other methods fail to re-
construct the complex geometry accurately. Additionally,
our method produces meshes with more order and neatness,
similar to human-made ground truths.

To quantify the surface reconstruction quality, we em-
ploy the bi-directional Chamfer Distance (CD) metric.
However, as the ground truth meshes may not be surface
meshes (e.g., the Lego mesh is actually made up of many
small bricks), we cast rays from the test cameras and sam-
ple 2.5M points from these ray-surface intersections per
scene. In Table 1, we present the averaged CD for all
scenes, demonstrating that our method achieves the best
results. We note that our approach performs particularly
well on scenes with complex topology, such as ficus, ship,
and lego. However, our method performs slightly worse on
scenes with lots of non-lambertian surfaces, such as mate-
rials. This originates from the relatively limited capacity of



NeRF-synthetic LLFF Mip-NeRF 360
#V #F #V  #F | #V #F

Ground Truth 631 873 - - - B
NeusS [48] 1020 2039 - - - -
NVdiffrec [33] 75 80 -

MobileNeRF [11] 494 224 830 339 | 1436 609
Ours (coarse mesh) | 151 300 231 455 | 446 886
Ours (fine mesh) 200 192 397 446 | 718 816

Table 2: Number of Vertices and Faces | (Unit is 10°).
Our method uses relateively fewer vertices and faces on the
NeRF-synthetic dataset with enhanced mesh quality.

NeRF-synthetic LLFF Mip-NeRF 360
Disk  Memory | Disk  Memory | Disk  Memory

SNeRG [19] 86.75 270725 | 337.25 4312.13 - -
MobileNeRF [11] | 125.75  538.38 | 201.50  759.25 | 344.60 1080.00
Ours 73.53 22663 | 124.84 291.50 | 186.84 411.33

Table 3: Disk Storage and GPU Memory Usage | (MB).
We measure the size of exported models and GPU memory
usage in rendering.

our appearance network, as our model attempts to replicate
these lighting effects by adjusting the surface but ends up
with erroneous geometry.

Mesh size. We also evaluate the practical applicability by
comparing the number of vertices and faces in the exported
meshes, as shown in Table 2. Furthermore, we measure
the disk storage and GPU memory usage required for ren-
dering the exported meshes, as presented in Table 3. For
fair comparison, the mesh file format is uncompressed OBJ
& MTL, the texture is PNG, and other metadata is stored
in JSON format. Compared to the ground truth and Mo-
bileNeRF [1 1] on the NeRF-synthetic dataset, our exported
meshes contain fewer vertices and faces. This is because the
iterative mesh refinement process can increase the number
of vertices to enhance surface details, while simultaneously
reducing the number of faces to control mesh size.

4.2.2 Rendering Quality

We present the results of our rendering quality compari-
son in Table 4. We observe a decrease in rendering qual-
ity from NeRF (volume) to mesh. Specifically, we find
that the smoothness regularization term Lspoom plays a cru-
cial role in maintaining a balance between surface smooth-
ness and rendering quality. Disabling this regularization
term leads to better rendering quality at the expense of sur-
face quality (detailed in Section 4.4). We demonstrate that
our mesh-based approach yields superior rendering quality
compared to NVdiffrec [33], which is state-of-the-art in the
surface mesh category. Furthermore, our approach gener-
alizes well to forward-facing and unbounded scenes, while

Mobile-NeRF

Ours (Mesh) Ground Truth

Figure 6: Visualization of rendering quality. Our ex-
ported meshes achieve comparable rendering quality on dif-
ferent datasets.

Mobile-NeRF NVdiffrec Ours

Figure 7: Visualization of texture images. We show that
our textures are more compact and intuitive due to the en-
hanced surface quality.

NVdiffrec [33] is only capable of reconstructing single ob-
jects. MobileNeRF [1 1] exports grid-like meshes that lack
smoothness and may not align well with object surfaces.
These meshes rely on texture transparency to carve out the
surface. Although our smooth meshes exhibit worse ren-
dering quality, our meshes without the smoothness regu-
larization term achieve comparable performance. Figure 6
presents a visualization of our meshes’ rendering quality
and compares them with related methods. In Figure 7, we
also present the texture images exported by different meth-
ods. We demonstrate that our high-quality surface meshes
result in texture images that are more compact and intuitive
than those generated by other methods.

4.3. Efficiency

Our framework demonstrates high efficiency in both
training and inference stages. A single NVIDIA V100 GPU



Category NeRF-synthetic LLFF Mip-NeRF 360
PSNRT SSIM{ LPIPS| | PSNRT SSIMt LPIPS| | PSNRT SSIMt LPIPS|
NeRF [31] Volume 31.00 0.947 0.081 26.50 0.811 0.250 - - -
Ours (volume) 30.88 0.951 0.079 26.42 0.824 0.218 22.33 0.538 0.481
NVdiffrec [33] Surface 29.05 0.939 0.081 - - - - - -
Ours (mesh) mesh 29.76 0.940 0.072 24.75 0.780 0.267 22.36 0.493 0.478
MobileNeRF [11] Non-surface | 30.90 0.947 0.062 2591 0.825 0.183 23.06 0.527 0.434
Ours (mesh W/0 Lgmooth) mesh 31.04 0.948 0.066 24.90 0.778 0.271 22.74 0.523 0.457

Table 4: Rendering Quality Comparison. We report PSNR, SSIM, and LPIPS on different datasets, and compare against

methods from different categories.

‘

ﬁ/& % 3 e 1

Ours Ours w/o Lgnootn  Ours w/o refinement

Figure 8: Qualitative Ablation. We visualize the mesh
structure and texture images for the Mic scene.

with 16GB memory takes roughly 1 hour for the training of
the two stages and mesh exportation per scene. In contrast,
other competing methods often require several hours [33]
or even days [1 1], with higher hardware demands to com-
plete similar tasks. Furthermore, the exported meshes are
lightweight, allowing for real-time rendering on OpenGL-
enabled devices, including mobile devices.

4.4. Ablation Studies

In Figure 8 and Table 5, we conduct an ablation study
focusing on the geometry optimization stage. Specifically,
we compare the full model against variants that exclude ei-
ther the smoothness regularization Lgpoom Or the iterative
mesh refinement process. The results indicate that: 1) When
the smoothness regularization is removed, despite the better
rendering quality, the resulting mesh exhibits irregularities
and self-intersections. The mesh size increases due to the
failure of the iterative mesh refinement algorithm to work
well with such irregular surfaces. Moreover, these irregu-
lar faces lead to poor UV quality and messy texture images.

#V #F Size (MB) PSNR
Ours 58,649 116,698 54.8 31.30
Ours W/0 Lmooth 202,656 396,385 133.0 32.57

Ours w/o refinement | 150,276 300,000 74.8 31.06

Table 5: Quantitative Ablation. We report the mesh statis-
tics and PSNR on the Mic scene.

2) When the iterative mesh refinement is removed, the face
density becomes nearly uniform, resulting in a larger mesh
size and slightly inferior rendering quality. This illustrates
the advantages of modifying face density according to the
errors in the re-projected rendering.

5. Limitations and Conclusion

Although our method has shown promising results, it
still has several limitations. Due to the difficulty of esti-
mating unknown lighting conditions from images without
compromising reconstruction quality [60], we have chosen
to bake illumination into textures, which consequently re-
stricts our ability to perform relighting. Our relatively small
appearance network also struggles to learn complex view-
dependent effects, confounding iterative surface refinement
and resulting in inferior surface quality within these re-
gions. In the future, we hope to address these limitations by
leveraging better appearance modeling techniques. Lastly,
similar to other mesh-based methods [33, 11], we perform
a single-pass rasterization and are unable to handle semi-
transparency.

In summary, we present an efficient framework that can
reconstruct textured surface meshes from multi-view RGB
images. Our approach utilizes NeRF for coarse geometry
and appearance initialization, subsequently extracts and en-
hances a polygonal mesh, and ultimately bakes the appear-
ance into texture images for real-time rendering. The recon-
structed meshes demonstrate an enhanced surface quality,
particularly for thin structures, and are convenient to ma-
nipulation and editing fow downstream applications.
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A. Additional Implementation Details

Network Architecture. We use the multi-resolution hash-
grid encoder [32] and shallow MLPs to cosntruct the first
stage’s NeRF network. The density grid £#°° use 16 reso-
lution levels with each level containing 1-channel features,
and a 2-layer MLP with 32 hidden channels is used to con-
vert the features into density. The color grid E*PP use 16 res-
olution levels with each level containing 2-channel features.
A 3-layer MLP with 64 hidden channels convert the color
features into 3-channel diffuse color and 3-channel specular
features. The specular features along with view directions
are fed into a 2-layer MLP with 32 hidden channels to pro-
duce the view-dependent 3-channel specular color.
Visibility culling & Mesh cleaning. In the first stage of
our approach, we adopt the Marching Cubes algorithm to
extract a coarse mesh from NeRF’s density field. To reduce
the size of the resultant mesh, we incorporate a visibility
culling mechanism to eliminate vertices and faces that are
invisible from all training cameras. More specifically, we
cast rays from each training camera and calculate their in-
tersection with the surface. In doing so, we trace the cor-
responding face and label it as visible. However, in situa-
tions where the training cameras are sparsely located, this
approach may result in excessive culling. To address this
issue, we apply dilation to the visible faces using a prede-
termined kernel size. For the NeRF-synthetic dataset, we
utilize a kernel size of 5, while for the LLFF and Mip-
NeRF 360 dataset, we increase it to a larger value of 50,
given that training cameras may be sparse for the far back-
ground. The mesh can be further post-processed to remove
floaters based on the diameter and number of faces for each
connected component. We also clean the mesh by merg-
ing close vertices, removing duplicated faces, and repair-
ing non-manifold vertices and faces [12]. In essence, these
methods help to remove unnecessary vertices and faces to
maintain a reasonably small mesh size.

Baking. After completing the two-stage training, we con-
vert the appearance network into texture images for real-
time rendering. Initially, the resolution of the texture im-
age is set to 4096 for the center mesh in [—1,1]2. Subse-
quently, for meshes of outdoor regions, the texture resolu-
tion is decreased by a power of 2, with a minimum resolu-
tion of 1024. To eliminate seam-like texture artifacts caused
by UV unwrapping [33], we repair the border of each con-

nected component by out-painting 1 pixel on the texture im-
age. The floating-point diffuse color and specular features
in [0, 1] range are quantized into 8-bit precision PNG im-
ages. Following MobileNeRF [! 1], we found that the ren-
dering quality is not significantly affected through baking.
Hyper-parameters. Since different types of dataset (e.g.,
from objects without background to unbounded scenes)
can require very different hyper-parameters to maximize
performance [31, 43], we explore different set of hyper-
parameters, especially for loss weights. By default, we set
the weight of L1y to 1 x 1078, the weight of Lnoom tO
1 x 1073, and the weight of Loggse; to 0.1. The other loss
weights are default to O unless specified. For the NeRF-
synthetic dataset and the LLFF dataset, we use all the de-
fault weights. For the Mip-NeRF 360 dataset, we set the
weight of Leniropy to 1 X 1073, The training steps for stage 1
is also set differently. We train 30, 000 steps for the NeRF-
synthetic dataset, but we found 10, 000 steps are enough for
the LLFF and Mip-NeRF 360 datasets to converge. For the
iterative mesh refining algorithm, we apply the subdivision
and decimation at {0.1,0.2,0.3,0.4,0.5,0.7} ratio of total
training steps. The minimum edge length for subdivision is
set to 1% of the diagonal of the bounding box of the mesh
(which eqauls to 0.021/3 in our case). We decimate 10%
of the faces with an error above €gecimate, and remesh them
with an average edge length of 2% of the diagonal of the
bounding box of the mesh (0.04+/3).

<—— Coarse Mesh

Fine Mesh

Figure 9: Adaptive Face Density. Our iterative mesh re-
fining allows adaptive face density learned from data. It
enhances the surface quality and reduces face counts.

B. Additional Experimental Results
B.1. Additional Qualitative Results

Relighting. Although the lighting is baked into textures in
our methods, we aim to showcase that our mesh is proficient
enough to execute relighting for a scene captured in pre-
dominantly ambient lighting conditions. Figure 13 exhibits
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Figure 10: Levels of details (LOD) simulation. We deci-
mate the reconstructed mesh to create different LODs.

Figure 11: Limitations. We visualize some examples about
the limitation of our method.

a reconstructed mesh which has been relit with a rotating
point light source. Only the diffuse texture is utilized.
Levels of detail (LODs) simulation. Our textured surface
mesh is demonstrated to be suitable for supporting LODs in
Figure 10. This can solely be accomplished with an accu-
rate surface mesh, as decimation is primarily designed for
minimizing geometric error.

Additional Visualizations. We also provide more visual-

w/ TV (PSNR = 30.65) w/o TV (PSNR =31.03)

Figure 12: Ablation on TV loss. We remove some surface
to show internal geometry.

PSNRT SSIM?1 LPIPS]
Ours 22.36 0.493 0.478
Ours W/0 Lengopy | 22.32 0.492 0.481
Ours w/o Lty 22.22 0.486 0.483

Table 6: We ablate the regularizations on the Mip-NeRF
360 dataset.

ization on scenes with background in Figure 14. In Figure 9,
we show more visualizations on the iterative mesh refining.
In Figure 12, we visualize the effect of the TV loss on mesh
quality.

Limitations. Our method’s limitations are illustrated in
Figure 11. As we solely perform single-layer rasterization,
our approach is incapable of handling semi-transparent ob-
jects such as glass bottles, and tends to learn an opaque tex-
ture. Animal fur, which usually requires volumetric repre-
sentation for better simulation, is difficult to emulate due to
the smoothness regularization of the mesh surface. Lastly,
since the appearance network is relatively small, it can-
not model intricate view-dependent effects. Therefore, our
model tends to manipulate vertices to simulate the effects,
which results in a lack of smoothness and inaccurate geom-
etry. We are hopeful for improved decomposition of surface
and materials to overcome this issue.

B.2. Additional Quantitative Results

The per-scene rendering quality evaluation results are
listed in Table 7, Table 8, and Table 9. In Table 6, we per-
form more ablation on the regularization losses.
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Figure 14: More Visualizations. We visualize the mesh and diffuse color of more scenes from the Mip-NeRF 360 and LLFF
datasets.
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