--- license: apache-2.0 tags: - generated_from_trainer metrics: - recall - precision - accuracy - f1 model-index: - name: UBC-resnet-50-3eph-224 results: [] --- # UBC-resnet-50-3eph-224 This model is a fine-tuned version of [microsoft/resnet-50](https://huggingface.co/microsoft/resnet-50) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.7999 - Recall: 0.6061 - Specificity: 0.8937 - Precision: 0.7089 - Npv: 0.9097 - Accuracy: 0.6860 - F1: 0.6373 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Recall | Specificity | Precision | Npv | Accuracy | F1 | |:-------------:|:-----:|:-----:|:---------------:|:------:|:-----------:|:---------:|:------:|:--------:|:------:| | 0.9759 | 1.0 | 6080 | 0.9368 | 0.5185 | 0.8740 | 0.6852 | 0.8972 | 0.6337 | 0.5423 | | 0.8617 | 2.0 | 12160 | 0.8285 | 0.5921 | 0.8910 | 0.6964 | 0.9062 | 0.6757 | 0.6221 | | 0.8362 | 3.0 | 18240 | 0.7999 | 0.6061 | 0.8937 | 0.7089 | 0.9097 | 0.6860 | 0.6373 | ### Framework versions - Transformers 4.30.2 - Pytorch 2.0.0 - Datasets 2.1.0 - Tokenizers 0.13.3