--- license: apache-2.0 base_model: openai/whisper-base tags: - generated_from_trainer datasets: - common_voice_16_0 metrics: - wer model-index: - name: openai/whisper-base results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: common_voice_16_0 type: common_voice_16_0 config: hi split: test args: hi metrics: - name: Wer type: wer value: 28.648953267516852 --- # openai/whisper-base This model is a fine-tuned version of [openai/whisper-base](https://huggingface.co/openai/whisper-base) on the common_voice_16_0 dataset. It achieves the following results on the evaluation set: - Loss: 0.4679 - Wer: 28.6490 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-06 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 5000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:-------:| | 0.6425 | 6.01 | 500 | 0.7025 | 41.4477 | | 0.3973 | 13.0 | 1000 | 0.5367 | 33.9692 | | 0.3125 | 19.01 | 1500 | 0.4927 | 31.4458 | | 0.2848 | 26.0 | 2000 | 0.4739 | 30.1037 | | 0.2201 | 32.01 | 2500 | 0.4675 | 29.4859 | | 0.2257 | 39.01 | 3000 | 0.4637 | 28.9933 | | 0.1837 | 46.0 | 3500 | 0.4657 | 28.9140 | | 0.1897 | 52.01 | 4000 | 0.4658 | 28.7450 | | 0.1764 | 59.0 | 4500 | 0.4676 | 28.7178 | | 0.1681 | 65.01 | 5000 | 0.4679 | 28.6490 | ### Framework versions - Transformers 4.37.0.dev0 - Pytorch 2.1.2+cu121 - Datasets 2.16.2.dev0 - Tokenizers 0.15.0