--- license: apache-2.0 base_model: arun100/whisper-base-bn tags: - generated_from_trainer datasets: - common_voice_16_0 metrics: - wer model-index: - name: arun100/whisper-base-bn results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: common_voice_16_0 type: common_voice_16_0 config: bn split: test args: bn metrics: - name: Wer type: wer value: 29.92358146984869 --- # arun100/whisper-base-bn This model is a fine-tuned version of [arun100/whisper-base-bn](https://huggingface.co/arun100/whisper-base-bn) on the common_voice_16_0 dataset. It achieves the following results on the evaluation set: - Loss: 0.2151 - Wer: 29.9236 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-06 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 8500 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:-------:| | 0.2476 | 1.72 | 500 | 0.2751 | 36.1695 | | 0.2284 | 3.43 | 1000 | 0.2622 | 35.1668 | | 0.213 | 5.15 | 1500 | 0.2524 | 34.2022 | | 0.2048 | 6.86 | 2000 | 0.2447 | 33.5266 | | 0.1948 | 8.58 | 2500 | 0.2382 | 32.7495 | | 0.1852 | 10.29 | 3000 | 0.2334 | 32.2322 | | 0.1789 | 12.01 | 3500 | 0.2295 | 31.7244 | | 0.1738 | 13.72 | 4000 | 0.2260 | 31.2341 | | 0.166 | 15.44 | 4500 | 0.2236 | 30.9562 | | 0.1629 | 17.15 | 5000 | 0.2214 | 30.8171 | | 0.1636 | 18.87 | 5500 | 0.2194 | 30.4368 | | 0.1578 | 20.58 | 6000 | 0.2181 | 30.2520 | | 0.1628 | 22.3 | 6500 | 0.2170 | 30.1858 | | 0.1566 | 24.01 | 7000 | 0.2161 | 30.0694 | | 0.1564 | 25.73 | 7500 | 0.2156 | 29.9943 | | 0.1545 | 27.44 | 8000 | 0.2153 | 29.9294 | | 0.1548 | 29.16 | 8500 | 0.2151 | 29.9236 | ### Framework versions - Transformers 4.37.0.dev0 - Pytorch 2.1.2+cu121 - Datasets 2.16.2.dev0 - Tokenizers 0.15.0