--- language: - es license: apache-2.0 base_model: openai/whisper-small tags: - hf-asr-leaderboard - generated_from_trainer datasets: - arturoapio/MadeUpWords metrics: - wer model-index: - name: Whisper Small es - Galilei results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice Made up words type: arturoapio/MadeUpWords args: 'config: es, split: test' metrics: - name: Wer type: wer value: 7.2727272727272725 --- # Whisper Small es - Galilei This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the Common Voice Made up words dataset. It achieves the following results on the evaluation set: - Loss: 0.0000 - Wer: 7.2727 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 4000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:------:|:----:|:---------------:|:------:| | 0.0 | 71.43 | 1000 | 0.0000 | 5.4545 | | 0.0 | 142.86 | 2000 | 0.0000 | 9.0909 | | 0.0 | 214.29 | 3000 | 0.0000 | 7.2727 | | 0.0 | 285.71 | 4000 | 0.0000 | 7.2727 | ### Framework versions - Transformers 4.37.2 - Pytorch 2.1.0+cu121 - Datasets 2.17.0 - Tokenizers 0.15.1