--- datasets: - artemkramov/coreference-dataset-ua language: - uk tags: - coreference-resolution - anaphora --- # Coreference resolution model for the Ukrainian language The coreference resolution model for the Ukrainian language was trained on the [silver Ukrainian coreference dataset](https://huggingface.co/datasets/artemkramov/coreference-dataset-ua) using the [F-Coref](https://arxiv.org/abs/2209.04280) library. The model was trained on top of the [XML-Roberta-base model](https://huggingface.co/ukr-models/xlm-roberta-base-uk). ## Model Details ### Model Description - **Developed by:** [Artem Kramov](https://www.linkedin.com/in/artem-kramov-0b3731100/), Andrii Kursin (aqrsn@ukr.net). - **Languages:** Ukrainian - **Finetuned from model:** [XML-Roberta-base](https://huggingface.co/ukr-models/xlm-roberta-base-uk) ### Model Sources - **Repository:** https://github.com/artemkramov/fastcoref-ua/blob/main/README.md - **Demo:** [Google Colab](https://colab.research.google.com/drive/1vsaH15DFDrmKB4aNsQ-9TCQGTW73uk1y?usp=sharing) ### Out-of-Scope Use According to the metrics retrieved from the evaluation dataset, the model is more precision-oriented. Also, there is a high level of granularity of mentions. E.g., the mention "Головний виконавчий директор Андрій Сидоренко" can be divided into the following coreferent groups: ["Головний виконавчий директор Андрій Сидоренко", "Головний виконавчий директор", "Андрій Сидоренко"]. Such a feature can also be used to extract some positions, roles, or other features of entities in the text. ## How to Get Started with the Model Use the code below to get started with the model. ```python from fastcoref import FCoref import spacy nlp = spacy.load('uk_core_news_md') model_path = "artemkramov/coref-ua" model = FCoref(model_name_or_path=model_path, device='cuda:0', nlp=nlp) preds = model.predict( texts=["""Мій друг дав мені свою машину та ключі до неї; крім того, він дав мені його книгу. Я з радістю її читаю."""] ) preds[0].get_clusters(as_strings=False) > [[(0, 3), (13, 17), (66, 70), (83, 84)], [(0, 8), (18, 22), (58, 61), (71, 75)], [(18, 29), (42, 45)], [(71, 81), (95, 97)]] preds[0].get_clusters() > [['Мій', 'мені', 'мені', 'Я'], ['Мій друг', 'свою', 'він', 'його'], ['свою машину', 'неї'], ['його книгу', 'її']] preds[0].get_logit( span_i=(13, 17), span_j=(42, 45) ) > -6.867196 ``` ## Training Details ### Training Data The model was trained on the silver coreference resolution dataset: https://huggingface.co/datasets/artemkramov/coreference-dataset-ua. ## Evaluation #### Metrics Two types of metrics were considered: mention-based and the coreference resolution metrics themselves. Mention-based metrics: - mention precision - mention recall - mention F1 Coreference resolution metrics were calculated as the average values across the following metrics: MUC, BCubed, CEAFE: - coreference precision - coreference recall - coreference F1 ### Results The metrics for the validation dataset: | Metric | Value | |:---------------------:|-------| | Mention precision | 0.850 | | Mention recall | 0.798 | | Mention F1 | 0.824 | | Coreference precision | 0.758 | | Coreference recall | 0.706 | | Coreference F1 | 0.731 | #### Summary ## Model Examination [optional] [More Information Needed] ## Environmental Impact Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]