--- language: - en license: mit base_model: prajjwal1/bert-tiny tags: - pytorch - BertForTokenClassification - named-entity-recognition - roberta-base - generated_from_trainer metrics: - recall - precision - f1 - accuracy model-index: - name: bert-tiny-ontonotes results: [] --- # bert-tiny-ontonotes This model is a fine-tuned version of [prajjwal1/bert-tiny](https://huggingface.co/prajjwal1/bert-tiny) on the tner/ontonotes5 dataset. It achieves the following results on the evaluation set: - Loss: 0.1917 - Recall: 0.7193 - Precision: 0.6817 - F1: 0.7000 - Accuracy: 0.9476 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 8e-05 - train_batch_size: 32 - eval_batch_size: 160 - seed: 75241309 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - training_steps: 6000 ### Training results | Training Loss | Epoch | Step | Validation Loss | Recall | Precision | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:------:|:---------:|:------:|:--------:| | 0.4283 | 0.31 | 600 | 0.3864 | 0.4561 | 0.4260 | 0.4405 | 0.9058 | | 0.3214 | 0.63 | 1200 | 0.2865 | 0.5865 | 0.5485 | 0.5669 | 0.9265 | | 0.2886 | 0.94 | 1800 | 0.2439 | 0.6432 | 0.6165 | 0.6295 | 0.9354 | | 0.2511 | 1.25 | 2400 | 0.2233 | 0.6765 | 0.6250 | 0.6497 | 0.9389 | | 0.2224 | 1.56 | 3000 | 0.2088 | 0.6878 | 0.6642 | 0.6758 | 0.9433 | | 0.2181 | 1.88 | 3600 | 0.2001 | 0.7105 | 0.6684 | 0.6888 | 0.9451 | | 0.215 | 2.19 | 4200 | 0.1954 | 0.7140 | 0.6795 | 0.6963 | 0.9469 | | 0.1907 | 2.5 | 4800 | 0.1934 | 0.7169 | 0.6776 | 0.6967 | 0.9470 | | 0.209 | 2.82 | 5400 | 0.1918 | 0.7185 | 0.6812 | 0.6994 | 0.9475 | | 0.2073 | 3.13 | 6000 | 0.1917 | 0.7193 | 0.6817 | 0.7000 | 0.9476 | ### Framework versions - Transformers 4.36.2 - Pytorch 2.1.0+cu121 - Datasets 2.15.0 - Tokenizers 0.15.0