AUG_TEST: UNDERSAMPLE: ACCELERATIONS: - 6 AUG_TRAIN: NOISE_P: 0.2 UNDERSAMPLE: ACCELERATIONS: - 6 CALIBRATION_SIZE: 24 CENTER_FRACTIONS: [] NAME: PoissonDiskMaskFunc PRECOMPUTE: NUM: -1 SEED: -1 USE_NOISE: false CUDNN_BENCHMARK: false DATALOADER: ALT_SAMPLER: PERIOD_SUPERVISED: 1 PERIOD_UNSUPERVISED: 1 DATA_KEYS: [] DROP_LAST: true FILTER: BY: [] GROUP_SAMPLER: AS_BATCH_SAMPLER: true BATCH_BY: - inplane_shape NUM_WORKERS: 8 PREFETCH_FACTOR: 2 SAMPLER_TRAIN: '' SUBSAMPLE_TRAIN: NUM_TOTAL: -1 NUM_TOTAL_BY_GROUP: [] NUM_UNDERSAMPLED: 0 NUM_VAL: -1 NUM_VAL_BY_GROUP: [] SEED: 1000 DATASETS: QDESS: DATASET_TYPE: qDESSImageDataset ECHO_KIND: echo2 KWARGS: - orientation - sagittal TEST: - stanford_qdess_v0.1.0_test TRAIN: - stanford_qdess_v0.1.0_train VAL: - stanford_qdess_v0.1.0_val DESCRIPTION: BRIEF: UNet segmentation following parameters used in MedSegPy - input=echo2, 100 epochs, 0.001 lr w/ 0.9x decay every (2,) epochs, early stopping- T=12, delta=1e-05, bsz=16, qdess args=('orientation', 'sagittal') ENTITY_NAME: ss_recon EXP_NAME: seg-baseline/unet-medsegpy-echo2 PROJECT_NAME: ss_recon TAGS: - seg-baseline - baseline - unet-medsegpy - neurips MODEL: CASCADE: ITFS: PERIOD: 0 RECON_MODEL_NAME: '' SEG_MODEL_NAME: '' SEG_NORMALIZE: '' USE_MAGNITUDE: false ZERO_FILL: false CS: MAX_ITER: 200 REGULARIZATION: 0.005 DENOISING: META_ARCHITECTURE: GeneralizedUnrolledCNN NOISE: STD_DEV: - 1 USE_FULLY_SAMPLED_TARGET: true USE_FULLY_SAMPLED_TARGET_EVAL: null DEVICE: cpu META_ARCHITECTURE: GeneralizedUNet N2R: META_ARCHITECTURE: GeneralizedUnrolledCNN USE_SUPERVISED_CONSISTENCY: false NORMALIZER: KEYWORDS: [] NAME: TopMagnitudeNormalizer PARAMETERS: INIT: - initializers: (("kaiming_normal_", {"nonlinearity":"relu"}), "zeros_") kind: conv patterns: (".*weight", ".*bias") - initializers: ("ones_", "zeros_") kind: norm patterns: (".*weight", ".*bias") - initializers: ("xavier_uniform_",) patterns: ("output_block\.weight",) USE_COMPLEX_WEIGHTS: false RECON_LOSS: NAME: l1 RENORMALIZE_DATA: true WEIGHT: 1.0 SEG: ACTIVATION: sigmoid CLASSES: - pc - fc - men - tc INCLUDE_BACKGROUND: false IN_CHANNELS: null LOSS_NAME: FlattenedDiceLoss LOSS_WEIGHT: 1.0 MODEL: DYNUNET_MONAI: DEEP_SUPERVISION: false DEEP_SUPR_NUM: 1 KERNEL_SIZE: - 3 NORM_NAME: instance RES_BLOCK: false STRIDES: - 1 UPSAMPLE_KERNEL_SIZE: - 2 UNET_MONAI: ACTIVATION: - prelu - {} CHANNELS: [] DROPOUT: 0.0 KERNEL_SIZE: - 3 NORM: - instance - {} NUM_RES_UNITS: 0 STRIDES: [] UP_KERNEL_SIZE: - 3 VNET_MONAI: ACTIVATION: - elu - inplace: true DROPOUT_DIM: 3 DROPOUT_PROB: 0.5 USE_MAGNITUDE: true TASKS: - sem_seg TB_RECON: CHANNELS: - 16 - 32 - 64 DEC_NUM_CONV_BLOCKS: - 2 - 3 ENC_NUM_CONV_BLOCKS: - 1 - 2 - 3 KERNEL_SIZE: - 5 MULTI_CONCAT: [] ORDER: - conv - relu STRIDES: - 2 USE_MAGNITUDE: false UNET: BLOCK_ORDER: - conv - relu - conv - relu - bn CHANNELS: 32 DROPOUT: 0.0 IN_CHANNELS: 2 NUM_POOL_LAYERS: 5 OUT_CHANNELS: 2 UNROLLED: CONV_BLOCK: ACTIVATION: relu NORM: none NORM_AFFINE: false ORDER: - norm - act - drop - conv DROPOUT: 0.0 FIX_STEP_SIZE: false KERNEL_SIZE: - 3 NUM_EMAPS: 1 NUM_FEATURES: 256 NUM_RESBLOCKS: 2 NUM_UNROLLED_STEPS: 5 PADDING: '' SHARE_WEIGHTS: false WEIGHTS: '' OUTPUT_DIR: results://skm-tea/neurips2021/U-Net_E2 SEED: 9001 SOLVER: BASE_LR: 0.001 CHECKPOINT_MONITOR: val_loss CHECKPOINT_PERIOD: 1 EARLY_STOPPING: MIN_DELTA: 1.0e-05 MONITOR: val_loss PATIENCE: 12 GAMMA: 0.9 GRAD_ACCUM_ITERS: 1 LR_SCHEDULER_NAME: StepLR MAX_ITER: 100 MIN_LR: 1.0e-08 MOMENTUM: 0.9 OPTIMIZER: Adam STEPS: - 2 TEST_BATCH_SIZE: 40 TRAIN_BATCH_SIZE: 16 WARMUP_FACTOR: 0.001 WARMUP_ITERS: 1000 WARMUP_METHOD: linear WEIGHT_DECAY: 0.0 WEIGHT_DECAY_NORM: 0.0 TEST: EVAL_PERIOD: 1 EXPECTED_RESULTS: [] FLUSH_PERIOD: -5 QDESS_EVALUATOR: ADDITIONAL_PATHS: [] VAL_METRICS: RECON: [] SEM_SEG: - DSC - VOE - CV - DSC_scan - VOE_scan - CV_scan TIME_SCALE: epoch VERSION: 1 VIS_PERIOD: -100