--- license: mit base_model: roberta-base tags: - generated_from_trainer datasets: - au_tex_tification metrics: - accuracy model-index: - name: roberta-base-autextification results: - task: name: Text Classification type: text-classification dataset: name: au_tex_tification type: au_tex_tification config: detection_en split: train args: detection_en metrics: - name: Accuracy type: accuracy value: 0.6 --- # roberta-base-autextification This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on the au_tex_tification dataset. It achieves the following results on the evaluation set: - Loss: 0.5859 - Accuracy: 0.6 - Roc Auc: 0.7708 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Roc Auc | |:-------------:|:-----:|:----:|:---------------:|:--------:|:-------:| | 0.7484 | 1.0 | 10 | 0.6638 | 0.6 | 0.5625 | | 0.6813 | 2.0 | 20 | 0.6282 | 0.6 | 0.75 | | 0.6084 | 3.0 | 30 | 0.5859 | 0.6 | 0.7708 | ### Framework versions - Transformers 4.35.0 - Pytorch 2.0.0 - Datasets 2.1.0 - Tokenizers 0.14.1