program(1.0) [buildInfo = dict, tensor>({{"coremlc-component-MIL", "3304.5.2"}, {"coremlc-version", "3304.6.2"}, {"coremltools-component-torch", "2.4.1"}, {"coremltools-source-dialect", "TorchScript"}, {"coremltools-version", "8.0b2"}})] { func main(tensor cache_length, tensor decoder_key_padding_mask, tensor encoder_output_embeds, tensor input_ids, tensor key_cache, tensor kv_cache_update_mask, tensor value_cache) { tensor var_24_axis_0 = const()[name = tensor("op_24_axis_0"), val = tensor(0)]; tensor var_24_batch_dims_0 = const()[name = tensor("op_24_batch_dims_0"), val = tensor(0)]; tensor embed_tokens_weight_to_fp16 = const()[name = tensor("embed_tokens_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(64)))]; tensor var_24_cast_fp16 = gather(axis = var_24_axis_0, batch_dims = var_24_batch_dims_0, indices = input_ids, x = embed_tokens_weight_to_fp16)[name = tensor("op_24_cast_fp16")]; tensor var_28_axis_0 = const()[name = tensor("op_28_axis_0"), val = tensor(0)]; tensor var_28_batch_dims_0 = const()[name = tensor("op_28_batch_dims_0"), val = tensor(0)]; tensor embed_positions_weight_to_fp16 = const()[name = tensor("embed_positions_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(39831680)))]; tensor var_28_cast_fp16 = gather(axis = var_28_axis_0, batch_dims = var_28_batch_dims_0, indices = cache_length, x = embed_positions_weight_to_fp16)[name = tensor("op_28_cast_fp16")]; tensor hidden_states_1_cast_fp16 = add(x = var_24_cast_fp16, y = var_28_cast_fp16)[name = tensor("hidden_states_1_cast_fp16")]; tensor var_42_axes_0 = const()[name = tensor("op_42_axes_0"), val = tensor([2])]; tensor var_42_cast_fp16 = expand_dims(axes = var_42_axes_0, x = hidden_states_1_cast_fp16)[name = tensor("op_42_cast_fp16")]; tensor inputs_1_axes_0 = const()[name = tensor("inputs_1_axes_0"), val = tensor([3])]; tensor inputs_1_cast_fp16 = expand_dims(axes = inputs_1_axes_0, x = var_42_cast_fp16)[name = tensor("inputs_1_cast_fp16")]; tensor tile_0 = const()[name = tensor("tile_0"), val = tensor([384, 384, 384, 384])]; tensor var_47_axis_0 = const()[name = tensor("op_47_axis_0"), val = tensor(1)]; tensor var_47_cast_fp16_0, tensor var_47_cast_fp16_1, tensor var_47_cast_fp16_2, tensor var_47_cast_fp16_3 = split(axis = var_47_axis_0, split_sizes = tile_0, x = key_cache)[name = tensor("op_47_cast_fp16")]; tensor tile_1 = const()[name = tensor("tile_1"), val = tensor([384, 384, 384, 384])]; tensor var_54_axis_0 = const()[name = tensor("op_54_axis_0"), val = tensor(1)]; tensor var_54_cast_fp16_0, tensor var_54_cast_fp16_1, tensor var_54_cast_fp16_2, tensor var_54_cast_fp16_3 = split(axis = var_54_axis_0, split_sizes = tile_1, x = value_cache)[name = tensor("op_54_cast_fp16")]; tensor var_64 = const()[name = tensor("op_64"), val = tensor(3)]; tensor var_71 = const()[name = tensor("op_71"), val = tensor(1)]; tensor out_1_axes_0 = const()[name = tensor("out_1_axes_0"), val = tensor([1])]; tensor var_90_to_fp16 = const()[name = tensor("op_90_to_fp16"), val = tensor(0x1.5p-17)]; tensor out_1_cast_fp16 = layer_norm(axes = out_1_axes_0, epsilon = var_90_to_fp16, x = inputs_1_cast_fp16)[name = tensor("out_1_cast_fp16")]; tensor obj_1_mean_0_to_fp16 = const()[name = tensor("obj_1_mean_0_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(40175808)))]; tensor obj_1_variance_0_to_fp16 = const()[name = tensor("obj_1_variance_0_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(40176640)))]; tensor obj_1_gamma_0_to_fp16 = const()[name = tensor("obj_1_gamma_0_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(40177472)))]; tensor obj_1_beta_0_to_fp16 = const()[name = tensor("obj_1_beta_0_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(40178304)))]; tensor obj_1_epsilon_0_to_fp16 = const()[name = tensor("obj_1_epsilon_0_to_fp16"), val = tensor(0x1.5p-17)]; tensor obj_1_cast_fp16 = batch_norm(beta = obj_1_beta_0_to_fp16, epsilon = obj_1_epsilon_0_to_fp16, gamma = obj_1_gamma_0_to_fp16, mean = obj_1_mean_0_to_fp16, variance = obj_1_variance_0_to_fp16, x = out_1_cast_fp16)[name = tensor("obj_1_cast_fp16")]; tensor var_106 = const()[name = tensor("op_106"), val = tensor([1, 1])]; tensor var_108 = const()[name = tensor("op_108"), val = tensor([1, 1])]; tensor query_1_pad_type_0 = const()[name = tensor("query_1_pad_type_0"), val = tensor("custom")]; tensor query_1_pad_0 = const()[name = tensor("query_1_pad_0"), val = tensor([0, 0, 0, 0])]; tensor layers_0_self_attn_q_proj_weight_to_fp16 = const()[name = tensor("layers_0_self_attn_q_proj_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(40179136)))]; tensor layers_0_self_attn_q_proj_bias_to_fp16 = const()[name = tensor("layers_0_self_attn_q_proj_bias_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(40474112)))]; tensor query_1_cast_fp16 = conv(bias = layers_0_self_attn_q_proj_bias_to_fp16, dilations = var_108, groups = var_71, pad = query_1_pad_0, pad_type = query_1_pad_type_0, strides = var_106, weight = layers_0_self_attn_q_proj_weight_to_fp16, x = obj_1_cast_fp16)[name = tensor("query_1_cast_fp16")]; tensor var_112 = const()[name = tensor("op_112"), val = tensor([1, 1])]; tensor var_114 = const()[name = tensor("op_114"), val = tensor([1, 1])]; tensor current_key_1_pad_type_0 = const()[name = tensor("current_key_1_pad_type_0"), val = tensor("custom")]; tensor current_key_1_pad_0 = const()[name = tensor("current_key_1_pad_0"), val = tensor([0, 0, 0, 0])]; tensor layers_0_self_attn_k_proj_weight_to_fp16 = const()[name = tensor("layers_0_self_attn_k_proj_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(40474944)))]; tensor current_key_1_cast_fp16 = conv(dilations = var_114, groups = var_71, pad = current_key_1_pad_0, pad_type = current_key_1_pad_type_0, strides = var_112, weight = layers_0_self_attn_k_proj_weight_to_fp16, x = obj_1_cast_fp16)[name = tensor("current_key_1_cast_fp16")]; tensor var_119 = const()[name = tensor("op_119"), val = tensor([1, 1])]; tensor var_121 = const()[name = tensor("op_121"), val = tensor([1, 1])]; tensor current_value_1_pad_type_0 = const()[name = tensor("current_value_1_pad_type_0"), val = tensor("custom")]; tensor current_value_1_pad_0 = const()[name = tensor("current_value_1_pad_0"), val = tensor([0, 0, 0, 0])]; tensor layers_0_self_attn_v_proj_weight_to_fp16 = const()[name = tensor("layers_0_self_attn_v_proj_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(40769920)))]; tensor layers_0_self_attn_v_proj_bias_to_fp16 = const()[name = tensor("layers_0_self_attn_v_proj_bias_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(41064896)))]; tensor current_value_1_cast_fp16 = conv(bias = layers_0_self_attn_v_proj_bias_to_fp16, dilations = var_121, groups = var_71, pad = current_value_1_pad_0, pad_type = current_value_1_pad_type_0, strides = var_119, weight = layers_0_self_attn_v_proj_weight_to_fp16, x = obj_1_cast_fp16)[name = tensor("current_value_1_cast_fp16")]; tensor var_125_axes_0 = const()[name = tensor("op_125_axes_0"), val = tensor([1])]; tensor var_125_cast_fp16 = expand_dims(axes = var_125_axes_0, x = kv_cache_update_mask)[name = tensor("op_125_cast_fp16")]; tensor var_126_axes_0 = const()[name = tensor("op_126_axes_0"), val = tensor([2])]; tensor var_126_cast_fp16 = expand_dims(axes = var_126_axes_0, x = var_125_cast_fp16)[name = tensor("op_126_cast_fp16")]; tensor var_128_cast_fp16 = mul(x = current_key_1_cast_fp16, y = var_126_cast_fp16)[name = tensor("op_128_cast_fp16")]; tensor var_65_to_fp16 = const()[name = tensor("op_65_to_fp16"), val = tensor(0x1p+0)]; tensor var_129_cast_fp16 = sub(x = var_65_to_fp16, y = var_126_cast_fp16)[name = tensor("op_129_cast_fp16")]; tensor var_130_cast_fp16 = mul(x = var_47_cast_fp16_0, y = var_129_cast_fp16)[name = tensor("op_130_cast_fp16")]; tensor key_1_cast_fp16 = add(x = var_128_cast_fp16, y = var_130_cast_fp16)[name = tensor("key_1_cast_fp16")]; tensor var_132_cast_fp16 = mul(x = current_value_1_cast_fp16, y = var_126_cast_fp16)[name = tensor("op_132_cast_fp16")]; tensor var_134_cast_fp16 = mul(x = var_54_cast_fp16_0, y = var_129_cast_fp16)[name = tensor("op_134_cast_fp16")]; tensor value_1_cast_fp16 = add(x = var_132_cast_fp16, y = var_134_cast_fp16)[name = tensor("value_1_cast_fp16")]; tensor var_137 = const()[name = tensor("op_137"), val = tensor([1, 6, 64, -1])]; tensor mh_q_1_cast_fp16 = reshape(shape = var_137, x = query_1_cast_fp16)[name = tensor("mh_q_1_cast_fp16")]; tensor var_139_to_fp16 = const()[name = tensor("op_139_to_fp16"), val = tensor(0x1p-3)]; tensor var_140_cast_fp16 = mul(x = mh_q_1_cast_fp16, y = var_139_to_fp16)[name = tensor("op_140_cast_fp16")]; tensor var_141 = const()[name = tensor("op_141"), val = tensor([1, 6, 64, -1])]; tensor var_142_cast_fp16 = reshape(shape = var_141, x = key_1_cast_fp16)[name = tensor("op_142_cast_fp16")]; tensor mh_w_1_transpose_x_0 = const()[name = tensor("mh_w_1_transpose_x_0"), val = tensor(true)]; tensor mh_w_1_transpose_y_0 = const()[name = tensor("mh_w_1_transpose_y_0"), val = tensor(false)]; tensor mh_w_1_cast_fp16 = matmul(transpose_x = mh_w_1_transpose_x_0, transpose_y = mh_w_1_transpose_y_0, x = var_140_cast_fp16, y = var_142_cast_fp16)[name = tensor("mh_w_1_cast_fp16")]; tensor var_146_axes_0 = const()[name = tensor("op_146_axes_0"), val = tensor([1])]; tensor var_146_cast_fp16 = expand_dims(axes = var_146_axes_0, x = decoder_key_padding_mask)[name = tensor("op_146_cast_fp16")]; tensor var_147_axes_0 = const()[name = tensor("op_147_axes_0"), val = tensor([2])]; tensor var_147_cast_fp16 = expand_dims(axes = var_147_axes_0, x = var_146_cast_fp16)[name = tensor("op_147_cast_fp16")]; tensor mh_w_3_cast_fp16 = add(x = mh_w_1_cast_fp16, y = var_147_cast_fp16)[name = tensor("mh_w_3_cast_fp16")]; tensor var_150_cast_fp16 = softmax(axis = var_64, x = mh_w_3_cast_fp16)[name = tensor("op_150_cast_fp16")]; tensor var_151 = const()[name = tensor("op_151"), val = tensor([1, 6, 64, -1])]; tensor var_152_cast_fp16 = reshape(shape = var_151, x = value_1_cast_fp16)[name = tensor("op_152_cast_fp16")]; tensor attn_1_transpose_x_0 = const()[name = tensor("attn_1_transpose_x_0"), val = tensor(false)]; tensor attn_1_transpose_y_0 = const()[name = tensor("attn_1_transpose_y_0"), val = tensor(true)]; tensor attn_1_cast_fp16 = matmul(transpose_x = attn_1_transpose_x_0, transpose_y = attn_1_transpose_y_0, x = var_152_cast_fp16, y = var_150_cast_fp16)[name = tensor("attn_1_cast_fp16")]; tensor var_155 = const()[name = tensor("op_155"), val = tensor([1, 384, 1, -1])]; tensor input_1_cast_fp16 = reshape(shape = var_155, x = attn_1_cast_fp16)[name = tensor("input_1_cast_fp16")]; tensor var_159 = const()[name = tensor("op_159"), val = tensor([1, 1])]; tensor var_161 = const()[name = tensor("op_161"), val = tensor([1, 1])]; tensor obj_7_pad_type_0 = const()[name = tensor("obj_7_pad_type_0"), val = tensor("custom")]; tensor obj_7_pad_0 = const()[name = tensor("obj_7_pad_0"), val = tensor([0, 0, 0, 0])]; tensor layers_0_self_attn_o_proj_weight_to_fp16 = const()[name = tensor("layers_0_self_attn_o_proj_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(41065728)))]; tensor layers_0_self_attn_o_proj_bias_to_fp16 = const()[name = tensor("layers_0_self_attn_o_proj_bias_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(41360704)))]; tensor obj_7_cast_fp16 = conv(bias = layers_0_self_attn_o_proj_bias_to_fp16, dilations = var_161, groups = var_71, pad = obj_7_pad_0, pad_type = obj_7_pad_type_0, strides = var_159, weight = layers_0_self_attn_o_proj_weight_to_fp16, x = input_1_cast_fp16)[name = tensor("obj_7_cast_fp16")]; tensor inputs_3_cast_fp16 = add(x = inputs_1_cast_fp16, y = obj_7_cast_fp16)[name = tensor("inputs_3_cast_fp16")]; tensor out_3_axes_0 = const()[name = tensor("out_3_axes_0"), val = tensor([1])]; tensor var_177_to_fp16 = const()[name = tensor("op_177_to_fp16"), val = tensor(0x1.5p-17)]; tensor out_3_cast_fp16 = layer_norm(axes = out_3_axes_0, epsilon = var_177_to_fp16, x = inputs_3_cast_fp16)[name = tensor("out_3_cast_fp16")]; tensor obj_9_gamma_0_to_fp16 = const()[name = tensor("obj_9_gamma_0_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(41361536)))]; tensor obj_9_beta_0_to_fp16 = const()[name = tensor("obj_9_beta_0_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(41362368)))]; tensor obj_9_epsilon_0_to_fp16 = const()[name = tensor("obj_9_epsilon_0_to_fp16"), val = tensor(0x1.5p-17)]; tensor obj_9_cast_fp16 = batch_norm(beta = obj_9_beta_0_to_fp16, epsilon = obj_9_epsilon_0_to_fp16, gamma = obj_9_gamma_0_to_fp16, mean = obj_1_mean_0_to_fp16, variance = obj_1_variance_0_to_fp16, x = out_3_cast_fp16)[name = tensor("obj_9_cast_fp16")]; tensor var_193 = const()[name = tensor("op_193"), val = tensor([1, 1])]; tensor var_195 = const()[name = tensor("op_195"), val = tensor([1, 1])]; tensor query_3_pad_type_0 = const()[name = tensor("query_3_pad_type_0"), val = tensor("custom")]; tensor query_3_pad_0 = const()[name = tensor("query_3_pad_0"), val = tensor([0, 0, 0, 0])]; tensor layers_0_encoder_attn_q_proj_weight_to_fp16 = const()[name = tensor("layers_0_encoder_attn_q_proj_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(41363200)))]; tensor layers_0_encoder_attn_q_proj_bias_to_fp16 = const()[name = tensor("layers_0_encoder_attn_q_proj_bias_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(41658176)))]; tensor query_3_cast_fp16 = conv(bias = layers_0_encoder_attn_q_proj_bias_to_fp16, dilations = var_195, groups = var_71, pad = query_3_pad_0, pad_type = query_3_pad_type_0, strides = var_193, weight = layers_0_encoder_attn_q_proj_weight_to_fp16, x = obj_9_cast_fp16)[name = tensor("query_3_cast_fp16")]; tensor var_199 = const()[name = tensor("op_199"), val = tensor([1, 1])]; tensor var_201 = const()[name = tensor("op_201"), val = tensor([1, 1])]; tensor key_3_pad_type_0 = const()[name = tensor("key_3_pad_type_0"), val = tensor("custom")]; tensor key_3_pad_0 = const()[name = tensor("key_3_pad_0"), val = tensor([0, 0, 0, 0])]; tensor layers_0_encoder_attn_k_proj_weight_to_fp16 = const()[name = tensor("layers_0_encoder_attn_k_proj_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(41659008)))]; tensor key_3_cast_fp16 = conv(dilations = var_201, groups = var_71, pad = key_3_pad_0, pad_type = key_3_pad_type_0, strides = var_199, weight = layers_0_encoder_attn_k_proj_weight_to_fp16, x = encoder_output_embeds)[name = tensor("key_3_cast_fp16")]; tensor var_206 = const()[name = tensor("op_206"), val = tensor([1, 1])]; tensor var_208 = const()[name = tensor("op_208"), val = tensor([1, 1])]; tensor value_3_pad_type_0 = const()[name = tensor("value_3_pad_type_0"), val = tensor("custom")]; tensor value_3_pad_0 = const()[name = tensor("value_3_pad_0"), val = tensor([0, 0, 0, 0])]; tensor layers_0_encoder_attn_v_proj_weight_to_fp16 = const()[name = tensor("layers_0_encoder_attn_v_proj_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(41953984)))]; tensor layers_0_encoder_attn_v_proj_bias_to_fp16 = const()[name = tensor("layers_0_encoder_attn_v_proj_bias_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(42248960)))]; tensor value_3_cast_fp16 = conv(bias = layers_0_encoder_attn_v_proj_bias_to_fp16, dilations = var_208, groups = var_71, pad = value_3_pad_0, pad_type = value_3_pad_type_0, strides = var_206, weight = layers_0_encoder_attn_v_proj_weight_to_fp16, x = encoder_output_embeds)[name = tensor("value_3_cast_fp16")]; tensor var_212 = const()[name = tensor("op_212"), val = tensor([1, 6, 64, -1])]; tensor mh_q_3_cast_fp16 = reshape(shape = var_212, x = query_3_cast_fp16)[name = tensor("mh_q_3_cast_fp16")]; tensor var_214_to_fp16 = const()[name = tensor("op_214_to_fp16"), val = tensor(0x1p-3)]; tensor var_215_cast_fp16 = mul(x = mh_q_3_cast_fp16, y = var_214_to_fp16)[name = tensor("op_215_cast_fp16")]; tensor var_216 = const()[name = tensor("op_216"), val = tensor([1, 6, 64, -1])]; tensor var_217_cast_fp16 = reshape(shape = var_216, x = key_3_cast_fp16)[name = tensor("op_217_cast_fp16")]; tensor mh_w_5_transpose_x_0 = const()[name = tensor("mh_w_5_transpose_x_0"), val = tensor(true)]; tensor mh_w_5_transpose_y_0 = const()[name = tensor("mh_w_5_transpose_y_0"), val = tensor(false)]; tensor mh_w_5_cast_fp16 = matmul(transpose_x = mh_w_5_transpose_x_0, transpose_y = mh_w_5_transpose_y_0, x = var_215_cast_fp16, y = var_217_cast_fp16)[name = tensor("mh_w_5_cast_fp16")]; tensor obj_13_cast_fp16 = softmax(axis = var_64, x = mh_w_5_cast_fp16)[name = tensor("obj_13_cast_fp16")]; tensor var_221 = const()[name = tensor("op_221"), val = tensor([1, 6, 64, -1])]; tensor var_222_cast_fp16 = reshape(shape = var_221, x = value_3_cast_fp16)[name = tensor("op_222_cast_fp16")]; tensor attn_3_transpose_x_0 = const()[name = tensor("attn_3_transpose_x_0"), val = tensor(false)]; tensor attn_3_transpose_y_0 = const()[name = tensor("attn_3_transpose_y_0"), val = tensor(true)]; tensor attn_3_cast_fp16 = matmul(transpose_x = attn_3_transpose_x_0, transpose_y = attn_3_transpose_y_0, x = var_222_cast_fp16, y = obj_13_cast_fp16)[name = tensor("attn_3_cast_fp16")]; tensor var_225 = const()[name = tensor("op_225"), val = tensor([1, 384, 1, -1])]; tensor input_3_cast_fp16 = reshape(shape = var_225, x = attn_3_cast_fp16)[name = tensor("input_3_cast_fp16")]; tensor var_229 = const()[name = tensor("op_229"), val = tensor([1, 1])]; tensor var_231 = const()[name = tensor("op_231"), val = tensor([1, 1])]; tensor obj_11_pad_type_0 = const()[name = tensor("obj_11_pad_type_0"), val = tensor("custom")]; tensor obj_11_pad_0 = const()[name = tensor("obj_11_pad_0"), val = tensor([0, 0, 0, 0])]; tensor layers_0_encoder_attn_o_proj_weight_to_fp16 = const()[name = tensor("layers_0_encoder_attn_o_proj_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(42249792)))]; tensor layers_0_encoder_attn_o_proj_bias_to_fp16 = const()[name = tensor("layers_0_encoder_attn_o_proj_bias_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(42544768)))]; tensor obj_11_cast_fp16 = conv(bias = layers_0_encoder_attn_o_proj_bias_to_fp16, dilations = var_231, groups = var_71, pad = obj_11_pad_0, pad_type = obj_11_pad_type_0, strides = var_229, weight = layers_0_encoder_attn_o_proj_weight_to_fp16, x = input_3_cast_fp16)[name = tensor("obj_11_cast_fp16")]; tensor inputs_5_cast_fp16 = add(x = inputs_3_cast_fp16, y = obj_11_cast_fp16)[name = tensor("inputs_5_cast_fp16")]; tensor out_5_axes_0 = const()[name = tensor("out_5_axes_0"), val = tensor([1])]; tensor var_243_to_fp16 = const()[name = tensor("op_243_to_fp16"), val = tensor(0x1.5p-17)]; tensor out_5_cast_fp16 = layer_norm(axes = out_5_axes_0, epsilon = var_243_to_fp16, x = inputs_5_cast_fp16)[name = tensor("out_5_cast_fp16")]; tensor input_5_gamma_0_to_fp16 = const()[name = tensor("input_5_gamma_0_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(42545600)))]; tensor input_5_beta_0_to_fp16 = const()[name = tensor("input_5_beta_0_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(42546432)))]; tensor input_5_epsilon_0_to_fp16 = const()[name = tensor("input_5_epsilon_0_to_fp16"), val = tensor(0x1.5p-17)]; tensor input_5_cast_fp16 = batch_norm(beta = input_5_beta_0_to_fp16, epsilon = input_5_epsilon_0_to_fp16, gamma = input_5_gamma_0_to_fp16, mean = obj_1_mean_0_to_fp16, variance = obj_1_variance_0_to_fp16, x = out_5_cast_fp16)[name = tensor("input_5_cast_fp16")]; tensor var_255 = const()[name = tensor("op_255"), val = tensor([1, 1])]; tensor var_257 = const()[name = tensor("op_257"), val = tensor([1, 1])]; tensor input_7_pad_type_0 = const()[name = tensor("input_7_pad_type_0"), val = tensor("custom")]; tensor input_7_pad_0 = const()[name = tensor("input_7_pad_0"), val = tensor([0, 0, 0, 0])]; tensor layers_0_fc1_weight_to_fp16 = const()[name = tensor("layers_0_fc1_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(42547264)))]; tensor layers_0_fc1_bias_to_fp16 = const()[name = tensor("layers_0_fc1_bias_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(43726976)))]; tensor input_7_cast_fp16 = conv(bias = layers_0_fc1_bias_to_fp16, dilations = var_257, groups = var_71, pad = input_7_pad_0, pad_type = input_7_pad_type_0, strides = var_255, weight = layers_0_fc1_weight_to_fp16, x = input_5_cast_fp16)[name = tensor("input_7_cast_fp16")]; tensor input_9_mode_0 = const()[name = tensor("input_9_mode_0"), val = tensor("EXACT")]; tensor input_9_cast_fp16 = gelu(mode = input_9_mode_0, x = input_7_cast_fp16)[name = tensor("input_9_cast_fp16")]; tensor var_263 = const()[name = tensor("op_263"), val = tensor([1, 1])]; tensor var_265 = const()[name = tensor("op_265"), val = tensor([1, 1])]; tensor hidden_states_3_pad_type_0 = const()[name = tensor("hidden_states_3_pad_type_0"), val = tensor("custom")]; tensor hidden_states_3_pad_0 = const()[name = tensor("hidden_states_3_pad_0"), val = tensor([0, 0, 0, 0])]; tensor layers_0_fc2_weight_to_fp16 = const()[name = tensor("layers_0_fc2_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(43730112)))]; tensor layers_0_fc2_bias_to_fp16 = const()[name = tensor("layers_0_fc2_bias_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(44909824)))]; tensor hidden_states_3_cast_fp16 = conv(bias = layers_0_fc2_bias_to_fp16, dilations = var_265, groups = var_71, pad = hidden_states_3_pad_0, pad_type = hidden_states_3_pad_type_0, strides = var_263, weight = layers_0_fc2_weight_to_fp16, x = input_9_cast_fp16)[name = tensor("hidden_states_3_cast_fp16")]; tensor inputs_7_cast_fp16 = add(x = inputs_5_cast_fp16, y = hidden_states_3_cast_fp16)[name = tensor("inputs_7_cast_fp16")]; tensor var_278 = const()[name = tensor("op_278"), val = tensor(3)]; tensor var_285 = const()[name = tensor("op_285"), val = tensor(1)]; tensor out_7_axes_0 = const()[name = tensor("out_7_axes_0"), val = tensor([1])]; tensor var_304_to_fp16 = const()[name = tensor("op_304_to_fp16"), val = tensor(0x1.5p-17)]; tensor out_7_cast_fp16 = layer_norm(axes = out_7_axes_0, epsilon = var_304_to_fp16, x = inputs_7_cast_fp16)[name = tensor("out_7_cast_fp16")]; tensor obj_15_gamma_0_to_fp16 = const()[name = tensor("obj_15_gamma_0_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(44910656)))]; tensor obj_15_beta_0_to_fp16 = const()[name = tensor("obj_15_beta_0_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(44911488)))]; tensor obj_15_epsilon_0_to_fp16 = const()[name = tensor("obj_15_epsilon_0_to_fp16"), val = tensor(0x1.5p-17)]; tensor obj_15_cast_fp16 = batch_norm(beta = obj_15_beta_0_to_fp16, epsilon = obj_15_epsilon_0_to_fp16, gamma = obj_15_gamma_0_to_fp16, mean = obj_1_mean_0_to_fp16, variance = obj_1_variance_0_to_fp16, x = out_7_cast_fp16)[name = tensor("obj_15_cast_fp16")]; tensor var_320 = const()[name = tensor("op_320"), val = tensor([1, 1])]; tensor var_322 = const()[name = tensor("op_322"), val = tensor([1, 1])]; tensor query_5_pad_type_0 = const()[name = tensor("query_5_pad_type_0"), val = tensor("custom")]; tensor query_5_pad_0 = const()[name = tensor("query_5_pad_0"), val = tensor([0, 0, 0, 0])]; tensor layers_1_self_attn_q_proj_weight_to_fp16 = const()[name = tensor("layers_1_self_attn_q_proj_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(44912320)))]; tensor layers_1_self_attn_q_proj_bias_to_fp16 = const()[name = tensor("layers_1_self_attn_q_proj_bias_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(45207296)))]; tensor query_5_cast_fp16 = conv(bias = layers_1_self_attn_q_proj_bias_to_fp16, dilations = var_322, groups = var_285, pad = query_5_pad_0, pad_type = query_5_pad_type_0, strides = var_320, weight = layers_1_self_attn_q_proj_weight_to_fp16, x = obj_15_cast_fp16)[name = tensor("query_5_cast_fp16")]; tensor var_326 = const()[name = tensor("op_326"), val = tensor([1, 1])]; tensor var_328 = const()[name = tensor("op_328"), val = tensor([1, 1])]; tensor current_key_3_pad_type_0 = const()[name = tensor("current_key_3_pad_type_0"), val = tensor("custom")]; tensor current_key_3_pad_0 = const()[name = tensor("current_key_3_pad_0"), val = tensor([0, 0, 0, 0])]; tensor layers_1_self_attn_k_proj_weight_to_fp16 = const()[name = tensor("layers_1_self_attn_k_proj_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(45208128)))]; tensor current_key_3_cast_fp16 = conv(dilations = var_328, groups = var_285, pad = current_key_3_pad_0, pad_type = current_key_3_pad_type_0, strides = var_326, weight = layers_1_self_attn_k_proj_weight_to_fp16, x = obj_15_cast_fp16)[name = tensor("current_key_3_cast_fp16")]; tensor var_333 = const()[name = tensor("op_333"), val = tensor([1, 1])]; tensor var_335 = const()[name = tensor("op_335"), val = tensor([1, 1])]; tensor current_value_3_pad_type_0 = const()[name = tensor("current_value_3_pad_type_0"), val = tensor("custom")]; tensor current_value_3_pad_0 = const()[name = tensor("current_value_3_pad_0"), val = tensor([0, 0, 0, 0])]; tensor layers_1_self_attn_v_proj_weight_to_fp16 = const()[name = tensor("layers_1_self_attn_v_proj_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(45503104)))]; tensor layers_1_self_attn_v_proj_bias_to_fp16 = const()[name = tensor("layers_1_self_attn_v_proj_bias_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(45798080)))]; tensor current_value_3_cast_fp16 = conv(bias = layers_1_self_attn_v_proj_bias_to_fp16, dilations = var_335, groups = var_285, pad = current_value_3_pad_0, pad_type = current_value_3_pad_type_0, strides = var_333, weight = layers_1_self_attn_v_proj_weight_to_fp16, x = obj_15_cast_fp16)[name = tensor("current_value_3_cast_fp16")]; tensor var_342_cast_fp16 = mul(x = current_key_3_cast_fp16, y = var_126_cast_fp16)[name = tensor("op_342_cast_fp16")]; tensor var_344_cast_fp16 = mul(x = var_47_cast_fp16_1, y = var_129_cast_fp16)[name = tensor("op_344_cast_fp16")]; tensor key_5_cast_fp16 = add(x = var_342_cast_fp16, y = var_344_cast_fp16)[name = tensor("key_5_cast_fp16")]; tensor var_346_cast_fp16 = mul(x = current_value_3_cast_fp16, y = var_126_cast_fp16)[name = tensor("op_346_cast_fp16")]; tensor var_348_cast_fp16 = mul(x = var_54_cast_fp16_1, y = var_129_cast_fp16)[name = tensor("op_348_cast_fp16")]; tensor value_5_cast_fp16 = add(x = var_346_cast_fp16, y = var_348_cast_fp16)[name = tensor("value_5_cast_fp16")]; tensor var_351 = const()[name = tensor("op_351"), val = tensor([1, 6, 64, -1])]; tensor mh_q_5_cast_fp16 = reshape(shape = var_351, x = query_5_cast_fp16)[name = tensor("mh_q_5_cast_fp16")]; tensor var_353_to_fp16 = const()[name = tensor("op_353_to_fp16"), val = tensor(0x1p-3)]; tensor var_354_cast_fp16 = mul(x = mh_q_5_cast_fp16, y = var_353_to_fp16)[name = tensor("op_354_cast_fp16")]; tensor var_355 = const()[name = tensor("op_355"), val = tensor([1, 6, 64, -1])]; tensor var_356_cast_fp16 = reshape(shape = var_355, x = key_5_cast_fp16)[name = tensor("op_356_cast_fp16")]; tensor mh_w_7_transpose_x_0 = const()[name = tensor("mh_w_7_transpose_x_0"), val = tensor(true)]; tensor mh_w_7_transpose_y_0 = const()[name = tensor("mh_w_7_transpose_y_0"), val = tensor(false)]; tensor mh_w_7_cast_fp16 = matmul(transpose_x = mh_w_7_transpose_x_0, transpose_y = mh_w_7_transpose_y_0, x = var_354_cast_fp16, y = var_356_cast_fp16)[name = tensor("mh_w_7_cast_fp16")]; tensor mh_w_9_cast_fp16 = add(x = mh_w_7_cast_fp16, y = var_147_cast_fp16)[name = tensor("mh_w_9_cast_fp16")]; tensor var_364_cast_fp16 = softmax(axis = var_278, x = mh_w_9_cast_fp16)[name = tensor("op_364_cast_fp16")]; tensor var_365 = const()[name = tensor("op_365"), val = tensor([1, 6, 64, -1])]; tensor var_366_cast_fp16 = reshape(shape = var_365, x = value_5_cast_fp16)[name = tensor("op_366_cast_fp16")]; tensor attn_5_transpose_x_0 = const()[name = tensor("attn_5_transpose_x_0"), val = tensor(false)]; tensor attn_5_transpose_y_0 = const()[name = tensor("attn_5_transpose_y_0"), val = tensor(true)]; tensor attn_5_cast_fp16 = matmul(transpose_x = attn_5_transpose_x_0, transpose_y = attn_5_transpose_y_0, x = var_366_cast_fp16, y = var_364_cast_fp16)[name = tensor("attn_5_cast_fp16")]; tensor var_369 = const()[name = tensor("op_369"), val = tensor([1, 384, 1, -1])]; tensor input_11_cast_fp16 = reshape(shape = var_369, x = attn_5_cast_fp16)[name = tensor("input_11_cast_fp16")]; tensor var_373 = const()[name = tensor("op_373"), val = tensor([1, 1])]; tensor var_375 = const()[name = tensor("op_375"), val = tensor([1, 1])]; tensor obj_21_pad_type_0 = const()[name = tensor("obj_21_pad_type_0"), val = tensor("custom")]; tensor obj_21_pad_0 = const()[name = tensor("obj_21_pad_0"), val = tensor([0, 0, 0, 0])]; tensor layers_1_self_attn_o_proj_weight_to_fp16 = const()[name = tensor("layers_1_self_attn_o_proj_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(45798912)))]; tensor layers_1_self_attn_o_proj_bias_to_fp16 = const()[name = tensor("layers_1_self_attn_o_proj_bias_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(46093888)))]; tensor obj_21_cast_fp16 = conv(bias = layers_1_self_attn_o_proj_bias_to_fp16, dilations = var_375, groups = var_285, pad = obj_21_pad_0, pad_type = obj_21_pad_type_0, strides = var_373, weight = layers_1_self_attn_o_proj_weight_to_fp16, x = input_11_cast_fp16)[name = tensor("obj_21_cast_fp16")]; tensor inputs_9_cast_fp16 = add(x = inputs_7_cast_fp16, y = obj_21_cast_fp16)[name = tensor("inputs_9_cast_fp16")]; tensor out_9_axes_0 = const()[name = tensor("out_9_axes_0"), val = tensor([1])]; tensor var_391_to_fp16 = const()[name = tensor("op_391_to_fp16"), val = tensor(0x1.5p-17)]; tensor out_9_cast_fp16 = layer_norm(axes = out_9_axes_0, epsilon = var_391_to_fp16, x = inputs_9_cast_fp16)[name = tensor("out_9_cast_fp16")]; tensor obj_23_gamma_0_to_fp16 = const()[name = tensor("obj_23_gamma_0_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(46094720)))]; tensor obj_23_beta_0_to_fp16 = const()[name = tensor("obj_23_beta_0_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(46095552)))]; tensor obj_23_epsilon_0_to_fp16 = const()[name = tensor("obj_23_epsilon_0_to_fp16"), val = tensor(0x1.5p-17)]; tensor obj_23_cast_fp16 = batch_norm(beta = obj_23_beta_0_to_fp16, epsilon = obj_23_epsilon_0_to_fp16, gamma = obj_23_gamma_0_to_fp16, mean = obj_1_mean_0_to_fp16, variance = obj_1_variance_0_to_fp16, x = out_9_cast_fp16)[name = tensor("obj_23_cast_fp16")]; tensor var_407 = const()[name = tensor("op_407"), val = tensor([1, 1])]; tensor var_409 = const()[name = tensor("op_409"), val = tensor([1, 1])]; tensor query_7_pad_type_0 = const()[name = tensor("query_7_pad_type_0"), val = tensor("custom")]; tensor query_7_pad_0 = const()[name = tensor("query_7_pad_0"), val = tensor([0, 0, 0, 0])]; tensor layers_1_encoder_attn_q_proj_weight_to_fp16 = const()[name = tensor("layers_1_encoder_attn_q_proj_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(46096384)))]; tensor layers_1_encoder_attn_q_proj_bias_to_fp16 = const()[name = tensor("layers_1_encoder_attn_q_proj_bias_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(46391360)))]; tensor query_7_cast_fp16 = conv(bias = layers_1_encoder_attn_q_proj_bias_to_fp16, dilations = var_409, groups = var_285, pad = query_7_pad_0, pad_type = query_7_pad_type_0, strides = var_407, weight = layers_1_encoder_attn_q_proj_weight_to_fp16, x = obj_23_cast_fp16)[name = tensor("query_7_cast_fp16")]; tensor var_413 = const()[name = tensor("op_413"), val = tensor([1, 1])]; tensor var_415 = const()[name = tensor("op_415"), val = tensor([1, 1])]; tensor key_7_pad_type_0 = const()[name = tensor("key_7_pad_type_0"), val = tensor("custom")]; tensor key_7_pad_0 = const()[name = tensor("key_7_pad_0"), val = tensor([0, 0, 0, 0])]; tensor layers_1_encoder_attn_k_proj_weight_to_fp16 = const()[name = tensor("layers_1_encoder_attn_k_proj_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(46392192)))]; tensor key_7_cast_fp16 = conv(dilations = var_415, groups = var_285, pad = key_7_pad_0, pad_type = key_7_pad_type_0, strides = var_413, weight = layers_1_encoder_attn_k_proj_weight_to_fp16, x = encoder_output_embeds)[name = tensor("key_7_cast_fp16")]; tensor var_420 = const()[name = tensor("op_420"), val = tensor([1, 1])]; tensor var_422 = const()[name = tensor("op_422"), val = tensor([1, 1])]; tensor value_7_pad_type_0 = const()[name = tensor("value_7_pad_type_0"), val = tensor("custom")]; tensor value_7_pad_0 = const()[name = tensor("value_7_pad_0"), val = tensor([0, 0, 0, 0])]; tensor layers_1_encoder_attn_v_proj_weight_to_fp16 = const()[name = tensor("layers_1_encoder_attn_v_proj_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(46687168)))]; tensor layers_1_encoder_attn_v_proj_bias_to_fp16 = const()[name = tensor("layers_1_encoder_attn_v_proj_bias_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(46982144)))]; tensor value_7_cast_fp16 = conv(bias = layers_1_encoder_attn_v_proj_bias_to_fp16, dilations = var_422, groups = var_285, pad = value_7_pad_0, pad_type = value_7_pad_type_0, strides = var_420, weight = layers_1_encoder_attn_v_proj_weight_to_fp16, x = encoder_output_embeds)[name = tensor("value_7_cast_fp16")]; tensor var_426 = const()[name = tensor("op_426"), val = tensor([1, 6, 64, -1])]; tensor mh_q_7_cast_fp16 = reshape(shape = var_426, x = query_7_cast_fp16)[name = tensor("mh_q_7_cast_fp16")]; tensor var_428_to_fp16 = const()[name = tensor("op_428_to_fp16"), val = tensor(0x1p-3)]; tensor var_429_cast_fp16 = mul(x = mh_q_7_cast_fp16, y = var_428_to_fp16)[name = tensor("op_429_cast_fp16")]; tensor var_430 = const()[name = tensor("op_430"), val = tensor([1, 6, 64, -1])]; tensor var_431_cast_fp16 = reshape(shape = var_430, x = key_7_cast_fp16)[name = tensor("op_431_cast_fp16")]; tensor mh_w_11_transpose_x_0 = const()[name = tensor("mh_w_11_transpose_x_0"), val = tensor(true)]; tensor mh_w_11_transpose_y_0 = const()[name = tensor("mh_w_11_transpose_y_0"), val = tensor(false)]; tensor mh_w_11_cast_fp16 = matmul(transpose_x = mh_w_11_transpose_x_0, transpose_y = mh_w_11_transpose_y_0, x = var_429_cast_fp16, y = var_431_cast_fp16)[name = tensor("mh_w_11_cast_fp16")]; tensor obj_27_cast_fp16 = softmax(axis = var_278, x = mh_w_11_cast_fp16)[name = tensor("obj_27_cast_fp16")]; tensor var_435 = const()[name = tensor("op_435"), val = tensor([1, 6, 64, -1])]; tensor var_436_cast_fp16 = reshape(shape = var_435, x = value_7_cast_fp16)[name = tensor("op_436_cast_fp16")]; tensor attn_7_transpose_x_0 = const()[name = tensor("attn_7_transpose_x_0"), val = tensor(false)]; tensor attn_7_transpose_y_0 = const()[name = tensor("attn_7_transpose_y_0"), val = tensor(true)]; tensor attn_7_cast_fp16 = matmul(transpose_x = attn_7_transpose_x_0, transpose_y = attn_7_transpose_y_0, x = var_436_cast_fp16, y = obj_27_cast_fp16)[name = tensor("attn_7_cast_fp16")]; tensor var_439 = const()[name = tensor("op_439"), val = tensor([1, 384, 1, -1])]; tensor input_13_cast_fp16 = reshape(shape = var_439, x = attn_7_cast_fp16)[name = tensor("input_13_cast_fp16")]; tensor var_443 = const()[name = tensor("op_443"), val = tensor([1, 1])]; tensor var_445 = const()[name = tensor("op_445"), val = tensor([1, 1])]; tensor obj_25_pad_type_0 = const()[name = tensor("obj_25_pad_type_0"), val = tensor("custom")]; tensor obj_25_pad_0 = const()[name = tensor("obj_25_pad_0"), val = tensor([0, 0, 0, 0])]; tensor layers_1_encoder_attn_o_proj_weight_to_fp16 = const()[name = tensor("layers_1_encoder_attn_o_proj_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(46982976)))]; tensor layers_1_encoder_attn_o_proj_bias_to_fp16 = const()[name = tensor("layers_1_encoder_attn_o_proj_bias_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(47277952)))]; tensor obj_25_cast_fp16 = conv(bias = layers_1_encoder_attn_o_proj_bias_to_fp16, dilations = var_445, groups = var_285, pad = obj_25_pad_0, pad_type = obj_25_pad_type_0, strides = var_443, weight = layers_1_encoder_attn_o_proj_weight_to_fp16, x = input_13_cast_fp16)[name = tensor("obj_25_cast_fp16")]; tensor inputs_11_cast_fp16 = add(x = inputs_9_cast_fp16, y = obj_25_cast_fp16)[name = tensor("inputs_11_cast_fp16")]; tensor out_11_axes_0 = const()[name = tensor("out_11_axes_0"), val = tensor([1])]; tensor var_460_to_fp16 = const()[name = tensor("op_460_to_fp16"), val = tensor(0x1.5p-17)]; tensor out_11_cast_fp16 = layer_norm(axes = out_11_axes_0, epsilon = var_460_to_fp16, x = inputs_11_cast_fp16)[name = tensor("out_11_cast_fp16")]; tensor input_15_gamma_0_to_fp16 = const()[name = tensor("input_15_gamma_0_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(47278784)))]; tensor input_15_beta_0_to_fp16 = const()[name = tensor("input_15_beta_0_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(47279616)))]; tensor input_15_epsilon_0_to_fp16 = const()[name = tensor("input_15_epsilon_0_to_fp16"), val = tensor(0x1.5p-17)]; tensor input_15_cast_fp16 = batch_norm(beta = input_15_beta_0_to_fp16, epsilon = input_15_epsilon_0_to_fp16, gamma = input_15_gamma_0_to_fp16, mean = obj_1_mean_0_to_fp16, variance = obj_1_variance_0_to_fp16, x = out_11_cast_fp16)[name = tensor("input_15_cast_fp16")]; tensor var_472 = const()[name = tensor("op_472"), val = tensor([1, 1])]; tensor var_474 = const()[name = tensor("op_474"), val = tensor([1, 1])]; tensor input_17_pad_type_0 = const()[name = tensor("input_17_pad_type_0"), val = tensor("custom")]; tensor input_17_pad_0 = const()[name = tensor("input_17_pad_0"), val = tensor([0, 0, 0, 0])]; tensor layers_1_fc1_weight_to_fp16 = const()[name = tensor("layers_1_fc1_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(47280448)))]; tensor layers_1_fc1_bias_to_fp16 = const()[name = tensor("layers_1_fc1_bias_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(48460160)))]; tensor input_17_cast_fp16 = conv(bias = layers_1_fc1_bias_to_fp16, dilations = var_474, groups = var_285, pad = input_17_pad_0, pad_type = input_17_pad_type_0, strides = var_472, weight = layers_1_fc1_weight_to_fp16, x = input_15_cast_fp16)[name = tensor("input_17_cast_fp16")]; tensor input_19_mode_0 = const()[name = tensor("input_19_mode_0"), val = tensor("EXACT")]; tensor input_19_cast_fp16 = gelu(mode = input_19_mode_0, x = input_17_cast_fp16)[name = tensor("input_19_cast_fp16")]; tensor var_480 = const()[name = tensor("op_480"), val = tensor([1, 1])]; tensor var_482 = const()[name = tensor("op_482"), val = tensor([1, 1])]; tensor hidden_states_5_pad_type_0 = const()[name = tensor("hidden_states_5_pad_type_0"), val = tensor("custom")]; tensor hidden_states_5_pad_0 = const()[name = tensor("hidden_states_5_pad_0"), val = tensor([0, 0, 0, 0])]; tensor layers_1_fc2_weight_to_fp16 = const()[name = tensor("layers_1_fc2_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(48463296)))]; tensor layers_1_fc2_bias_to_fp16 = const()[name = tensor("layers_1_fc2_bias_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(49643008)))]; tensor hidden_states_5_cast_fp16 = conv(bias = layers_1_fc2_bias_to_fp16, dilations = var_482, groups = var_285, pad = hidden_states_5_pad_0, pad_type = hidden_states_5_pad_type_0, strides = var_480, weight = layers_1_fc2_weight_to_fp16, x = input_19_cast_fp16)[name = tensor("hidden_states_5_cast_fp16")]; tensor inputs_13_cast_fp16 = add(x = inputs_11_cast_fp16, y = hidden_states_5_cast_fp16)[name = tensor("inputs_13_cast_fp16")]; tensor var_496 = const()[name = tensor("op_496"), val = tensor(3)]; tensor var_503 = const()[name = tensor("op_503"), val = tensor(1)]; tensor out_13_axes_0 = const()[name = tensor("out_13_axes_0"), val = tensor([1])]; tensor var_522_to_fp16 = const()[name = tensor("op_522_to_fp16"), val = tensor(0x1.5p-17)]; tensor out_13_cast_fp16 = layer_norm(axes = out_13_axes_0, epsilon = var_522_to_fp16, x = inputs_13_cast_fp16)[name = tensor("out_13_cast_fp16")]; tensor obj_29_gamma_0_to_fp16 = const()[name = tensor("obj_29_gamma_0_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(49643840)))]; tensor obj_29_beta_0_to_fp16 = const()[name = tensor("obj_29_beta_0_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(49644672)))]; tensor obj_29_epsilon_0_to_fp16 = const()[name = tensor("obj_29_epsilon_0_to_fp16"), val = tensor(0x1.5p-17)]; tensor obj_29_cast_fp16 = batch_norm(beta = obj_29_beta_0_to_fp16, epsilon = obj_29_epsilon_0_to_fp16, gamma = obj_29_gamma_0_to_fp16, mean = obj_1_mean_0_to_fp16, variance = obj_1_variance_0_to_fp16, x = out_13_cast_fp16)[name = tensor("obj_29_cast_fp16")]; tensor var_538 = const()[name = tensor("op_538"), val = tensor([1, 1])]; tensor var_540 = const()[name = tensor("op_540"), val = tensor([1, 1])]; tensor query_9_pad_type_0 = const()[name = tensor("query_9_pad_type_0"), val = tensor("custom")]; tensor query_9_pad_0 = const()[name = tensor("query_9_pad_0"), val = tensor([0, 0, 0, 0])]; tensor layers_2_self_attn_q_proj_weight_to_fp16 = const()[name = tensor("layers_2_self_attn_q_proj_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(49645504)))]; tensor layers_2_self_attn_q_proj_bias_to_fp16 = const()[name = tensor("layers_2_self_attn_q_proj_bias_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(49940480)))]; tensor query_9_cast_fp16 = conv(bias = layers_2_self_attn_q_proj_bias_to_fp16, dilations = var_540, groups = var_503, pad = query_9_pad_0, pad_type = query_9_pad_type_0, strides = var_538, weight = layers_2_self_attn_q_proj_weight_to_fp16, x = obj_29_cast_fp16)[name = tensor("query_9_cast_fp16")]; tensor var_544 = const()[name = tensor("op_544"), val = tensor([1, 1])]; tensor var_546 = const()[name = tensor("op_546"), val = tensor([1, 1])]; tensor current_key_5_pad_type_0 = const()[name = tensor("current_key_5_pad_type_0"), val = tensor("custom")]; tensor current_key_5_pad_0 = const()[name = tensor("current_key_5_pad_0"), val = tensor([0, 0, 0, 0])]; tensor layers_2_self_attn_k_proj_weight_to_fp16 = const()[name = tensor("layers_2_self_attn_k_proj_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(49941312)))]; tensor current_key_5_cast_fp16 = conv(dilations = var_546, groups = var_503, pad = current_key_5_pad_0, pad_type = current_key_5_pad_type_0, strides = var_544, weight = layers_2_self_attn_k_proj_weight_to_fp16, x = obj_29_cast_fp16)[name = tensor("current_key_5_cast_fp16")]; tensor var_551 = const()[name = tensor("op_551"), val = tensor([1, 1])]; tensor var_553 = const()[name = tensor("op_553"), val = tensor([1, 1])]; tensor current_value_5_pad_type_0 = const()[name = tensor("current_value_5_pad_type_0"), val = tensor("custom")]; tensor current_value_5_pad_0 = const()[name = tensor("current_value_5_pad_0"), val = tensor([0, 0, 0, 0])]; tensor layers_2_self_attn_v_proj_weight_to_fp16 = const()[name = tensor("layers_2_self_attn_v_proj_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(50236288)))]; tensor layers_2_self_attn_v_proj_bias_to_fp16 = const()[name = tensor("layers_2_self_attn_v_proj_bias_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(50531264)))]; tensor current_value_5_cast_fp16 = conv(bias = layers_2_self_attn_v_proj_bias_to_fp16, dilations = var_553, groups = var_503, pad = current_value_5_pad_0, pad_type = current_value_5_pad_type_0, strides = var_551, weight = layers_2_self_attn_v_proj_weight_to_fp16, x = obj_29_cast_fp16)[name = tensor("current_value_5_cast_fp16")]; tensor var_560_cast_fp16 = mul(x = current_key_5_cast_fp16, y = var_126_cast_fp16)[name = tensor("op_560_cast_fp16")]; tensor var_562_cast_fp16 = mul(x = var_47_cast_fp16_2, y = var_129_cast_fp16)[name = tensor("op_562_cast_fp16")]; tensor key_9_cast_fp16 = add(x = var_560_cast_fp16, y = var_562_cast_fp16)[name = tensor("key_9_cast_fp16")]; tensor var_564_cast_fp16 = mul(x = current_value_5_cast_fp16, y = var_126_cast_fp16)[name = tensor("op_564_cast_fp16")]; tensor var_566_cast_fp16 = mul(x = var_54_cast_fp16_2, y = var_129_cast_fp16)[name = tensor("op_566_cast_fp16")]; tensor value_9_cast_fp16 = add(x = var_564_cast_fp16, y = var_566_cast_fp16)[name = tensor("value_9_cast_fp16")]; tensor var_569 = const()[name = tensor("op_569"), val = tensor([1, 6, 64, -1])]; tensor mh_q_9_cast_fp16 = reshape(shape = var_569, x = query_9_cast_fp16)[name = tensor("mh_q_9_cast_fp16")]; tensor var_571_to_fp16 = const()[name = tensor("op_571_to_fp16"), val = tensor(0x1p-3)]; tensor var_572_cast_fp16 = mul(x = mh_q_9_cast_fp16, y = var_571_to_fp16)[name = tensor("op_572_cast_fp16")]; tensor var_573 = const()[name = tensor("op_573"), val = tensor([1, 6, 64, -1])]; tensor var_574_cast_fp16 = reshape(shape = var_573, x = key_9_cast_fp16)[name = tensor("op_574_cast_fp16")]; tensor mh_w_13_transpose_x_0 = const()[name = tensor("mh_w_13_transpose_x_0"), val = tensor(true)]; tensor mh_w_13_transpose_y_0 = const()[name = tensor("mh_w_13_transpose_y_0"), val = tensor(false)]; tensor mh_w_13_cast_fp16 = matmul(transpose_x = mh_w_13_transpose_x_0, transpose_y = mh_w_13_transpose_y_0, x = var_572_cast_fp16, y = var_574_cast_fp16)[name = tensor("mh_w_13_cast_fp16")]; tensor mh_w_15_cast_fp16 = add(x = mh_w_13_cast_fp16, y = var_147_cast_fp16)[name = tensor("mh_w_15_cast_fp16")]; tensor var_582_cast_fp16 = softmax(axis = var_496, x = mh_w_15_cast_fp16)[name = tensor("op_582_cast_fp16")]; tensor var_583 = const()[name = tensor("op_583"), val = tensor([1, 6, 64, -1])]; tensor var_584_cast_fp16 = reshape(shape = var_583, x = value_9_cast_fp16)[name = tensor("op_584_cast_fp16")]; tensor attn_9_transpose_x_0 = const()[name = tensor("attn_9_transpose_x_0"), val = tensor(false)]; tensor attn_9_transpose_y_0 = const()[name = tensor("attn_9_transpose_y_0"), val = tensor(true)]; tensor attn_9_cast_fp16 = matmul(transpose_x = attn_9_transpose_x_0, transpose_y = attn_9_transpose_y_0, x = var_584_cast_fp16, y = var_582_cast_fp16)[name = tensor("attn_9_cast_fp16")]; tensor var_587 = const()[name = tensor("op_587"), val = tensor([1, 384, 1, -1])]; tensor input_21_cast_fp16 = reshape(shape = var_587, x = attn_9_cast_fp16)[name = tensor("input_21_cast_fp16")]; tensor var_591 = const()[name = tensor("op_591"), val = tensor([1, 1])]; tensor var_593 = const()[name = tensor("op_593"), val = tensor([1, 1])]; tensor obj_35_pad_type_0 = const()[name = tensor("obj_35_pad_type_0"), val = tensor("custom")]; tensor obj_35_pad_0 = const()[name = tensor("obj_35_pad_0"), val = tensor([0, 0, 0, 0])]; tensor layers_2_self_attn_o_proj_weight_to_fp16 = const()[name = tensor("layers_2_self_attn_o_proj_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(50532096)))]; tensor layers_2_self_attn_o_proj_bias_to_fp16 = const()[name = tensor("layers_2_self_attn_o_proj_bias_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(50827072)))]; tensor obj_35_cast_fp16 = conv(bias = layers_2_self_attn_o_proj_bias_to_fp16, dilations = var_593, groups = var_503, pad = obj_35_pad_0, pad_type = obj_35_pad_type_0, strides = var_591, weight = layers_2_self_attn_o_proj_weight_to_fp16, x = input_21_cast_fp16)[name = tensor("obj_35_cast_fp16")]; tensor inputs_15_cast_fp16 = add(x = inputs_13_cast_fp16, y = obj_35_cast_fp16)[name = tensor("inputs_15_cast_fp16")]; tensor out_15_axes_0 = const()[name = tensor("out_15_axes_0"), val = tensor([1])]; tensor var_609_to_fp16 = const()[name = tensor("op_609_to_fp16"), val = tensor(0x1.5p-17)]; tensor out_15_cast_fp16 = layer_norm(axes = out_15_axes_0, epsilon = var_609_to_fp16, x = inputs_15_cast_fp16)[name = tensor("out_15_cast_fp16")]; tensor obj_37_gamma_0_to_fp16 = const()[name = tensor("obj_37_gamma_0_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(50827904)))]; tensor obj_37_beta_0_to_fp16 = const()[name = tensor("obj_37_beta_0_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(50828736)))]; tensor obj_37_epsilon_0_to_fp16 = const()[name = tensor("obj_37_epsilon_0_to_fp16"), val = tensor(0x1.5p-17)]; tensor obj_37_cast_fp16 = batch_norm(beta = obj_37_beta_0_to_fp16, epsilon = obj_37_epsilon_0_to_fp16, gamma = obj_37_gamma_0_to_fp16, mean = obj_1_mean_0_to_fp16, variance = obj_1_variance_0_to_fp16, x = out_15_cast_fp16)[name = tensor("obj_37_cast_fp16")]; tensor var_625 = const()[name = tensor("op_625"), val = tensor([1, 1])]; tensor var_627 = const()[name = tensor("op_627"), val = tensor([1, 1])]; tensor query_11_pad_type_0 = const()[name = tensor("query_11_pad_type_0"), val = tensor("custom")]; tensor query_11_pad_0 = const()[name = tensor("query_11_pad_0"), val = tensor([0, 0, 0, 0])]; tensor layers_2_encoder_attn_q_proj_weight_to_fp16 = const()[name = tensor("layers_2_encoder_attn_q_proj_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(50829568)))]; tensor layers_2_encoder_attn_q_proj_bias_to_fp16 = const()[name = tensor("layers_2_encoder_attn_q_proj_bias_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(51124544)))]; tensor query_11_cast_fp16 = conv(bias = layers_2_encoder_attn_q_proj_bias_to_fp16, dilations = var_627, groups = var_503, pad = query_11_pad_0, pad_type = query_11_pad_type_0, strides = var_625, weight = layers_2_encoder_attn_q_proj_weight_to_fp16, x = obj_37_cast_fp16)[name = tensor("query_11_cast_fp16")]; tensor var_631 = const()[name = tensor("op_631"), val = tensor([1, 1])]; tensor var_633 = const()[name = tensor("op_633"), val = tensor([1, 1])]; tensor key_11_pad_type_0 = const()[name = tensor("key_11_pad_type_0"), val = tensor("custom")]; tensor key_11_pad_0 = const()[name = tensor("key_11_pad_0"), val = tensor([0, 0, 0, 0])]; tensor layers_2_encoder_attn_k_proj_weight_to_fp16 = const()[name = tensor("layers_2_encoder_attn_k_proj_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(51125376)))]; tensor key_11_cast_fp16 = conv(dilations = var_633, groups = var_503, pad = key_11_pad_0, pad_type = key_11_pad_type_0, strides = var_631, weight = layers_2_encoder_attn_k_proj_weight_to_fp16, x = encoder_output_embeds)[name = tensor("key_11_cast_fp16")]; tensor var_638 = const()[name = tensor("op_638"), val = tensor([1, 1])]; tensor var_640 = const()[name = tensor("op_640"), val = tensor([1, 1])]; tensor value_11_pad_type_0 = const()[name = tensor("value_11_pad_type_0"), val = tensor("custom")]; tensor value_11_pad_0 = const()[name = tensor("value_11_pad_0"), val = tensor([0, 0, 0, 0])]; tensor layers_2_encoder_attn_v_proj_weight_to_fp16 = const()[name = tensor("layers_2_encoder_attn_v_proj_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(51420352)))]; tensor layers_2_encoder_attn_v_proj_bias_to_fp16 = const()[name = tensor("layers_2_encoder_attn_v_proj_bias_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(51715328)))]; tensor value_11_cast_fp16 = conv(bias = layers_2_encoder_attn_v_proj_bias_to_fp16, dilations = var_640, groups = var_503, pad = value_11_pad_0, pad_type = value_11_pad_type_0, strides = var_638, weight = layers_2_encoder_attn_v_proj_weight_to_fp16, x = encoder_output_embeds)[name = tensor("value_11_cast_fp16")]; tensor var_644 = const()[name = tensor("op_644"), val = tensor([1, 6, 64, -1])]; tensor mh_q_11_cast_fp16 = reshape(shape = var_644, x = query_11_cast_fp16)[name = tensor("mh_q_11_cast_fp16")]; tensor var_646_to_fp16 = const()[name = tensor("op_646_to_fp16"), val = tensor(0x1p-3)]; tensor var_647_cast_fp16 = mul(x = mh_q_11_cast_fp16, y = var_646_to_fp16)[name = tensor("op_647_cast_fp16")]; tensor var_648 = const()[name = tensor("op_648"), val = tensor([1, 6, 64, -1])]; tensor var_649_cast_fp16 = reshape(shape = var_648, x = key_11_cast_fp16)[name = tensor("op_649_cast_fp16")]; tensor mh_w_17_transpose_x_0 = const()[name = tensor("mh_w_17_transpose_x_0"), val = tensor(true)]; tensor mh_w_17_transpose_y_0 = const()[name = tensor("mh_w_17_transpose_y_0"), val = tensor(false)]; tensor mh_w_17_cast_fp16 = matmul(transpose_x = mh_w_17_transpose_x_0, transpose_y = mh_w_17_transpose_y_0, x = var_647_cast_fp16, y = var_649_cast_fp16)[name = tensor("mh_w_17_cast_fp16")]; tensor obj_41_cast_fp16 = softmax(axis = var_496, x = mh_w_17_cast_fp16)[name = tensor("obj_41_cast_fp16")]; tensor var_653 = const()[name = tensor("op_653"), val = tensor([1, 6, 64, -1])]; tensor var_654_cast_fp16 = reshape(shape = var_653, x = value_11_cast_fp16)[name = tensor("op_654_cast_fp16")]; tensor attn_11_transpose_x_0 = const()[name = tensor("attn_11_transpose_x_0"), val = tensor(false)]; tensor attn_11_transpose_y_0 = const()[name = tensor("attn_11_transpose_y_0"), val = tensor(true)]; tensor attn_11_cast_fp16 = matmul(transpose_x = attn_11_transpose_x_0, transpose_y = attn_11_transpose_y_0, x = var_654_cast_fp16, y = obj_41_cast_fp16)[name = tensor("attn_11_cast_fp16")]; tensor var_657 = const()[name = tensor("op_657"), val = tensor([1, 384, 1, -1])]; tensor input_23_cast_fp16 = reshape(shape = var_657, x = attn_11_cast_fp16)[name = tensor("input_23_cast_fp16")]; tensor var_661 = const()[name = tensor("op_661"), val = tensor([1, 1])]; tensor var_663 = const()[name = tensor("op_663"), val = tensor([1, 1])]; tensor obj_39_pad_type_0 = const()[name = tensor("obj_39_pad_type_0"), val = tensor("custom")]; tensor obj_39_pad_0 = const()[name = tensor("obj_39_pad_0"), val = tensor([0, 0, 0, 0])]; tensor layers_2_encoder_attn_o_proj_weight_to_fp16 = const()[name = tensor("layers_2_encoder_attn_o_proj_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(51716160)))]; tensor layers_2_encoder_attn_o_proj_bias_to_fp16 = const()[name = tensor("layers_2_encoder_attn_o_proj_bias_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(52011136)))]; tensor obj_39_cast_fp16 = conv(bias = layers_2_encoder_attn_o_proj_bias_to_fp16, dilations = var_663, groups = var_503, pad = obj_39_pad_0, pad_type = obj_39_pad_type_0, strides = var_661, weight = layers_2_encoder_attn_o_proj_weight_to_fp16, x = input_23_cast_fp16)[name = tensor("obj_39_cast_fp16")]; tensor inputs_17_cast_fp16 = add(x = inputs_15_cast_fp16, y = obj_39_cast_fp16)[name = tensor("inputs_17_cast_fp16")]; tensor out_17_axes_0 = const()[name = tensor("out_17_axes_0"), val = tensor([1])]; tensor var_678_to_fp16 = const()[name = tensor("op_678_to_fp16"), val = tensor(0x1.5p-17)]; tensor out_17_cast_fp16 = layer_norm(axes = out_17_axes_0, epsilon = var_678_to_fp16, x = inputs_17_cast_fp16)[name = tensor("out_17_cast_fp16")]; tensor input_25_gamma_0_to_fp16 = const()[name = tensor("input_25_gamma_0_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(52011968)))]; tensor input_25_beta_0_to_fp16 = const()[name = tensor("input_25_beta_0_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(52012800)))]; tensor input_25_epsilon_0_to_fp16 = const()[name = tensor("input_25_epsilon_0_to_fp16"), val = tensor(0x1.5p-17)]; tensor input_25_cast_fp16 = batch_norm(beta = input_25_beta_0_to_fp16, epsilon = input_25_epsilon_0_to_fp16, gamma = input_25_gamma_0_to_fp16, mean = obj_1_mean_0_to_fp16, variance = obj_1_variance_0_to_fp16, x = out_17_cast_fp16)[name = tensor("input_25_cast_fp16")]; tensor var_690 = const()[name = tensor("op_690"), val = tensor([1, 1])]; tensor var_692 = const()[name = tensor("op_692"), val = tensor([1, 1])]; tensor input_27_pad_type_0 = const()[name = tensor("input_27_pad_type_0"), val = tensor("custom")]; tensor input_27_pad_0 = const()[name = tensor("input_27_pad_0"), val = tensor([0, 0, 0, 0])]; tensor layers_2_fc1_weight_to_fp16 = const()[name = tensor("layers_2_fc1_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(52013632)))]; tensor layers_2_fc1_bias_to_fp16 = const()[name = tensor("layers_2_fc1_bias_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(53193344)))]; tensor input_27_cast_fp16 = conv(bias = layers_2_fc1_bias_to_fp16, dilations = var_692, groups = var_503, pad = input_27_pad_0, pad_type = input_27_pad_type_0, strides = var_690, weight = layers_2_fc1_weight_to_fp16, x = input_25_cast_fp16)[name = tensor("input_27_cast_fp16")]; tensor input_29_mode_0 = const()[name = tensor("input_29_mode_0"), val = tensor("EXACT")]; tensor input_29_cast_fp16 = gelu(mode = input_29_mode_0, x = input_27_cast_fp16)[name = tensor("input_29_cast_fp16")]; tensor var_698 = const()[name = tensor("op_698"), val = tensor([1, 1])]; tensor var_700 = const()[name = tensor("op_700"), val = tensor([1, 1])]; tensor hidden_states_7_pad_type_0 = const()[name = tensor("hidden_states_7_pad_type_0"), val = tensor("custom")]; tensor hidden_states_7_pad_0 = const()[name = tensor("hidden_states_7_pad_0"), val = tensor([0, 0, 0, 0])]; tensor layers_2_fc2_weight_to_fp16 = const()[name = tensor("layers_2_fc2_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(53196480)))]; tensor layers_2_fc2_bias_to_fp16 = const()[name = tensor("layers_2_fc2_bias_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(54376192)))]; tensor hidden_states_7_cast_fp16 = conv(bias = layers_2_fc2_bias_to_fp16, dilations = var_700, groups = var_503, pad = hidden_states_7_pad_0, pad_type = hidden_states_7_pad_type_0, strides = var_698, weight = layers_2_fc2_weight_to_fp16, x = input_29_cast_fp16)[name = tensor("hidden_states_7_cast_fp16")]; tensor inputs_19_cast_fp16 = add(x = inputs_17_cast_fp16, y = hidden_states_7_cast_fp16)[name = tensor("inputs_19_cast_fp16")]; tensor var_714 = const()[name = tensor("op_714"), val = tensor(3)]; tensor var_721 = const()[name = tensor("op_721"), val = tensor(1)]; tensor out_19_axes_0 = const()[name = tensor("out_19_axes_0"), val = tensor([1])]; tensor var_740_to_fp16 = const()[name = tensor("op_740_to_fp16"), val = tensor(0x1.5p-17)]; tensor out_19_cast_fp16 = layer_norm(axes = out_19_axes_0, epsilon = var_740_to_fp16, x = inputs_19_cast_fp16)[name = tensor("out_19_cast_fp16")]; tensor obj_43_gamma_0_to_fp16 = const()[name = tensor("obj_43_gamma_0_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(54377024)))]; tensor obj_43_beta_0_to_fp16 = const()[name = tensor("obj_43_beta_0_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(54377856)))]; tensor obj_43_epsilon_0_to_fp16 = const()[name = tensor("obj_43_epsilon_0_to_fp16"), val = tensor(0x1.5p-17)]; tensor obj_43_cast_fp16 = batch_norm(beta = obj_43_beta_0_to_fp16, epsilon = obj_43_epsilon_0_to_fp16, gamma = obj_43_gamma_0_to_fp16, mean = obj_1_mean_0_to_fp16, variance = obj_1_variance_0_to_fp16, x = out_19_cast_fp16)[name = tensor("obj_43_cast_fp16")]; tensor var_756 = const()[name = tensor("op_756"), val = tensor([1, 1])]; tensor var_758 = const()[name = tensor("op_758"), val = tensor([1, 1])]; tensor query_13_pad_type_0 = const()[name = tensor("query_13_pad_type_0"), val = tensor("custom")]; tensor query_13_pad_0 = const()[name = tensor("query_13_pad_0"), val = tensor([0, 0, 0, 0])]; tensor layers_3_self_attn_q_proj_weight_to_fp16 = const()[name = tensor("layers_3_self_attn_q_proj_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(54378688)))]; tensor layers_3_self_attn_q_proj_bias_to_fp16 = const()[name = tensor("layers_3_self_attn_q_proj_bias_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(54673664)))]; tensor query_13_cast_fp16 = conv(bias = layers_3_self_attn_q_proj_bias_to_fp16, dilations = var_758, groups = var_721, pad = query_13_pad_0, pad_type = query_13_pad_type_0, strides = var_756, weight = layers_3_self_attn_q_proj_weight_to_fp16, x = obj_43_cast_fp16)[name = tensor("query_13_cast_fp16")]; tensor var_762 = const()[name = tensor("op_762"), val = tensor([1, 1])]; tensor var_764 = const()[name = tensor("op_764"), val = tensor([1, 1])]; tensor current_key_pad_type_0 = const()[name = tensor("current_key_pad_type_0"), val = tensor("custom")]; tensor current_key_pad_0 = const()[name = tensor("current_key_pad_0"), val = tensor([0, 0, 0, 0])]; tensor layers_3_self_attn_k_proj_weight_to_fp16 = const()[name = tensor("layers_3_self_attn_k_proj_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(54674496)))]; tensor current_key_cast_fp16 = conv(dilations = var_764, groups = var_721, pad = current_key_pad_0, pad_type = current_key_pad_type_0, strides = var_762, weight = layers_3_self_attn_k_proj_weight_to_fp16, x = obj_43_cast_fp16)[name = tensor("current_key_cast_fp16")]; tensor var_769 = const()[name = tensor("op_769"), val = tensor([1, 1])]; tensor var_771 = const()[name = tensor("op_771"), val = tensor([1, 1])]; tensor current_value_pad_type_0 = const()[name = tensor("current_value_pad_type_0"), val = tensor("custom")]; tensor current_value_pad_0 = const()[name = tensor("current_value_pad_0"), val = tensor([0, 0, 0, 0])]; tensor layers_3_self_attn_v_proj_weight_to_fp16 = const()[name = tensor("layers_3_self_attn_v_proj_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(54969472)))]; tensor layers_3_self_attn_v_proj_bias_to_fp16 = const()[name = tensor("layers_3_self_attn_v_proj_bias_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(55264448)))]; tensor current_value_cast_fp16 = conv(bias = layers_3_self_attn_v_proj_bias_to_fp16, dilations = var_771, groups = var_721, pad = current_value_pad_0, pad_type = current_value_pad_type_0, strides = var_769, weight = layers_3_self_attn_v_proj_weight_to_fp16, x = obj_43_cast_fp16)[name = tensor("current_value_cast_fp16")]; tensor var_778_cast_fp16 = mul(x = current_key_cast_fp16, y = var_126_cast_fp16)[name = tensor("op_778_cast_fp16")]; tensor var_780_cast_fp16 = mul(x = var_47_cast_fp16_3, y = var_129_cast_fp16)[name = tensor("op_780_cast_fp16")]; tensor key_13_cast_fp16 = add(x = var_778_cast_fp16, y = var_780_cast_fp16)[name = tensor("key_13_cast_fp16")]; tensor var_782_cast_fp16 = mul(x = current_value_cast_fp16, y = var_126_cast_fp16)[name = tensor("op_782_cast_fp16")]; tensor var_784_cast_fp16 = mul(x = var_54_cast_fp16_3, y = var_129_cast_fp16)[name = tensor("op_784_cast_fp16")]; tensor value_13_cast_fp16 = add(x = var_782_cast_fp16, y = var_784_cast_fp16)[name = tensor("value_13_cast_fp16")]; tensor var_787 = const()[name = tensor("op_787"), val = tensor([1, 6, 64, -1])]; tensor mh_q_13_cast_fp16 = reshape(shape = var_787, x = query_13_cast_fp16)[name = tensor("mh_q_13_cast_fp16")]; tensor var_789_to_fp16 = const()[name = tensor("op_789_to_fp16"), val = tensor(0x1p-3)]; tensor var_790_cast_fp16 = mul(x = mh_q_13_cast_fp16, y = var_789_to_fp16)[name = tensor("op_790_cast_fp16")]; tensor var_791 = const()[name = tensor("op_791"), val = tensor([1, 6, 64, -1])]; tensor var_792_cast_fp16 = reshape(shape = var_791, x = key_13_cast_fp16)[name = tensor("op_792_cast_fp16")]; tensor mh_w_19_transpose_x_0 = const()[name = tensor("mh_w_19_transpose_x_0"), val = tensor(true)]; tensor mh_w_19_transpose_y_0 = const()[name = tensor("mh_w_19_transpose_y_0"), val = tensor(false)]; tensor mh_w_19_cast_fp16 = matmul(transpose_x = mh_w_19_transpose_x_0, transpose_y = mh_w_19_transpose_y_0, x = var_790_cast_fp16, y = var_792_cast_fp16)[name = tensor("mh_w_19_cast_fp16")]; tensor mh_w_21_cast_fp16 = add(x = mh_w_19_cast_fp16, y = var_147_cast_fp16)[name = tensor("mh_w_21_cast_fp16")]; tensor var_800_cast_fp16 = softmax(axis = var_714, x = mh_w_21_cast_fp16)[name = tensor("op_800_cast_fp16")]; tensor var_801 = const()[name = tensor("op_801"), val = tensor([1, 6, 64, -1])]; tensor var_802_cast_fp16 = reshape(shape = var_801, x = value_13_cast_fp16)[name = tensor("op_802_cast_fp16")]; tensor attn_13_transpose_x_0 = const()[name = tensor("attn_13_transpose_x_0"), val = tensor(false)]; tensor attn_13_transpose_y_0 = const()[name = tensor("attn_13_transpose_y_0"), val = tensor(true)]; tensor attn_13_cast_fp16 = matmul(transpose_x = attn_13_transpose_x_0, transpose_y = attn_13_transpose_y_0, x = var_802_cast_fp16, y = var_800_cast_fp16)[name = tensor("attn_13_cast_fp16")]; tensor var_805 = const()[name = tensor("op_805"), val = tensor([1, 384, 1, -1])]; tensor input_31_cast_fp16 = reshape(shape = var_805, x = attn_13_cast_fp16)[name = tensor("input_31_cast_fp16")]; tensor var_809 = const()[name = tensor("op_809"), val = tensor([1, 1])]; tensor var_811 = const()[name = tensor("op_811"), val = tensor([1, 1])]; tensor obj_49_pad_type_0 = const()[name = tensor("obj_49_pad_type_0"), val = tensor("custom")]; tensor obj_49_pad_0 = const()[name = tensor("obj_49_pad_0"), val = tensor([0, 0, 0, 0])]; tensor layers_3_self_attn_o_proj_weight_to_fp16 = const()[name = tensor("layers_3_self_attn_o_proj_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(55265280)))]; tensor layers_3_self_attn_o_proj_bias_to_fp16 = const()[name = tensor("layers_3_self_attn_o_proj_bias_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(55560256)))]; tensor obj_49_cast_fp16 = conv(bias = layers_3_self_attn_o_proj_bias_to_fp16, dilations = var_811, groups = var_721, pad = obj_49_pad_0, pad_type = obj_49_pad_type_0, strides = var_809, weight = layers_3_self_attn_o_proj_weight_to_fp16, x = input_31_cast_fp16)[name = tensor("obj_49_cast_fp16")]; tensor inputs_21_cast_fp16 = add(x = inputs_19_cast_fp16, y = obj_49_cast_fp16)[name = tensor("inputs_21_cast_fp16")]; tensor out_21_axes_0 = const()[name = tensor("out_21_axes_0"), val = tensor([1])]; tensor var_827_to_fp16 = const()[name = tensor("op_827_to_fp16"), val = tensor(0x1.5p-17)]; tensor out_21_cast_fp16 = layer_norm(axes = out_21_axes_0, epsilon = var_827_to_fp16, x = inputs_21_cast_fp16)[name = tensor("out_21_cast_fp16")]; tensor obj_51_gamma_0_to_fp16 = const()[name = tensor("obj_51_gamma_0_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(55561088)))]; tensor obj_51_beta_0_to_fp16 = const()[name = tensor("obj_51_beta_0_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(55561920)))]; tensor obj_51_epsilon_0_to_fp16 = const()[name = tensor("obj_51_epsilon_0_to_fp16"), val = tensor(0x1.5p-17)]; tensor obj_51_cast_fp16 = batch_norm(beta = obj_51_beta_0_to_fp16, epsilon = obj_51_epsilon_0_to_fp16, gamma = obj_51_gamma_0_to_fp16, mean = obj_1_mean_0_to_fp16, variance = obj_1_variance_0_to_fp16, x = out_21_cast_fp16)[name = tensor("obj_51_cast_fp16")]; tensor var_843 = const()[name = tensor("op_843"), val = tensor([1, 1])]; tensor var_845 = const()[name = tensor("op_845"), val = tensor([1, 1])]; tensor query_pad_type_0 = const()[name = tensor("query_pad_type_0"), val = tensor("custom")]; tensor query_pad_0 = const()[name = tensor("query_pad_0"), val = tensor([0, 0, 0, 0])]; tensor layers_3_encoder_attn_q_proj_weight_to_fp16 = const()[name = tensor("layers_3_encoder_attn_q_proj_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(55562752)))]; tensor layers_3_encoder_attn_q_proj_bias_to_fp16 = const()[name = tensor("layers_3_encoder_attn_q_proj_bias_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(55857728)))]; tensor query_cast_fp16 = conv(bias = layers_3_encoder_attn_q_proj_bias_to_fp16, dilations = var_845, groups = var_721, pad = query_pad_0, pad_type = query_pad_type_0, strides = var_843, weight = layers_3_encoder_attn_q_proj_weight_to_fp16, x = obj_51_cast_fp16)[name = tensor("query_cast_fp16")]; tensor var_849 = const()[name = tensor("op_849"), val = tensor([1, 1])]; tensor var_851 = const()[name = tensor("op_851"), val = tensor([1, 1])]; tensor key_pad_type_0 = const()[name = tensor("key_pad_type_0"), val = tensor("custom")]; tensor key_pad_0 = const()[name = tensor("key_pad_0"), val = tensor([0, 0, 0, 0])]; tensor layers_3_encoder_attn_k_proj_weight_to_fp16 = const()[name = tensor("layers_3_encoder_attn_k_proj_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(55858560)))]; tensor key_cast_fp16 = conv(dilations = var_851, groups = var_721, pad = key_pad_0, pad_type = key_pad_type_0, strides = var_849, weight = layers_3_encoder_attn_k_proj_weight_to_fp16, x = encoder_output_embeds)[name = tensor("key_cast_fp16")]; tensor var_856 = const()[name = tensor("op_856"), val = tensor([1, 1])]; tensor var_858 = const()[name = tensor("op_858"), val = tensor([1, 1])]; tensor value_pad_type_0 = const()[name = tensor("value_pad_type_0"), val = tensor("custom")]; tensor value_pad_0 = const()[name = tensor("value_pad_0"), val = tensor([0, 0, 0, 0])]; tensor layers_3_encoder_attn_v_proj_weight_to_fp16 = const()[name = tensor("layers_3_encoder_attn_v_proj_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(56153536)))]; tensor layers_3_encoder_attn_v_proj_bias_to_fp16 = const()[name = tensor("layers_3_encoder_attn_v_proj_bias_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(56448512)))]; tensor value_cast_fp16 = conv(bias = layers_3_encoder_attn_v_proj_bias_to_fp16, dilations = var_858, groups = var_721, pad = value_pad_0, pad_type = value_pad_type_0, strides = var_856, weight = layers_3_encoder_attn_v_proj_weight_to_fp16, x = encoder_output_embeds)[name = tensor("value_cast_fp16")]; tensor var_862 = const()[name = tensor("op_862"), val = tensor([1, 6, 64, -1])]; tensor mh_q_cast_fp16 = reshape(shape = var_862, x = query_cast_fp16)[name = tensor("mh_q_cast_fp16")]; tensor var_864_to_fp16 = const()[name = tensor("op_864_to_fp16"), val = tensor(0x1p-3)]; tensor var_865_cast_fp16 = mul(x = mh_q_cast_fp16, y = var_864_to_fp16)[name = tensor("op_865_cast_fp16")]; tensor var_866 = const()[name = tensor("op_866"), val = tensor([1, 6, 64, -1])]; tensor var_867_cast_fp16 = reshape(shape = var_866, x = key_cast_fp16)[name = tensor("op_867_cast_fp16")]; tensor mh_w_transpose_x_0 = const()[name = tensor("mh_w_transpose_x_0"), val = tensor(true)]; tensor mh_w_transpose_y_0 = const()[name = tensor("mh_w_transpose_y_0"), val = tensor(false)]; tensor mh_w_cast_fp16 = matmul(transpose_x = mh_w_transpose_x_0, transpose_y = mh_w_transpose_y_0, x = var_865_cast_fp16, y = var_867_cast_fp16)[name = tensor("mh_w_cast_fp16")]; tensor obj_55_cast_fp16 = softmax(axis = var_714, x = mh_w_cast_fp16)[name = tensor("obj_55_cast_fp16")]; tensor var_871 = const()[name = tensor("op_871"), val = tensor([1, 6, 64, -1])]; tensor var_872_cast_fp16 = reshape(shape = var_871, x = value_cast_fp16)[name = tensor("op_872_cast_fp16")]; tensor attn_transpose_x_0 = const()[name = tensor("attn_transpose_x_0"), val = tensor(false)]; tensor attn_transpose_y_0 = const()[name = tensor("attn_transpose_y_0"), val = tensor(true)]; tensor attn_cast_fp16 = matmul(transpose_x = attn_transpose_x_0, transpose_y = attn_transpose_y_0, x = var_872_cast_fp16, y = obj_55_cast_fp16)[name = tensor("attn_cast_fp16")]; tensor var_875 = const()[name = tensor("op_875"), val = tensor([1, 384, 1, -1])]; tensor input_33_cast_fp16 = reshape(shape = var_875, x = attn_cast_fp16)[name = tensor("input_33_cast_fp16")]; tensor var_879 = const()[name = tensor("op_879"), val = tensor([1, 1])]; tensor var_881 = const()[name = tensor("op_881"), val = tensor([1, 1])]; tensor obj_53_pad_type_0 = const()[name = tensor("obj_53_pad_type_0"), val = tensor("custom")]; tensor obj_53_pad_0 = const()[name = tensor("obj_53_pad_0"), val = tensor([0, 0, 0, 0])]; tensor layers_3_encoder_attn_o_proj_weight_to_fp16 = const()[name = tensor("layers_3_encoder_attn_o_proj_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(56449344)))]; tensor layers_3_encoder_attn_o_proj_bias_to_fp16 = const()[name = tensor("layers_3_encoder_attn_o_proj_bias_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(56744320)))]; tensor obj_53_cast_fp16 = conv(bias = layers_3_encoder_attn_o_proj_bias_to_fp16, dilations = var_881, groups = var_721, pad = obj_53_pad_0, pad_type = obj_53_pad_type_0, strides = var_879, weight = layers_3_encoder_attn_o_proj_weight_to_fp16, x = input_33_cast_fp16)[name = tensor("obj_53_cast_fp16")]; tensor inputs_23_cast_fp16 = add(x = inputs_21_cast_fp16, y = obj_53_cast_fp16)[name = tensor("inputs_23_cast_fp16")]; tensor out_23_axes_0 = const()[name = tensor("out_23_axes_0"), val = tensor([1])]; tensor var_896_to_fp16 = const()[name = tensor("op_896_to_fp16"), val = tensor(0x1.5p-17)]; tensor out_23_cast_fp16 = layer_norm(axes = out_23_axes_0, epsilon = var_896_to_fp16, x = inputs_23_cast_fp16)[name = tensor("out_23_cast_fp16")]; tensor input_35_gamma_0_to_fp16 = const()[name = tensor("input_35_gamma_0_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(56745152)))]; tensor input_35_beta_0_to_fp16 = const()[name = tensor("input_35_beta_0_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(56745984)))]; tensor input_35_epsilon_0_to_fp16 = const()[name = tensor("input_35_epsilon_0_to_fp16"), val = tensor(0x1.5p-17)]; tensor input_35_cast_fp16 = batch_norm(beta = input_35_beta_0_to_fp16, epsilon = input_35_epsilon_0_to_fp16, gamma = input_35_gamma_0_to_fp16, mean = obj_1_mean_0_to_fp16, variance = obj_1_variance_0_to_fp16, x = out_23_cast_fp16)[name = tensor("input_35_cast_fp16")]; tensor var_908 = const()[name = tensor("op_908"), val = tensor([1, 1])]; tensor var_910 = const()[name = tensor("op_910"), val = tensor([1, 1])]; tensor input_37_pad_type_0 = const()[name = tensor("input_37_pad_type_0"), val = tensor("custom")]; tensor input_37_pad_0 = const()[name = tensor("input_37_pad_0"), val = tensor([0, 0, 0, 0])]; tensor layers_3_fc1_weight_to_fp16 = const()[name = tensor("layers_3_fc1_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(56746816)))]; tensor layers_3_fc1_bias_to_fp16 = const()[name = tensor("layers_3_fc1_bias_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(57926528)))]; tensor input_37_cast_fp16 = conv(bias = layers_3_fc1_bias_to_fp16, dilations = var_910, groups = var_721, pad = input_37_pad_0, pad_type = input_37_pad_type_0, strides = var_908, weight = layers_3_fc1_weight_to_fp16, x = input_35_cast_fp16)[name = tensor("input_37_cast_fp16")]; tensor input_mode_0 = const()[name = tensor("input_mode_0"), val = tensor("EXACT")]; tensor input_cast_fp16 = gelu(mode = input_mode_0, x = input_37_cast_fp16)[name = tensor("input_cast_fp16")]; tensor var_916 = const()[name = tensor("op_916"), val = tensor([1, 1])]; tensor var_918 = const()[name = tensor("op_918"), val = tensor([1, 1])]; tensor hidden_states_9_pad_type_0 = const()[name = tensor("hidden_states_9_pad_type_0"), val = tensor("custom")]; tensor hidden_states_9_pad_0 = const()[name = tensor("hidden_states_9_pad_0"), val = tensor([0, 0, 0, 0])]; tensor layers_3_fc2_weight_to_fp16 = const()[name = tensor("layers_3_fc2_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(57929664)))]; tensor layers_3_fc2_bias_to_fp16 = const()[name = tensor("layers_3_fc2_bias_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(59109376)))]; tensor hidden_states_9_cast_fp16 = conv(bias = layers_3_fc2_bias_to_fp16, dilations = var_918, groups = var_721, pad = hidden_states_9_pad_0, pad_type = hidden_states_9_pad_type_0, strides = var_916, weight = layers_3_fc2_weight_to_fp16, x = input_cast_fp16)[name = tensor("hidden_states_9_cast_fp16")]; tensor inputs_cast_fp16 = add(x = inputs_23_cast_fp16, y = hidden_states_9_cast_fp16)[name = tensor("inputs_cast_fp16")]; tensor out_axes_0 = const()[name = tensor("out_axes_0"), val = tensor([1])]; tensor var_939_to_fp16 = const()[name = tensor("op_939_to_fp16"), val = tensor(0x1.5p-17)]; tensor out_cast_fp16 = layer_norm(axes = out_axes_0, epsilon = var_939_to_fp16, x = inputs_cast_fp16)[name = tensor("out_cast_fp16")]; tensor hidden_states_gamma_0_to_fp16 = const()[name = tensor("hidden_states_gamma_0_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(59110208)))]; tensor hidden_states_beta_0_to_fp16 = const()[name = tensor("hidden_states_beta_0_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(59111040)))]; tensor hidden_states_epsilon_0_to_fp16 = const()[name = tensor("hidden_states_epsilon_0_to_fp16"), val = tensor(0x1.5p-17)]; tensor hidden_states_cast_fp16 = batch_norm(beta = hidden_states_beta_0_to_fp16, epsilon = hidden_states_epsilon_0_to_fp16, gamma = hidden_states_gamma_0_to_fp16, mean = obj_1_mean_0_to_fp16, variance = obj_1_variance_0_to_fp16, x = out_cast_fp16)[name = tensor("hidden_states_cast_fp16")]; tensor var_950_axes_0 = const()[name = tensor("op_950_axes_0"), val = tensor([2])]; tensor var_950_cast_fp16 = squeeze(axes = var_950_axes_0, x = hidden_states_cast_fp16)[name = tensor("op_950_cast_fp16")]; tensor var_953_perm_0 = const()[name = tensor("op_953_perm_0"), val = tensor([0, 2, 1])]; tensor linear_0_bias_0_to_fp16 = const()[name = tensor("linear_0_bias_0_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(59111872)))]; tensor var_953_cast_fp16 = transpose(perm = var_953_perm_0, x = var_950_cast_fp16)[name = tensor("transpose_0")]; tensor logits = linear(bias = linear_0_bias_0_to_fp16, weight = embed_tokens_weight_to_fp16, x = var_953_cast_fp16)[name = tensor("linear_0_cast_fp16")]; tensor var_957 = const()[name = tensor("op_957"), val = tensor(1)]; tensor obj_59_interleave_0 = const()[name = tensor("obj_59_interleave_0"), val = tensor(false)]; tensor key_cache_updates = concat(axis = var_957, interleave = obj_59_interleave_0, values = (current_key_1_cast_fp16, current_key_3_cast_fp16, current_key_5_cast_fp16, current_key_cast_fp16))[name = tensor("obj_59_cast_fp16")]; tensor var_960 = const()[name = tensor("op_960"), val = tensor(1)]; tensor obj_61_interleave_0 = const()[name = tensor("obj_61_interleave_0"), val = tensor(false)]; tensor value_cache_updates = concat(axis = var_960, interleave = obj_61_interleave_0, values = (current_value_1_cast_fp16, current_value_3_cast_fp16, current_value_5_cast_fp16, current_value_cast_fp16))[name = tensor("obj_61_cast_fp16")]; tensor var_971_begin_0 = const()[name = tensor("op_971_begin_0"), val = tensor([0, 0, 0, 0])]; tensor var_971_end_0 = const()[name = tensor("op_971_end_0"), val = tensor([1, 1, 1, 1500])]; tensor var_971_end_mask_0 = const()[name = tensor("op_971_end_mask_0"), val = tensor([true, false, true, true])]; tensor var_971_cast_fp16 = slice_by_index(begin = var_971_begin_0, end = var_971_end_0, end_mask = var_971_end_mask_0, x = obj_27_cast_fp16)[name = tensor("op_971_cast_fp16")]; tensor var_974_begin_0 = const()[name = tensor("op_974_begin_0"), val = tensor([0, 0, 0, 0])]; tensor var_974_end_0 = const()[name = tensor("op_974_end_0"), val = tensor([1, 1, 1, 1500])]; tensor var_974_end_mask_0 = const()[name = tensor("op_974_end_mask_0"), val = tensor([true, true, false, true])]; tensor var_974_squeeze_mask_0 = const()[name = tensor("op_974_squeeze_mask_0"), val = tensor([false, false, true, false])]; tensor var_974_cast_fp16 = slice_by_index(begin = var_974_begin_0, end = var_974_end_0, end_mask = var_974_end_mask_0, squeeze_mask = var_974_squeeze_mask_0, x = var_971_cast_fp16)[name = tensor("op_974_cast_fp16")]; tensor var_989_begin_0 = const()[name = tensor("op_989_begin_0"), val = tensor([0, 0, 0, 0])]; tensor var_989_end_0 = const()[name = tensor("op_989_end_0"), val = tensor([1, 1, 1, 1500])]; tensor var_989_end_mask_0 = const()[name = tensor("op_989_end_mask_0"), val = tensor([true, false, true, true])]; tensor var_989_cast_fp16 = slice_by_index(begin = var_989_begin_0, end = var_989_end_0, end_mask = var_989_end_mask_0, x = obj_41_cast_fp16)[name = tensor("op_989_cast_fp16")]; tensor var_992_begin_0 = const()[name = tensor("op_992_begin_0"), val = tensor([0, 0, 0, 0])]; tensor var_992_end_0 = const()[name = tensor("op_992_end_0"), val = tensor([1, 1, 1, 1500])]; tensor var_992_end_mask_0 = const()[name = tensor("op_992_end_mask_0"), val = tensor([true, true, false, true])]; tensor var_992_squeeze_mask_0 = const()[name = tensor("op_992_squeeze_mask_0"), val = tensor([false, false, true, false])]; tensor var_992_cast_fp16 = slice_by_index(begin = var_992_begin_0, end = var_992_end_0, end_mask = var_992_end_mask_0, squeeze_mask = var_992_squeeze_mask_0, x = var_989_cast_fp16)[name = tensor("op_992_cast_fp16")]; tensor var_1007_begin_0 = const()[name = tensor("op_1007_begin_0"), val = tensor([0, 5, 0, 0])]; tensor var_1007_end_0 = const()[name = tensor("op_1007_end_0"), val = tensor([1, 6, 1, 1500])]; tensor var_1007_end_mask_0 = const()[name = tensor("op_1007_end_mask_0"), val = tensor([true, false, true, true])]; tensor var_1007_cast_fp16 = slice_by_index(begin = var_1007_begin_0, end = var_1007_end_0, end_mask = var_1007_end_mask_0, x = obj_41_cast_fp16)[name = tensor("op_1007_cast_fp16")]; tensor var_1010_begin_0 = const()[name = tensor("op_1010_begin_0"), val = tensor([0, 0, 0, 0])]; tensor var_1010_end_0 = const()[name = tensor("op_1010_end_0"), val = tensor([1, 1, 1, 1500])]; tensor var_1010_end_mask_0 = const()[name = tensor("op_1010_end_mask_0"), val = tensor([true, true, false, true])]; tensor var_1010_squeeze_mask_0 = const()[name = tensor("op_1010_squeeze_mask_0"), val = tensor([false, false, true, false])]; tensor var_1010_cast_fp16 = slice_by_index(begin = var_1010_begin_0, end = var_1010_end_0, end_mask = var_1010_end_mask_0, squeeze_mask = var_1010_squeeze_mask_0, x = var_1007_cast_fp16)[name = tensor("op_1010_cast_fp16")]; tensor var_1025_begin_0 = const()[name = tensor("op_1025_begin_0"), val = tensor([0, 0, 0, 0])]; tensor var_1025_end_0 = const()[name = tensor("op_1025_end_0"), val = tensor([1, 1, 1, 1500])]; tensor var_1025_end_mask_0 = const()[name = tensor("op_1025_end_mask_0"), val = tensor([true, false, true, true])]; tensor var_1025_cast_fp16 = slice_by_index(begin = var_1025_begin_0, end = var_1025_end_0, end_mask = var_1025_end_mask_0, x = obj_55_cast_fp16)[name = tensor("op_1025_cast_fp16")]; tensor var_1028_begin_0 = const()[name = tensor("op_1028_begin_0"), val = tensor([0, 0, 0, 0])]; tensor var_1028_end_0 = const()[name = tensor("op_1028_end_0"), val = tensor([1, 1, 1, 1500])]; tensor var_1028_end_mask_0 = const()[name = tensor("op_1028_end_mask_0"), val = tensor([true, true, false, true])]; tensor var_1028_squeeze_mask_0 = const()[name = tensor("op_1028_squeeze_mask_0"), val = tensor([false, false, true, false])]; tensor var_1028_cast_fp16 = slice_by_index(begin = var_1028_begin_0, end = var_1028_end_0, end_mask = var_1028_end_mask_0, squeeze_mask = var_1028_squeeze_mask_0, x = var_1025_cast_fp16)[name = tensor("op_1028_cast_fp16")]; tensor var_1043_begin_0 = const()[name = tensor("op_1043_begin_0"), val = tensor([0, 1, 0, 0])]; tensor var_1043_end_0 = const()[name = tensor("op_1043_end_0"), val = tensor([1, 2, 1, 1500])]; tensor var_1043_end_mask_0 = const()[name = tensor("op_1043_end_mask_0"), val = tensor([true, false, true, true])]; tensor var_1043_cast_fp16 = slice_by_index(begin = var_1043_begin_0, end = var_1043_end_0, end_mask = var_1043_end_mask_0, x = obj_55_cast_fp16)[name = tensor("op_1043_cast_fp16")]; tensor var_1046_begin_0 = const()[name = tensor("op_1046_begin_0"), val = tensor([0, 0, 0, 0])]; tensor var_1046_end_0 = const()[name = tensor("op_1046_end_0"), val = tensor([1, 1, 1, 1500])]; tensor var_1046_end_mask_0 = const()[name = tensor("op_1046_end_mask_0"), val = tensor([true, true, false, true])]; tensor var_1046_squeeze_mask_0 = const()[name = tensor("op_1046_squeeze_mask_0"), val = tensor([false, false, true, false])]; tensor var_1046_cast_fp16 = slice_by_index(begin = var_1046_begin_0, end = var_1046_end_0, end_mask = var_1046_end_mask_0, squeeze_mask = var_1046_squeeze_mask_0, x = var_1043_cast_fp16)[name = tensor("op_1046_cast_fp16")]; tensor var_1061_begin_0 = const()[name = tensor("op_1061_begin_0"), val = tensor([0, 2, 0, 0])]; tensor var_1061_end_0 = const()[name = tensor("op_1061_end_0"), val = tensor([1, 3, 1, 1500])]; tensor var_1061_end_mask_0 = const()[name = tensor("op_1061_end_mask_0"), val = tensor([true, false, true, true])]; tensor var_1061_cast_fp16 = slice_by_index(begin = var_1061_begin_0, end = var_1061_end_0, end_mask = var_1061_end_mask_0, x = obj_55_cast_fp16)[name = tensor("op_1061_cast_fp16")]; tensor var_1064_begin_0 = const()[name = tensor("op_1064_begin_0"), val = tensor([0, 0, 0, 0])]; tensor var_1064_end_0 = const()[name = tensor("op_1064_end_0"), val = tensor([1, 1, 1, 1500])]; tensor var_1064_end_mask_0 = const()[name = tensor("op_1064_end_mask_0"), val = tensor([true, true, false, true])]; tensor var_1064_squeeze_mask_0 = const()[name = tensor("op_1064_squeeze_mask_0"), val = tensor([false, false, true, false])]; tensor var_1064_cast_fp16 = slice_by_index(begin = var_1064_begin_0, end = var_1064_end_0, end_mask = var_1064_end_mask_0, squeeze_mask = var_1064_squeeze_mask_0, x = var_1061_cast_fp16)[name = tensor("op_1064_cast_fp16")]; tensor var_1079_begin_0 = const()[name = tensor("op_1079_begin_0"), val = tensor([0, 3, 0, 0])]; tensor var_1079_end_0 = const()[name = tensor("op_1079_end_0"), val = tensor([1, 4, 1, 1500])]; tensor var_1079_end_mask_0 = const()[name = tensor("op_1079_end_mask_0"), val = tensor([true, false, true, true])]; tensor var_1079_cast_fp16 = slice_by_index(begin = var_1079_begin_0, end = var_1079_end_0, end_mask = var_1079_end_mask_0, x = obj_55_cast_fp16)[name = tensor("op_1079_cast_fp16")]; tensor var_1082_begin_0 = const()[name = tensor("op_1082_begin_0"), val = tensor([0, 0, 0, 0])]; tensor var_1082_end_0 = const()[name = tensor("op_1082_end_0"), val = tensor([1, 1, 1, 1500])]; tensor var_1082_end_mask_0 = const()[name = tensor("op_1082_end_mask_0"), val = tensor([true, true, false, true])]; tensor var_1082_squeeze_mask_0 = const()[name = tensor("op_1082_squeeze_mask_0"), val = tensor([false, false, true, false])]; tensor var_1082_cast_fp16 = slice_by_index(begin = var_1082_begin_0, end = var_1082_end_0, end_mask = var_1082_end_mask_0, squeeze_mask = var_1082_squeeze_mask_0, x = var_1079_cast_fp16)[name = tensor("op_1082_cast_fp16")]; tensor var_1097_begin_0 = const()[name = tensor("op_1097_begin_0"), val = tensor([0, 4, 0, 0])]; tensor var_1097_end_0 = const()[name = tensor("op_1097_end_0"), val = tensor([1, 5, 1, 1500])]; tensor var_1097_end_mask_0 = const()[name = tensor("op_1097_end_mask_0"), val = tensor([true, false, true, true])]; tensor var_1097_cast_fp16 = slice_by_index(begin = var_1097_begin_0, end = var_1097_end_0, end_mask = var_1097_end_mask_0, x = obj_55_cast_fp16)[name = tensor("op_1097_cast_fp16")]; tensor var_1100_begin_0 = const()[name = tensor("op_1100_begin_0"), val = tensor([0, 0, 0, 0])]; tensor var_1100_end_0 = const()[name = tensor("op_1100_end_0"), val = tensor([1, 1, 1, 1500])]; tensor var_1100_end_mask_0 = const()[name = tensor("op_1100_end_mask_0"), val = tensor([true, true, false, true])]; tensor var_1100_squeeze_mask_0 = const()[name = tensor("op_1100_squeeze_mask_0"), val = tensor([false, false, true, false])]; tensor var_1100_cast_fp16 = slice_by_index(begin = var_1100_begin_0, end = var_1100_end_0, end_mask = var_1100_end_mask_0, squeeze_mask = var_1100_squeeze_mask_0, x = var_1097_cast_fp16)[name = tensor("op_1100_cast_fp16")]; tensor var_1107 = const()[name = tensor("op_1107"), val = tensor(1)]; tensor var_1108_interleave_0 = const()[name = tensor("op_1108_interleave_0"), val = tensor(false)]; tensor var_1108_cast_fp16 = concat(axis = var_1107, interleave = var_1108_interleave_0, values = (var_974_cast_fp16, var_992_cast_fp16, var_1010_cast_fp16, var_1028_cast_fp16, var_1046_cast_fp16, var_1064_cast_fp16, var_1082_cast_fp16, var_1100_cast_fp16))[name = tensor("op_1108_cast_fp16")]; tensor var_1110 = const()[name = tensor("op_1110"), val = tensor([1])]; tensor var_1111 = const()[name = tensor("op_1111"), val = tensor(false)]; tensor alignment_heads_weights = reduce_mean(axes = var_1110, keep_dims = var_1111, x = var_1108_cast_fp16)[name = tensor("obj_cast_fp16")]; } -> (logits, key_cache_updates, value_cache_updates, alignment_heads_weights); }